Search results for: analytical systems engineering process
4875 Process of Analysis, Evaluation and Verification of the 'Real' Redevelopment of the Public Open Space at the Neighborhood’s Stairs: Case Study of Serres, Greece
Authors: Ioanna Skoufali
Abstract:
The present study is directed towards adaptation to climate change closely related to the phenomenon of the urban heat island (UHI). This issue is widespread and common to different urban realities, but particularly in Mediterranean cities that are characterized by dense urban. The attention of this work of redevelopment of the open space is focused on mitigation techniques aiming to solve local problems such as microclimatic parameters and the conditions of thermal comfort in summer, related to urban morphology. This quantitative analysis, evaluation, and verification survey involves the methodological elaboration applied in a real study case by Serres, through the experimental support of the ENVImet Pro V4.1 and BioMet software developed: i) in two phases concerning the anteoperam (phase a1 # 2013) and the post-operam (phase a2 # 2016); ii) in scenario A (+ 25% of green # 2017). The first study tends to identify the main intervention strategies, namely: the application of cool pavements, the increase of green surfaces, the creation of water surface and external fans; moreover, it obtains the minimum results achieved by the National Program 'Bioclimatic improvement project for public open space', EPPERAA (ESPA 2007-2013) related to the four environmental parameters illustrated below: the TAir = 1.5 o C, the TSurface = 6.5 o C, CDH = 30% and PET = 20%. In addition, the second study proposes a greater potential for improvement than postoperam intervention by increasing the vegetation within the district towards the SW/SE. The final objective of this in-depth design is to be transferable in homogeneous cases of urban regeneration processes with obvious effects on the efficiency of microclimatic mitigation and thermal comfort.Keywords: cool pavements, microclimate parameters (TAir, Tsurface, Tmrt, CDH), mitigation strategies, outdoor thermal comfort (PET & UTCI)
Procedia PDF Downloads 2024874 Assessing the Benefits of Super Depo Sutorejo as a Model of integration of Waste Pickers in a Sustainable City Waste Management
Authors: Yohanes Kambaru Windi, Loetfia Dwi Rahariyani, Dyah Wijayanti, Eko Rustamaji
Abstract:
Surabaya, the second largest city in Indonesia, has been struggling for years with waste production and its management. Nearly 11,000 tons of waste are generated daily by domestic, commercial and industrial areas. It is predicted that approximately 1,300 tons of waste overflew the Benowo Landfill daily in 2013 and projected that the landfill operation will be critical in 2015. The Super Depo Sutorejo (SDS) is a pilot project on waste management launched by the government of Surabaya in March 2013. The project is aimed to reduce the amount of waste dumped in landfill by sorting the recyclable and organic waste for composting by employing waste pickers to sort the waste before transported to landfill. This study is intended to assess the capacity of SDS to process and reduce waste and its complementary benefits. It also overviews the benefits of the project to the waste pickers in term of satisfaction to the job. Waste processing data-sheets were used to assess the difference between input and outputs waste. A survey was distributed to 30 waste pickers and interviews were conducted as a further insight on a particular issue. The analysis showed that SDS enable to reduce waste up to 50% before dumped in the final disposal area. The cost-benefits analysis using cost differential calculation revealed the economic benefit is considerable low, but composting may substitute tangible benefits for maintain the city’s parks. Waste pickers are mostly satisfied with their job (i.e. Salary, health coverage, job security), services and facilities available in SDS and enjoyed rewarding social life within the project. It is concluded that SDS is an effective and efficient model for sustainable waste management and reliable to be developed in developing countries. It is a strategic approach to empower and open up working opportunity for the poor urban community and prolong the operation of landfills.Keywords: cost-benefits, integration, satisfaction, waste management
Procedia PDF Downloads 4764873 Viscoelastic Characterization of Gelatin/Cellulose Nanocrystals Aqueous Bionanocomposites
Authors: Liliane Samara Ferreira Leite, Francys Kley Vieira Moreira, Luiz Henrique Capparelli Mattoso
Abstract:
