Search results for: drug prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4191

Search results for: drug prediction

2031 After-Cooling Analysis of RC Structural Members Exposed to High Temperature by Using Numerical Approach

Authors: Ju-Young Hwang, Hyo-Gyoung Kwak

Abstract:

This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical nonlinearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.

Keywords: RC, high temperature, after-cooling analysis, nonlinear analysis

Procedia PDF Downloads 414
2030 Tools for Analysis and Optimization of Standalone Green Microgrids

Authors: William Anderson, Kyle Kobold, Oleg Yakimenko

Abstract:

Green microgrids using mostly renewable energy (RE) for generation, are complex systems with inherent nonlinear dynamics. Among a variety of different optimization tools there are only a few ones that adequately consider this complexity. This paper evaluates applicability of two somewhat similar optimization tools tailored for standalone RE microgrids and also assesses a machine learning tool for performance prediction that can enhance the reliability of any chosen optimization tool. It shows that one of these microgrid optimization tools has certain advantages over another and presents a detailed routine of preparing input data to simulate RE microgrid behavior. The paper also shows how neural-network-based predictive modeling can be used to validate and forecast solar power generation based on weather time series data, which improves the overall quality of standalone RE microgrid analysis.

Keywords: microgrid, renewable energy, complex systems, optimization, predictive modeling, neural networks

Procedia PDF Downloads 282
2029 Hydraulic Studies on Core Components of PFBR

Authors: G. K. Pandey, D. Ramadasu, I. Banerjee, V. Vinod, G. Padmakumar, V. Prakash, K. K. Rajan

Abstract:

Detailed thermal hydraulic investigations are very essential for safe and reliable functioning of liquid metal cooled fast breeder reactors. These investigations are further more important for components with complex profile, since there is no direct correlation available in literature to evaluate the hydraulic characteristics of such components directly. In those cases available correlations for similar profile or geometries may lead to significant uncertainty in the outcome. Hence experimental approach can be adopted to evaluate these hydraulic characteristics more precisely for better prediction in reactor core components. Prototype Fast Breeder Reactor (PFBR), a sodium cooled pool type reactor is under advanced stage of construction at Kalpakkam, India. Several components of this reactor core require hydraulic investigation before its usage in the reactor. These hydraulic investigations on full scale models, carried out by experimental approaches using water as simulant fluid are discussed in the paper.

Keywords: fast breeder reactor, cavitation, pressure drop, reactor components

Procedia PDF Downloads 463
2028 Fabrication of Poly(Ethylene Oxide)/Chitosan/Indocyanine Green Nanoprobe by Co-Axial Electrospinning Method for Early Detection

Authors: Zeynep R. Ege, Aydin Akan, Faik N. Oktar, Betul Karademir, Oguzhan Gunduz

Abstract:

Early detection of cancer could save human life and quality in insidious cases by advanced biomedical imaging techniques. Designing targeted detection system is necessary in order to protect of healthy cells. Electrospun nanofibers are efficient and targetable nanocarriers which have important properties such as nanometric diameter, mechanical properties, elasticity, porosity and surface area to volume ratio. In the present study, indocyanine green (ICG) organic dye was stabilized and encapsulated in polymer matrix which polyethylene oxide (PEO) and chitosan (CHI) multilayer nanofibers via co-axial electrospinning method at one step. The co-axial electrospun nanofibers were characterized as morphological (SEM), molecular (FT-IR), and entrapment efficiency of Indocyanine Green (ICG) (confocal imaging). Controlled release profile of PEO/CHI/ICG nanofiber was also evaluated up to 40 hours.

Keywords: chitosan, coaxial electrospinning, controlled releasing, drug delivery, indocyanine green, polyethylene oxide

Procedia PDF Downloads 169
2027 Far-Field Noise Prediction of Tandem Cylinders Using Incompressible Large Eddy Simulation

Authors: Jesus Ruano, Francesc Xavier Trias, Asensi Oliva

Abstract:

A three-dimensional incompressible Large Eddy Simulation (LES) is performed to compute the hydrodynamic field around a pair of tandem cylinders. Symmetry-preserving schemes will be used during this simulation in conjunction with Finite Volume Method (FVM) to obtain the hydrodynamic field around the selected geometry. A set of results consisting of pressure and velocity and the combination of them will be stored at different surfaces near the cylinders as the initial input for the second part of the study. A post-processing of the obtained results based on Ffowcs-Williams and Hawkings (FWH) equation with a Fourier Transform of the acoustic sources will be used to compute noise at several probes located far away from the region where the hydrodynamics are computed. Directivities as well as spectral profile of the obtained acoustic field will be analyzed.