The increasing environmental concern regarding the plastic pollution worldwide has stimulated the development of low-cost biodegradable materials. Proteins are renewable feedstocks that could be used to produce biodegradable plastics. Gelatin, for example, is a cheap film-forming protein extracted from animal skin and connective tissues of Brazilian Livestock residues; thus it has a good potential in low-cost biodegradable plastic production. However, gelatin plastics are limited in terms of mechanical and barrier properties. Cellulose nanocrystals (CNC) are efficient nanofillers that have been used to extend physical properties of polymers. This work was aimed at evaluating the reinforcing efficiency of CNC on gelatin films. Specifically, we have employed the continuous casting as the processing method for obtaining the gelatin/CNC bionanocomposites. This required a first rheological study for assessing the effect of gelatin-CNC and CNC-CNC interactions on the colloidal state of the aqueous bionanocomposite formulations. CNC were isolated from eucalyptus pulp by sulfuric acid hydrolysis (65 wt%) at 55 °C for 30 min. Gelatin was solubilized in ultra-pure water at 85°C for 20 min and then mixed with glycerol at 20 wt.% and CNC at 0.5 wt%, 1.0 wt% and 2.5 wt%. Rotational measurements were performed to determine linear viscosity (η) of bionanocomposite solutions, which increased with increasing CNC content. At 2.5 wt% CNC, η increased by 118% regarding the neat gelatin solution, which was ascribed to percolation CNC network formation. Storage modulus (G’) and loss modulus (G″) further determined by oscillatory tests revealed that a gel-like behavior was dominant in the bionanocomposite solutions (G’ > G’’) over a broad range of temperature (20 – 85 °C), particularly at 2.5 wt% CNC. These results confirm effective interactions in the aqueous gelatin-CNC bionanocomposites that could substantially increase the physical properties of the gelatin plastics. Tensile tests are underway to confirm this hypothesis. The authors would like to thank the Fapesp (process n 2016/03080-3) for support.Keywords: bionanocomposites, cellulose nanocrystals, gelatin, viscoelastic characterization
Procedia PDF Downloads 1504872 Antecedents and Impacts of Human Capital Flight in the Sub-Saharan Africa with Specific Reference to the Higher Education Sector: Conceptual Model
Authors: Zelalem B. Gurmessa, Ignatius W. Ferreira, Henry F. Wissink
Abstract:
The aim of this paper is to critically examine the factors contributing to academic brain drain in the Sub-Saharan Africa with specific reference to the higher education sector. Africa in general and Sub-Saharan African (SSA) countries, in particular, are experiencing an exodus of highly trained, qualified and competent human resources to other developing and developed countries thereby threatening the overall development of the relevant regions and impeding both public and private service delivery systems in the nation states. The region is currently in a dire situation in terms of health care services, education, science, and technology. The contribution of SSA countries to Science, Technology and Innovation is relatively minimal owing to the migration of skilled professionals due to both push and pull factors. The phenomenon calls for both international and trans-boundary, regional, national and institutional interventions to curb the exodus. Based on secondary data and the review of the literature, the article conceptualizes the antecedents and impacts of human capital flight or brain drain in the SSA countries from a higher education perspective. To this end, the article explores the magnitude, causes, and impacts of brain drain in the region. Despite the lack of consistent data on the magnitude of academic brain drain in the region, a critical analysis of the existing sources shows that pay disparity between developing and developed countries, the lack of enabling working conditions at source countries, fear of security due to political turmoil or unrest, the availability of green pastures and opportunity for development in the receiving countries were identified as major factors contributing to academic brain drain in the region. This hampers the socio-economic, technological and political development of the region. The paper also recommends that further research can be undertaken on the magnitude, causes, characteristics and impact of brain drain on the sustainability and competitiveness of SSA higher education institutions in the region.Keywords: brain drain, higher education, sub-Saharan Africa, sustainable development
Procedia PDF Downloads 2584871 Heteroatom Doped Binary Metal Oxide Modified Carbon as a Bifunctional Electrocatalysts for all Vanadium Redox Flow Battery
Authors: Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Chen-Hao Wang
Abstract:
As one of the most promising electrochemical energy storage systems, vanadium redox flow batteries (VRFBs) have received increasing attention owing to their attractive features for largescale storage applications. However, their high production cost and relatively low energy efficiency still limit their feasibility. For practical implementation, it is of great interest to improve their efficiency and reduce their cost. One of the key components of VRFBs that can greatly influence the efficiency and final cost is the electrode, which provide the reactions sites for redox couples (VO²⁺/VO₂ + and V²⁺/V³⁺). Carbon-based materials are considered to be the most feasible electrode materials in the VRFB because of their excellent potential in terms of operation range, good permeability, large surface area, and reasonable cost. However, owing to limited electrochemical activity and reversibility and poor wettability due to its hydrophobic properties, the performance of the cell employing carbon-based electrodes remained limited. To address the challenges, we synthesized heteroatom-doped bimetallic oxide grown on the surface of carbon through the one-step approach. When applied to VRFBs, the prepared electrode exhibits significant electrocatalytic effect toward the VO²⁺/VO₂ + and V³⁺/V²⁺ redox reaction compared with that of pristine carbon. It is found that the presence of heteroatom on metal oxide promotes the absorption of vanadium ions. The controlled morphology of bimetallic metal oxide also exposes more active sites for the redox reaction of vanadium ions. Hence, the prepared electrode displays the best electrochemical performance with energy and voltage efficiencies of 74.8% and 78.9%, respectively, which is much higher than those of 59.8% and 63.2% obtained from the pristine carbon at high current density. Moreover, the electrode exhibit durability and stability in an acidic electrolyte during long-term operation for 1000 cycles at the higher current density.Keywords: VRFB, VO²⁺/VO₂ + and V³⁺/V²⁺ redox couples, graphite felt, heteroatom-doping
Procedia PDF Downloads 984870 The Clash between Environmental and Heritage Laws: An Australian Case Study
Authors: Andrew R. Beatty
Abstract:
The exploitation of Australia’s vast mineral wealth is regulated by a matrix of planning, environment and heritage legislation, and despite the desire for a ‘balance’ between economic, environmental and heritage values, Aboriginal objects and places are often detrimentally impacted by mining approvals. The Australian experience is not novel. There are other cases of clashes between the rights of traditional landowners and businesses seeking to exploit mineral or other resources on or beneath those lands, including in the United States, Canada, and Brazil. How one reconciles the rights of traditional owners with those of resource companies is an ongoing legal problem of general interest. In Australia, planning and environmental approvals for resource projects are ordinarily issued by State or Territory governments. Federal legislation such as the Aboriginal and Torres Strait Islander Heritage Protection Act 1984 (Cth) is intended to act as a safety net when State or Territory legislation is incapable of protecting Indigenous objects or places in the context of approvals for resource projects. This paper will analyse the context and effectiveness of legislation enacted to protect Indigenous heritage in the planning process. In particular, the paper will analyse how the statutory objects of such legislation need to be weighed against the statutory objects of competing legislation designed to facilitate and control resource exploitation. Using a current claim in the Federal Court of Australia for the protection of a culturally significant landscape as a case study, this paper will examine the challenges faced in ascribing value to cultural heritage within the wider context of environmental and planning laws. Our findings will reveal that there is an inherent difficulty in defining and weighing competing economic, environmental and heritage considerations. An alternative framework will be proposed to guide regulators towards making decisions that result in better protection of Indigenous heritage in the context of resource management.Keywords: environmental law, heritage law, indigenous rights, mining
Procedia PDF Downloads 964869 Adult Language Learning in the Institute of Technology Sector in the Republic of Ireland
Authors: Una Carthy
Abstract:
A recent study of third level institutions in Ireland reveals that both age and aptitude can be overcome by teaching methodologies to motivate second language learners. This PhD investigation gathered quantitative and qualitative data from 14 Institutes of Technology over a three years period from 2011 to 2014. The fundamental research question was to establish the impact of institutional language policy on attitudes towards language learning. However, other related issues around second language acquisition arose in the course of the investigation. Data were collected from both lectures and students, allowing interesting points of comparison to emerge from both datasets. Negative perceptions among lecturers regarding language provision were often associated with the view that language learning belongs to primary and secondary level and has no place in third level education. This perception was offset by substantial data showing positive attitudes towards adult language learning. Lenneberg’s Critical Age Theory postulated that the optimum age for learning a second language is before puberty. More recently, scholars have challenged this theory in their studies, revealing that mature learners can and do succeed at learning languages. With regard to aptitude, a preoccupation among lecturers regarding poor literacy skills among students emerged and was often associated with resistance to second language acquisition. This was offset by a preponderance of qualitative data from students highlighting the crucial role which teaching approaches play in the learning process. Interestingly, the data collected regarding learning disabilities reveals that, given the appropriate learning environments, individuals can be motivated to acquire second languages, and indeed succeed at learning them. These findings are in keeping with other recent studies regarding attitudes towards second language learning among students with learning disabilities. Both sets of findings reinforce the case for language policies in the Institute of Technology (IoTs). Supportive and positive learning environments can be created in third level institutions to motivate adult learners, thereby overcoming perceived obstacles relating to age and aptitude.Keywords: age, aptitude, second language acquisition, teaching methodologies
Procedia PDF Downloads 1234868 Exploring Methods for Urbanization of 'Village in City' in China: A Case Study of Hangzhou
Abstract:
After the economic reform in 1978, the urbanization in China has grown fast. It urged cities to expand in an unprecedented high speed. Villages around were annexed unprepared, and it turned out to be a new type of community called 'village in city.' Two things happened here. First, the locals gave up farming and turned to secondary industry and tertiary industry, as a result of losing their land. Secondly, attracted by the high income in cities and low rent here, plenty of migrants came into the community. This area is important to a city in rapid growth for providing a transitional zone. But thanks to its passivity and low development, 'village in city' has caused lots of trouble to the city. Densities of population and construction are both high, while facilities are severely inadequate. Unplanned and illegal structures are built, which creates a complex mixed-function area and leads to a bad residential area. Besides, the locals have a strong property right consciousness for the land. It holds back the transformation and development of the community. Although the land capitalization can bring significant benefits, it’s inappropriate to make a great financial compensation to the locals, and considering the large population of city migrants, it’s important to explore the relationship among the 'village in city,' city immigrants and the city itself. Taking the example of Hangzhou, this paper analyzed the developing process, functions spatial distribution, industrial structure and current traffic system of 'village in city.' Above the research on the community, this paper put forward a common method to make urban planning through the following ways: adding city functions, building civil facilities, re-planning functions spatial distribution, changing the constitution of local industry and planning new traffic system. Under this plan, 'village in city' finally can be absorbed into cities and make its own contribution to the urbanization.Keywords: China, city immigrant, urbanization, village in city
Procedia PDF Downloads 2174867 Angiogenesis and Blood Flow: The Role of Blood Flow in Proliferation and Migration of Endothelial Cells
Authors: Hossein Bazmara, Kaamran Raahemifar, Mostafa Sefidgar, Madjid Soltani
Abstract:
Angiogenesis is formation of new blood vessels from existing vessels. Due to flow of blood in vessels, during angiogenesis, blood flow plays an important role in regulating the angiogenesis process. Multiple mathematical models of angiogenesis have been proposed to simulate the formation of the complicated network of capillaries around a tumor. In this work, a multi-scale model of angiogenesis is developed to show the effect of blood flow on capillaries and network formation. This model spans multiple temporal and spatial scales, i.e. intracellular (molecular), cellular, and extracellular (tissue) scales. In intracellular or molecular scale, the signaling cascade of endothelial cells is obtained. Two main stages in development of a vessel are considered. In the first stage, single sprouts are extended toward the tumor. In this stage, the main regulator of endothelial cells behavior is the