Keywords: far-field noise, Ffowcs-Williams and Hawkings, finite volume method, large eddy simulation, long-span bodies

Procedia PDF Downloads 376
2026 The 10,000 Fold Effect of Retrograde Neurotransmission, a New Concept for Stroke Revival: Use of Intracarotid Sodium Nitroprusside

Authors: Vinod Kumar

Abstract:

Background: Tissue Plasminogen Activator (tPA) showed a level 1 benefit in acute stroke (within 3-6 hrs). Intracarotid sodium nitroprusside (ICSNP) has been studied in this context with a wide treatment window, fast recovery and affordability. This work proposes two mechanisms for acute cases and one mechanism for chronic cases, which are interrelated, for physiological recovery. a)Retrograde Neurotransmission (acute cases): 1)Normal excitatory impulse: at the synaptic level, glutamate activates NMDA receptors, with nitric oxide synthetase (NOS) on the postsynaptic membrane, for further propagation by the calcium-calmodulin complex. Nitric oxide (NO, produced by NOS) travels backward across the chemical synapse and binds the axon-terminal NO receptor/sGC of a presynaptic neuron, regulating anterograde neurotransmission (ANT) via retrograde neurotransmission (RNT). Heme is the ligand-binding site of the NO receptor/sGC. Heme exhibits > 10,000-fold higher affinity for NO than for oxygen (the 10,000-fold effect) and is completed in 20 msec. 2)Pathological conditions: normal synaptic activity, including both ANT and RNT, is absent. A NO donor (SNP) releases NO from NOS in the postsynaptic region. NO travels backward across a chemical synapse to bind to the heme of a NO receptor in the axon terminal of a presynaptic neuron, generating an impulse, as under normal conditions. b)Vasospasm: (acute cases) Perforators show vasospastic activity. NO vasodilates the perforators via the NO-cAMP pathway. c)Long-Term Potentıatıon (LTP): (chronic cases) The NO–cGMP-pathway plays a role in LTP at many synapses throughout the CNS and at the neuromuscular junction. LTP has been reviewed both generally and with respect to brain regions specific for memory/learning. Aims/Study Des’gn: The principles of “generation of impulses from the presynaptic region to the postsynaptic region by very potent RNT (10,000-fold effect)” and “vasodilation of arteriolar perforators” are the basis of the authors’ hypothesis to treat stroke cases. Case-control prospective study. Mater’als And Methods: The experimental population included 82 stroke patients (10 patients were given control treatments without superfusion or with 5% dextrose superfusion, and 72 patients comprised the ICSNP group). The mean time for superfusion was 9.5 days post-stroke. Pre- and post-ICSNP status was monitored by NIHSS, MRI and TCD. Results: After 90 seconds in the ICSNP group, the mean change in the NIHSS score was a decrease of 1.44 points, or 6.55%; after 2 h, there was a decrease of 1.16 points; after 24 h, there was an increase of 0.66 points, 2.25%, compared to the control-group increase of 0.7 points, or 3.53%; at 7 days, there was an 8.61-point decrease, 44.58%, compared to the control-group increase of 2.55 points, or 22.37%; at 2 months in ICSNP, there was a 6.94-points decrease, 62.80%, compared to the control-group decrease of 2.77 points, or 8.78%. TCD was documented and improvements were noted. Conclusions: ICSNP is a swift-acting drug in the treatment of stroke, acting within 90 seconds on day 9.5 post-stroke with a small decrease after 24 hours. The drug recovers from this decrease quickly.

Keywords: brain infarcts, intracarotid sodium nitroprusside, perforators, vasodilatıons, retrograde transmission, the 10, 000-fold effect

Procedia PDF Downloads 307
2025 Prediction of Solidification Behavior of Al Alloy in a Cube Mold Cavity

Authors: N. P. Yadav, Deepti Verma

Abstract:

This paper focuses on the mathematical modeling for solidification of Al alloy in a cube mould cavity to study the solidification behavior of casting process. The parametric investigation of solidification process inside the cavity was performed by using computational solidification/melting model coupled with Volume of fluid (VOF) model. The implicit filling algorithm is used in this study to understand the overall process from the filling stage to solidification in a model metal casting process. The model is validated with past studied at same conditions. The solidification process are analyzed by including the effect of pouring velocity and temperature of liquid metal, effect of wall temperature as well natural convection from the wall and geometry of the cavity. These studies show the possibility of various defects during solidification process.

Keywords: buoyancy driven flow, natural convection driven flow, residual flow, secondary flow, volume of fluid

Procedia PDF Downloads 417
2024 Performance Analysis of N-Tier Grid Protocol for Resource Constrained Wireless Sensor Networks

Authors: Jai Prakash Prasad, Suresh Chandra Mohan

Abstract:

Modern wireless sensor networks (WSN) consist of small size, low cost devices which are networked through tight wireless communications. WSN fundamentally offers cooperation, coordination among sensor networks. Potential applications of wireless sensor networks are in healthcare, natural disaster prediction, data security, environmental monitoring, home appliances, entertainment etc. The design, development and deployment of WSN based on application requirements. The WSN design performance is optimized to improve network lifetime. The sensor node resources constrain such as energy and bandwidth imposes the limitation on efficient resource utilization and sensor node management. The proposed N-Tier GRID routing protocol focuses on the design of energy efficient large scale wireless sensor network for improved performance than the existing protocol.

Keywords: energy efficient, network lifetime, sensor networks, wireless communication

Procedia PDF Downloads 469
2023 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design

Authors: Pegah Eshraghi, Zahra Sadat Zomorodian, Mohammad Tahsildoost

Abstract:

Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.

Keywords: early stage of design, energy, thermal comfort, validation, machine learning

Procedia PDF Downloads 98
2022 Adsorption of Malachite Green Dye onto Industrial Waste Materials: Full Factorial Design

Authors: Semra Çoruh, Yusuf Tibet

Abstract:

Dyes are widely used in industries such as textiles, paper, paints, leather, rubber, plastics, cosmetics, food, and drug etc, to color their products. Due to their chemical structures, dyes are resistant to fading on exposure to light, water and many chemicals and, therefore, are difficult to be decolorized once released into the aquatic environment. Many of the organic dyes are hazardous and may affect aquatic life and even the food chain. This study deals with the adsorption of malachite green dye onto fly ash and red mud. The effects of experimental factors (adsorbent dosage, initial concentration, pH and temperature) on the adsorption process were examined by using 24 full factorial design. The results were statistically analyzed by using the student’s t-test, analysis of variance (ANOVA) and an F-test to define important experimental factors and their levels. A regression model that considers the significant main and interaction effects was suggested. The results showed that initial dye concentration an pH is the most significant factor that affects the removal of malachite green.

Keywords: malachite green, adsorption, red mud, fly ash, full factorial design

Procedia PDF Downloads 476
2021 Settlement Prediction for Tehran Subway Line-3 via FLAC3D and ANFIS

Authors: S. A. Naeini, A. Khalili

Abstract:

Nowadays, tunnels with different applications are developed, and most of them are related to subway tunnels. The excavation of shallow tunnels that pass under municipal utilities is very important, and the surface settlement control is an important factor in the design. The study sought to analyze the settlement and also to find an appropriate model in order to predict the behavior of the tunnel in Tehran subway line-3. The displacement in these sections is also determined by using numerical analyses and numerical modeling. In addition, the Adaptive Neuro-Fuzzy Inference System (ANFIS) method is utilized by Hybrid training algorithm. The database pertinent to the optimum network was obtained from 46 subway tunnels in Iran and Turkey which have been constructed by the new Austrian tunneling method (NATM) with similar parameters based on type of their soil. The surface settlement was measured, and the acquired results were compared to the predicted values. The results disclosed that computing intelligence is a good substitute for numerical modeling.

Keywords: settlement, Subway Line, FLAC3D, ANFIS Method

Procedia PDF Downloads 233
2020 Prediction of the Thermodynamic Properties of Hydrocarbons Using Gaussian Process Regression

Authors: N. Alhazmi

Abstract:

Knowing the thermodynamics properties of hydrocarbons is vital when it comes to analyzing the related chemical reaction outcomes and understanding the reaction process, especially in terms of petrochemical industrial applications, combustions, and catalytic reactions. However, measuring the thermodynamics properties experimentally is time-consuming and costly. In this paper, Gaussian process regression (GPR) has been used to directly predict the main thermodynamic properties - standard enthalpy of formation, standard entropy, and heat capacity -for more than 360 cyclic and non-cyclic alkanes, alkenes, and alkynes. A simple workflow has been proposed that can be applied to directly predict the main properties of any hydrocarbon by knowing its descriptors and chemical structure and can be generalized to predict the main properties of any material. The model was evaluated by calculating the statistical error R², which was more than 0.9794 for all the predicted properties.

Keywords: thermodynamic, Gaussian process regression, hydrocarbons, regression, supervised learning, entropy, enthalpy, heat capacity

Procedia PDF Downloads 222
2019 Experimental and Numerical Investigation of Fluid Flow inside Concentric Heat Exchanger Using Different Inlet Geometry Configurations

Authors: Mohamed M. Abo Elazm, Ali I. Shehata, Mohamed M. Khairat Dawood

Abstract:

A computational fluid dynamics (CFD) program FLUENT has been used to predict the fluid flow and heat transfer distribution within concentric heat exchangers. The effect of inlet inclination angle has been investigated with Reynolds number range (3000 – 4000) and Pr=0.71. The heat exchanger is fabricated from copper concentric inner tube with a length of 750 mm. The effects of hot to cold inlet flow rate ratio (MH/MC), Reynolds's number and of inlet inclination angle of 30°, 45°, 60° and 90° are considered. The results showed that the numerical prediction shows a good agreement with experimental measurement. The results present an efficient design of concentric tube heat exchanger to enhance the heat transfer by increasing the swirling effect.

Keywords: heat transfer, swirling effect, CFD, inclination angle, concentric tube heat exchange

Procedia PDF Downloads 321
2018 Analysis and Prediction of Netflix Viewing History Using Netflixlatte as an Enriched Real Data Pool

Authors: Amir Mabhout, Toktam Ghafarian, Amirhossein Farzin, Zahra Makki, Sajjad Alizadeh, Amirhossein Ghavi

Abstract:

The high number of Netflix subscribers makes it attractive for data scientists to extract valuable knowledge from the viewers' behavioural analyses. This paper presents a set of statistical insights into viewers' viewing history. After that, a deep learning model is used to predict the future watching behaviour of the users based on previous watching history within the Netflixlatte data pool. Netflixlatte in an aggregated and anonymized data pool of 320 Netflix viewers with a length 250 000 data points recorded between 2008-2022. We observe insightful correlations between the distribution of viewing time and the COVID-19 pandemic outbreak. The presented deep learning model predicts future movie and TV series viewing habits with an average loss of 0.175.

Keywords: data analysis, deep learning, LSTM neural network, netflix

Procedia PDF Downloads 251
2017 Study of Cavitation Erosion of Pump-Storage Hydro Power Plant Prototype

Authors: Tine Cencič, Marko Hočevar, Brane Širok

Abstract:

An experimental investigation has been made to detect cavitation in pump–storage hydro power plant prototype suffering from cavitation in pump mode. Vibrations and acoustic emission on the housing of turbine bearing and pressure fluctuations in the draft tube were measured and the corresponding signals have been recorded and analyzed. The analysis was based on the analysis of high-frequency content of measured variables. The pump-storage hydro power plant prototype has been operated at various input loads and Thoma numbers. Several estimators of cavitation were evaluated according to coefficient of determination between Thoma number and cavitation estimators. The best results were achieved with a compound discharge coefficient cavitation estimator. Cavitation estimators were evaluated in several intervals of frequencies. Also, a prediction of cavitation erosion was made in order to choose the appropriate maintenance and repair periods.

Keywords: cavitation erosion, turbine, cavitation measurement, fluid dynamics

Procedia PDF Downloads 415
2016 Cyclostationary Gaussian Linearization for Analyzing Nonlinear System Response Under Sinusoidal Signal and White Noise Excitation

Authors: R. J. Chang

Abstract:

A cyclostationary Gaussian linearization method is formulated for investigating the time average response of nonlinear system under sinusoidal signal and white noise excitation. The quantitative measure of cyclostationary mean, variance, spectrum of mean amplitude, and mean power spectral density of noise is analyzed. The qualitative response behavior of stochastic jump and bifurcation are investigated. The validity of the present approach in predicting the quantitative and qualitative statistical responses is supported by utilizing Monte Carlo simulations. The present analysis without imposing restrictive analytical conditions can be directly derived by solving non-linear algebraic equations. The analytical solution gives reliable quantitative and qualitative prediction of mean and noise response for the Duffing system subjected to both sinusoidal signal and white noise excitation.

Keywords: cyclostationary, duffing system, Gaussian linearization, sinusoidal, white noise

Procedia PDF Downloads 489
2015 Artificial Steady-State-Based Nonlinear MPC for Wheeled Mobile Robot

Authors: M. H. Korayem, Sh. Ameri, N. Yousefi Lademakhi

Abstract:

To ensure the stability of closed-loop nonlinear model predictive control (NMPC) within a finite horizon, there is a need for appropriate design terminal ingredients, which can be a time-consuming and challenging effort. Otherwise, in order to ensure the stability of the control system, it is necessary to consider an infinite predictive horizon. Increasing the prediction horizon increases computational demand and slows down the implementation of the method. In this study, a new technique has been proposed to ensure system stability without terminal ingredients. This technique has been employed in the design of the NMPC algorithm, leading to a reduction in the computational complexity of designing terminal ingredients and computational burden. The studied system is a wheeled mobile robot (WMR) subjected to non-holonomic constraints. Simulation has been investigated for two problems: trajectory tracking and adjustment mode.

Keywords: wheeled mobile robot, nonlinear model predictive control, stability, without terminal ingredients

Procedia PDF Downloads 91
2014 Facile Synthesis of Novel Substituted Aryl-Thiazole (SAT) Analogs via One-Pot Multicomponent Reaction as Potent Cytotoxic Agents against Cancer Cell Lines

Authors: Salma Mirza, Syeda Asma Naqvi, Khalid Mohammed Khan, M. Iqbal Choudhary

Abstract:

In this study twenty-five (25) newly synthesized compounds substituted aryl thiazoles (SAT) 1-25 were synthesized, and in vitro cytotoxicity of these compounds was evaluated against four cancer cell lines namely, MCF-7 (ER+ve breast), MDA-MB-231 (ER-ve breast), HCT116 (colorectal), and, HeLa (cervical) and compared with the standard anticancer drug doxorubicin with IC50 value of 1.56 ± 0.05 μM. Among them, compounds 1, 4-8 and 19 were found to be active against all four cell lines. Compound 20 was found to be selectively active against MCF7 cells with IC50 value of 40.21 ± 4.15 µM, whereas compound 19 was active against only MCF7 and HeLa cells with IC50 values of 46.72 ± 1.8 and 19.86 ± 0.11 μM, respectively. These results suggest that aryl thiazoles 1 and 4 deserve to be investigated further in vivo as anti-cancer agents.

Keywords: anticancer agents, breast cancer cell lines (MCF7, MDA-MB-231), colorectal cancer cell line (HCT-116), cervical cancer cell line (HeLa), Thiazole derivatives

Procedia PDF Downloads 303
2013 Analysis and Prediction of the Behavior of the Landslide at Ain El Hammam, Algeria Based on the Second Order Work Criterion

Authors: Zerarka Hizia, Akchiche Mustapha, Prunier Florent

Abstract:

The landslide of Ain El Hammam (AEH) is characterized by a complex geology and a high hydrogeology hazard. AEH's perpetual reactivation compels us to look closely at its triggers and to better understand the mechanisms of its evolution in mass and in depth. This study builds a numerical model to simulate the influencing factors such as precipitation, non-saturation, and pore pressure fluctuations, using Plaxis software. For a finer analysis of instabilities, we use Hill's criterion, based on the sign of the second order work, which is the most appropriate material stability criterion for non-associated elastoplastic materials. The results of this type of calculation allow us, in theory, to predict the shape and position of the slip surface(s) which are liable to ground movements of the slope, before reaching the rupture given by the plastic limit of Mohr Coulomb. To validate the numerical model, an analysis of inclinometer measures is performed to confirm the direction of movement and kinematic of the sliding mechanism of AEH’s slope.

Keywords: landslide, second order work, precipitation, inclinometers

Procedia PDF Downloads 179
2012 Rapid Expansion Supercritical Solution (RESS) Carbon Dioxide as an Environmental Friendly Method for Ginger Rhizome Solid Oil Particles Formation

Authors: N. A. Zainuddin, I. Norhuda, I. S. Adeib, A. N. Mustapa, S. H. Sarijo

Abstract:

Recently, RESS (Rapid Expansion Supercritical Solution) method has been used by researchers to produce fine particles for pharmaceutical drug substances. Since RESS technology acknowledges a lot of benefits compare to conventional method of ginger extraction, it is suggested to use this method to explore particle formation of bioactive compound from powder ginger. The objective of this research is to produce direct solid oil particles formation from ginger rhizome which contains valuable compounds by using RESS-CO2 process. RESS experiments were carried using extraction pressure of 3000, 4000, 5000, 6000 and 7000psi and at different extraction temperature of 40, 45, 50, 55, 60, 65 and 70°C for 40 minutes extraction time and contant flowrate (24ml/min). From the studies conducted, it was found that at extraction pressure 5000psi and temperature 40°C, the smallest particle size obtained was 2.22μm on 99 % reduction from the original size of 370μm.

Keywords: particle size, RESS, solid oil particle, supercritical carbon dioxide,

Procedia PDF Downloads 335
2011 “MaxSALIVA-II” Advancing a Nano-Sized Dual-Drug Delivery System for Salivary Gland Radioprotection, Regeneration and Repair in a Head and Neck Cancer Pre-Clinical Murine Model

Authors: Ziyad S. Haidar

Abstract:

Background: Saliva plays a major role in maintaining oral, dental, and general health and well-being; where it normally bathes the oral cavity acting as a clearing agent. This becomes more apparent when the amount and quality of saliva are significantly reduced due to medications, salivary gland neoplasms, disorders such as Sjögren’s syndrome, and especially ionizing radiation therapy for tumors of the head and neck, the 5th most common malignancy worldwide, during which the salivary glands are included within the radiation field/zone. Clinically, patients affected by salivary gland dysfunction often opt to terminate their radiotherapy course prematurely as they become malnourished and experience a significant decrease in their QoL. Accordingly, the formulation of a radio-protection/-prevention modality and development of an alternative Rx to restore damaged salivary gland tissue is eagerly awaited and highly desirable. Objectives: Assess the pre-clinical radio-protective effect and reparative/regenerative potential of layer-by-layer self-assembled lipid-polymer-based core-shell nanocapsules designed and fine-tuned for the sequential (ordered) release of dual cytokines, following a single local administration (direct injection) into a murine sub-mandibular salivary gland model of irradiation. Methods: The formulated core-shell nanocapsules were characterized by physical-chemical-mechanically pre-/post-loading with the drugs, followed by optimizing the pharmaco-kinetic profile. Then, nanosuspensions were administered directly into the salivary glands, 24hrs pre-irradiation (PBS, un-loaded nanocapsules, and individual and combined vehicle-free cytokines were injected into the control glands for an in-depth comparative analysis). External irradiation at an elevated dose of 18Gy was exposed to the head-and-neck region of C57BL/6 mice. Salivary flow rate (un-stimulated) and salivary protein content/excretion were regularly assessed using an enzyme-linked immunosorbent assay (3-month period). Histological and histomorphometric evaluation and apoptosis/proliferation analysis followed by local versus systemic bio-distribution and immuno-histochemical assays were then performed on all harvested major organs (at the distinct experimental end-points). Results: Monodisperse, stable, and cytocompatible nanocapsules capable of maintaining the bioactivity of the encapsulant within the different compartments with the core and shell and with controlled/customizable pharmaco-kinetics, resulted, as is illustrated in the graphical abstract (Figure) below. The experimental animals demonstrated a significant increase in salivary flow rates when compared to the controls. Herein, salivary protein content was comparable to the pre-irradiation (baseline) level. Histomorphometry further confirmed the biocompatibility and localization of the nanocapsules, in vivo, into the site of injection. Acinar cells showed fewer vacuoles and nuclear aberration in the experimental group, while the amount of mucin was higher in controls. Overall, fewer apoptotic activities were detected by a Terminal deoxynucleotidyl Transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay and proliferative rates were similar to the controls, suggesting an interesting reparative and regenerative potential of irradiation-damaged/-dysfunctional salivary glands. The Figure below exemplifies some of these findings. Conclusions: Biocompatible, reproducible, and customizable self-assembling layer-by-layer core-shell delivery system is formulated and presented. Our findings suggest that localized sequential bioactive delivery of dual cytokines (in specific dose and order) can prevent irradiation-induced damage via reducing apoptosis and also has the potential to promote in situ proliferation of salivary gland cells; maxSALIVA is scalable (Good Manufacturing Practice or GMP production for human clinical trials) and patent-pending.

Keywords: cancer, head and neck, oncology, drug development, drug delivery systems, nanotechnology, nanoncology

Procedia PDF Downloads 79
2010 Determining Earthquake Performances of Existing Reinforced Concrete Buildings by Using ANN

Authors: Musa H. Arslan, Murat Ceylan, Tayfun Koyuncu

Abstract:

In this study, an artificial intelligence-based (ANN based) analytical method has been developed for analyzing earthquake performances of the reinforced concrete (RC) buildings. 66 RC buildings with four to ten storeys were subjected to performance analysis according to the parameters which are the existing material, loading and geometrical characteristics of the buildings. The selected parameters have been thought to be effective on the performance of RC buildings. In the performance analyses stage of the study, level of performance possible to be shown by these buildings in case of an earthquake was determined on the basis of the 4-grade performance levels specified in Turkish Earthquake Code- 2007 (TEC-2007). After obtaining the 4-grade performance level, selected 23 parameters of each building have been matched with the performance level. In this stage, ANN-based fast evaluation algorithm mentioned above made an economic and rapid evaluation of four to ten storey RC buildings. According to the study, the prediction accuracy of ANN has been found about 74%.

Keywords: artificial intelligence, earthquake, performance, reinforced concrete

Procedia PDF Downloads 463
2009 Biochemical Changes in the Liver of Mice after Exposure to Different Doses of Diclofenac Sodium

Authors: Deepak Mohan, Sushma Sharma

Abstract:

Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) are a group of widely used drugs for the treatment of rheumatoid diseases and to relieve pain and inflammation due to their analgesic anti-pyretic and anti-inflammatory properties. The therapeutic and many of the toxic effects of NSAIDs result from reversible inhibition of enzymes in the cyclooxygenase (COX) group. In the present investigation the effect of the drug on the concentration of lipids, and on the activity of the enzymes i.e. acid and alkaline phosphatase, GOT, GPT and lipid peroxidase were studied. There was a significant enhancement in the activities of both acid and alkaline phosphatase after 21 days of treatment. Proportionate increase in the MDA contents was observed after different days of diclofenac treatment. Cellular damage in the liver resulted in decrease in the activity of both GOT (Glutamate oxaloacetate transaminase) and GPT (Glutamate pyruvate transaminase) in both low and high dose groups. Significant decrease in the liver contents was also observed in both dose groups.

Keywords: anti-inflammatory, cyclooxygenase, glutamate oxaloacetate transaminase, malondialdehyde

Procedia PDF Downloads 302
2008 Genistein Suppresses Doxorubicin Associated Genotoxicity in Human Lymphocytes

Authors: Tanveer Beg, Yasir H. Siddique, Gulshan Ara, Asfar S. Azmi, Mohammad Afzal

Abstract:

Doxorubicin is a well-known DNA intercalating chemotherapy drug that is widely used for treatment of different cancers. Its clinical utility is limited due to the observed genotoxic side effects on healthy cells suggesting that newer combination and genoprotective regimens are urgently needed for the management of doxorubicin chemotherapy. Some dietary phytochemicals are well known for their protective mechanism of action and genistein from soy is recognized as an anti-oxidant with similar properties. Therefore, the present study investigates the effect of genistein against the genotoxic doses of doxorubicin by assessing chromosomal aberrations, sister chromatid exchanges, cell cycle kinetics, cell viability, apoptosis, and DNA damage markers in cultured human lymphocytes. Our results reveal that genistein treatment significantly suppresses genotoxic damage induced by doxorubicin. It is concluded that genistein has the potential to reduce the genotoxicity induced by anti-cancer drugs, thereby reducing the chances of developing secondary tumors during the therapy.

Keywords: apoptosis, DNA damage markers, doxorubicin, genistein, genotoxicity, human lymphocyte culture

Procedia PDF Downloads 360
2007 Destructive and Nondestructive Characterization of Advanced High Strength Steels DP1000/1200

Authors: Carla M. Machado, André A. Silva, Armando Bastos, Telmo G. Santos, J. Pamies Teixeira

Abstract:

Advanced high-strength steels (AHSS) are increasingly being used in automotive components. The use of AHSS sheets plays an important role in reducing weight, as well as increasing the resistance to impact in vehicle components. However, the large-scale use of these sheets becomes more difficult due to the limitations during the forming process. Such limitations are due to the elastically driven change of shape of a metal sheet during unloading and following forming, known as the springback effect. As the magnitude of the springback tends to increase with the strength of the material, it is among the most worrisome problems in the use of AHSS steels. The prediction of strain hardening, especially under non-proportional loading conditions, is very limited due to the lack of constitutive models and mainly due to very limited experimental tests. It is very clear from the literature that in experimental terms there is not much work to evaluate deformation behavior under real conditions, which implies a very limited and scarce development of mathematical models for these conditions. The Bauschinger effect is also fundamental to the difference between kinematic and isotropic hardening models used to predict springback in sheet metal forming. It is of major importance to deepen the phenomenological knowledge of the mechanical and microstructural behavior of the materials, in order to be able to reproduce with high fidelity the behavior of extension of the materials by means of computational simulation. For this, a multi phenomenological analysis and characterization are necessary to understand the various aspects involved in plastic deformation, namely the stress-strain relations and also the variations of electrical conductivity and magnetic permeability associated with the metallurgical changes due to plastic deformation. Aiming a complete mechanical-microstructural characterization, uniaxial tensile tests involving successive cycles of loading and unloading were performed, as well as biaxial tests such as the Erichsen test. Also, nondestructive evaluation comprising eddy currents to verify microstructural changes due to plastic deformation and ultrasonic tests to evaluate the local variations of thickness were made. The material parameters for the stable yield function and the monotonic strain hardening were obtained using uniaxial tension tests in different material directions and balanced biaxial tests. Both the decrease of the modulus of elasticity and Bauschinger effect were determined through the load-unload tensile tests. By means of the eddy currents tests, it was possible to verify changes in the magnetic permeability of the material according to the different plastically deformed areas. The ultrasonic tests were an important aid to quantify the local plastic extension. With these data, it is possible to parameterize the different models of kinematic hardening to better approximate the results obtained by simulation with the experimental results, which are fundamental for the springback prediction of the stamped parts.

Keywords: advanced high strength steel, Bauschinger effect, sheet metal forming, springback

Procedia PDF Downloads 227
2006 Evaluation of Wound Healing Activity of Curcuma purpurascens BI. Rhizomes in Rats

Authors: Elham Rouhollahi, Soheil Zorofchian Moghadamtousi, Salma Baig, Mahmood Ameen Abdulla, Zahurin Mohamed

Abstract:

This study was designed to assess cutaneous wound healing potential of hexane extract of Curcuma purpurascens rhizomes (HECP). Twenty-four rats were divided into 4 groups: 1. Negative, 2. Low dose, 3. High dose and 4. Treatment, with 6 rats in each group. Full-thickness incisions with a diameter of 2 cm were made on the back of each rat. Rats were topically treated two times a day for 15 days. Group 1-4 were treated with sterile distilled water, 5% and 10% of extract and intrasite gel, respectively. Masson's trichrome and hematoxylin staining techniques are employed for histological analysis revealed strong wound healing potential closer to that of conventional drug intrasite gel. HECP significantly decreased wound area and an increase in hydroxyproline, cellular proliferation, the number of blood vessels and the level of collagen synthesis was observed. Thus, it could be concluded that HECP possesses strong wound healing potential.

Keywords: Curcuma purpurascens, wound healing, histopathology, hematoxylin staining

Procedia PDF Downloads 438
2005 Indigenous Patch Clamp Technique: Design of Highly Sensitive Amplifier Circuit for Measuring and Monitoring of Real Time Ultra Low Ionic Current through Cellular Gates

Authors: Moez ul Hassan, Bushra Noman, Sarmad Hameed, Shahab Mehmood, Asma Bashir

Abstract:

The importance of Noble prize winning “Patch Clamp Technique” is well documented. However, Patch Clamp Technique is very expensive and hence hinders research in developing countries. In this paper, detection, processing and recording of ultra low current from induced cells by using transimpedence amplifier is described. The sensitivity of the proposed amplifier is in the range of femto amperes (fA). Capacitive-feedback is used with active load to obtain a 20MΩ transimpedance gain. The challenging task in designing includes achieving adequate performance in gain, noise immunity and stability. The circuit designed by the authors was able to measure current in the rangeof 300fA to 100pA. Adequate performance shown by the amplifier with different input current and outcome result was found to be within the acceptable error range. Results were recorded using LabVIEW 8.5®for further research.

Keywords: drug discovery, ionic current, operational amplifier, patch clamp

Procedia PDF Downloads 519
2004 Valuing Cultural Ecosystem Services of Natural Treatment Systems Using Crowdsourced Data

Authors: Andrea Ghermandi

Abstract:

Natural treatment systems such as constructed wetlands and waste stabilization ponds are increasingly used to treat water and wastewater from a variety of sources, including stormwater and polluted surface water. The provision of ancillary benefits in the form of cultural ecosystem services makes these systems unique among water and wastewater treatment technologies and greatly contributes to determine their potential role in promoting sustainable water management practices. A quantitative analysis of these benefits, however, has been lacking in the literature. Here, a critical assessment of the recreational and educational benefits in natural treatment systems is provided, which combines observed public use from a survey of managers and operators with estimated public use as obtained using geotagged photos from social media as a proxy for visitation rates. Geographic Information Systems (GIS) are used to characterize the spatial boundaries of 273 natural treatment systems worldwide. Such boundaries are used as input for the Application Program Interfaces (APIs) of two popular photo-sharing websites (Flickr and Panoramio) in order to derive the number of photo-user-days, i.e., the number of yearly visits by individual photo users in each site. The adequateness and predictive power of four univariate calibration models using the crowdsourced data as a proxy for visitation are evaluated. A high correlation is found between photo-user-days and observed annual visitors (Pearson's r = 0.811; p-value < 0.001; N = 62). Standardized Major Axis (SMA) regression is found to outperform Ordinary Least Squares regression and count data models in terms of predictive power insofar as standard verification statistics – such as the root mean square error of prediction (RMSEP), the mean absolute error of prediction (MAEP), the reduction of error (RE), and the coefficient of efficiency (CE) – are concerned. The SMA regression model is used to estimate the intensity of public use in all 273 natural treatment systems. System type, influent water quality, and area are found to statistically affect public use, consistently with a priori expectations. Publicly available information regarding the home location of the sampled visitors is derived from their social media profiles and used to infer the distance they are willing to travel to visit the natural treatment systems in the database. Such information is analyzed using the travel cost method to derive monetary estimates of the recreational benefits of the investigated natural treatment systems. Overall, the findings confirm the opportunities arising from an integrated design and management of natural treatment systems, which combines the objectives of water quality enhancement and provision of cultural ecosystem services through public use in a multi-functional approach and compatibly with the need to protect public health.

Keywords: constructed wetlands, cultural ecosystem services, ecological engineering, waste stabilization ponds

Procedia PDF Downloads 180
2003 Automated Prediction of HIV-associated Cervical Cancer Patients Using Data Mining Techniques for Survival Analysis

Authors: O. J. Akinsola, Yinan Zheng, Rose Anorlu, F. T. Ogunsola, Lifang Hou, Robert Leo-Murphy

Abstract:

Cervical Cancer (CC) is the 2nd most common cancer among women living in low and middle-income countries, with no associated symptoms during formative periods. With the advancement and innovative medical research, there are numerous preventive measures being utilized, but the incidence of cervical cancer cannot be truncated with the application of only screening tests. The mortality associated with this invasive cervical cancer can be nipped in the bud through the important role of early-stage detection. This study research selected an array of different top features selection techniques which was aimed at developing a model that could validly diagnose the risk factors of cervical cancer. A retrospective clinic-based cohort study was conducted on 178 HIV-associated cervical cancer patients in Lagos University teaching Hospital, Nigeria (U54 data repository) in April 2022. The outcome measure was the automated prediction of the HIV-associated cervical cancer cases, while the predictor variables include: demographic information, reproductive history, birth control, sexual history, cervical cancer screening history for invasive cervical cancer. The proposed technique was assessed with R and Python programming software to produce the model by utilizing the classification algorithms for the detection and diagnosis of cervical cancer disease. Four machine learning classification algorithms used are: the machine learning model was split into training and testing dataset into ratio 80:20. The numerical features were also standardized while hyperparameter tuning was carried out on the machine learning to train and test the data. Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), and K-Nearest Neighbor (KNN). Some fitting features were selected for the detection and diagnosis of cervical cancer diseases from selected characteristics in the dataset using the contribution of various selection methods for the classification cervical cancer into healthy or diseased status. The mean age of patients was 49.7±12.1 years, mean age at pregnancy was 23.3±5.5 years, mean age at first sexual experience was 19.4±3.2 years, while the mean BMI was 27.1±5.6 kg/m2. A larger percentage of the patients are Married (62.9%), while most of them have at least two sexual partners (72.5%). Age of patients (OR=1.065, p<0.001**), marital status (OR=0.375, p=0.011**), number of pregnancy live-births (OR=1.317, p=0.007**), and use of birth control pills (OR=0.291, p=0.015**) were found to be significantly associated with HIV-associated cervical cancer. On top ten 10 features (variables) considered in the analysis, RF claims the overall model performance, which include: accuracy of (72.0%), the precision of (84.6%), a recall of (84.6%) and F1-score of (74.0%) while LR has: an accuracy of (74.0%), precision of (70.0%), recall of (70.0%) and F1-score of (70.0%). The RF model identified 10 features predictive of developing cervical cancer. The age of patients was considered as the most important risk factor, followed by the number of pregnancy livebirths, marital status, and use of birth control pills, The study shows that data mining techniques could be used to identify women living with HIV at high risk of developing cervical cancer in Nigeria and other sub-Saharan African countries.

Keywords: associated cervical cancer, data mining, random forest, logistic regression

Procedia PDF Downloads 83
2002 Solar Power Forecasting for the Bidding Zones of the Italian Electricity Market with an Analog Ensemble Approach

Authors: Elena Collino, Dario A. Ronzio, Goffredo Decimi, Maurizio Riva

Abstract:

The rapid increase of renewable energy in Italy is led by wind and solar installations. The 2017 Italian energy strategy foresees a further development of these sustainable technologies, especially solar. This fact has resulted in new opportunities, challenges, and different problems to deal with. The growth of renewables allows to meet the European requirements regarding energy and environmental policy, but these types of sources are difficult to manage because they are intermittent and non-programmable. Operationally, these characteristics can lead to instability on the voltage profile and increasing uncertainty on energy reserve scheduling. The increasing renewable production must be considered with more and more attention especially by the Transmission System Operator (TSO). The TSO, in fact, every day provides orders on energy dispatch, once the market outcome has been determined, on extended areas, defined mainly on the basis of power transmission limitations. In Italy, six market zone are defined: Northern-Italy, Central-Northern Italy, Central-Southern Italy, Southern Italy, Sardinia, and Sicily. An accurate hourly renewable power forecasting for the day-ahead on these extended areas brings an improvement both in terms of dispatching and reserve management. In this study, an operational forecasting tool of the hourly solar output for the six Italian market zones is presented, and the performance is analysed. The implementation is carried out by means of a numerical weather prediction model, coupled with a statistical post-processing in order to derive the power forecast on the basis of the meteorological projection. The weather forecast is obtained from the limited area model RAMS on the Italian territory, initialized with IFS-ECMWF boundary conditions. The post-processing calculates the solar power production with the Analog Ensemble technique (AN). This statistical approach forecasts the production using a probability distribution of the measured production registered in the past when the weather scenario looked very similar to the forecasted one. The similarity is evaluated for the components of the solar radiation: global (GHI), diffuse (DIF) and direct normal (DNI) irradiation, together with the corresponding azimuth and zenith solar angles. These are, in fact, the main factors that affect the solar production. Considering that the AN performance is strictly related to the length and quality of the historical data a training period of more than one year has been used. The training set is made by historical Numerical Weather Prediction (NWP) forecasts at 12 UTC for the GHI, DIF and DNI variables over the Italian territory together with corresponding hourly measured production for each of the six zones. The AN technique makes it possible to estimate the aggregate solar production in the area, without information about the technologic characteristics of the all solar parks present in each area. Besides, this information is often only partially available. Every day, the hourly solar power forecast for the six Italian market zones is made publicly available through a website.

Keywords: analog ensemble, electricity market, PV forecast, solar energy

Procedia PDF Downloads 158