signals from extracellular matrix. After anastomosis and formation of closed loops, blood flow starts in the capillaries. In this stage, blood flow induced signals regulate endothelial cells behaviors. In cellular scale, growth and migration of endothelial cells is modeled with a discrete lattice Monte Carlo method called cellular Pott's model (CPM). In extracellular (tissue) scale, diffusion of tumor angiogenic factors in the extracellular matrix, formation of closed loops (anastomosis), and shear stress induced by blood flow is considered. The model is able to simulate the formation of a closed loop and its extension. The results are validated against experimental data. The results show that, without blood flow, the capillaries are not able to maintain their integrity.Keywords: angiogenesis, endothelial cells, multi-scale model, cellular Pott's model, signaling cascade
Procedia PDF Downloads 4254866 Nanoscale Mapping of the Mechanical Modifications Occurring in the Brain Tumour Microenvironment by Atomic Force Microscopy: The Case of the Highly Aggressive Glioblastoma and the Slowly Growing Meningioma
Authors: Gabriele Ciasca, Tanya E. Sassun, Eleonora Minelli, Manila Antonelli, Massimiliano Papi, Antonio Santoro, Felice Giangaspero, Roberto Delfini, Marco De Spirito
Abstract:
Glioblastoma multiforme (GBM) is an extremely aggressive brain tumor, characterized by a diffuse infiltration of neoplastic cells into the brain parenchyma. Although rarely considered, mechanical cues play a key role in the infiltration process that is extensively mediated by the tumor microenvironment stiffness and, more in general, by the occurrence of aberrant interactions between neoplastic cells and the extracellular matrix (ECM). Here we provide a nano-mechanical characterization of the viscoelastic response of human GBM tissues by indentation-type atomic force microscopy. High-resolution elasticity maps show a large difference between the biomechanics of GBM tissues and the healthy peritumoral regions, opening possibilities to optimize the tumor resection area. Moreover, we unveil the nanomechanical signature of necrotic regions and anomalous vasculature, that are two major hallmarks useful for glioma staging. Actually, the morphological grading of GBM relies mainly on histopathological findings that make extensive use of qualitative parameters. Our findings have the potential to positively impact on the development of novel quantitative methods to assess the tumor grade, which can be used in combination with conventional histopathological examinations. In order to provide a more in-depth description of the role of mechanical cues in tumor progression, we compared the nano-mechanical fingerprint of GBM tissues with that of grade-I (WHO) meningioma, a benign lesion characterized by a completely different growth pathway with the respect to GBM, that, in turn hints at a completely different role of the biomechanical interactions.Keywords: AFM, nano-mechanics, nanomedicine, brain tumors, glioblastoma
Procedia PDF Downloads 3414865 Site Specific Nutrient Management Need in India Now
Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi
Abstract:
Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.Keywords: nutrient, pesticide, crop, yield
Procedia PDF Downloads 4304864 Analyzing the Place of Technology in Communication: Case Study of Kenya during COVID-19
Authors: Josephine K. Mule, Levi Obonyo
Abstract:
Technology has changed human life over time. The COVID-19 pandemic has altered the work set-up, the school system, the shopping experience, church attendance, and even the way athletes train in Kenya. Although the use of technology to communicate and maintain interactions has been on the rise in the last 30 years, the uptake during the COVID-19 pandemic has been unprecedented. Traditionally, ‘paid’ work has been considered to take place outside the “home house” but COVID-19 has resulted in what is now being referred to as “the world’s largest work-from-home experiment” with up to 43 percent of employees working at least some of the time remotely. This study was conducted on 90 respondents from across remote work set-ups, school systems, merchants and customers of online shopping, church leaders and congregants and athletes, and their coaches. Data were collected by questionnaires and interviews that were conducted online. The data is based on the first three months since the first case of coronavirus was reported in Kenya. This study found that the use of technology is in the center of working remotely with work interactions being propelled on various online platforms including, Zoom, Microsoft Teams, and Google Meet, among others. The school system has also integrated the use of technology, including students defending their thesis/dissertations online and university graduations being conducted virtually. Kenya is known for its long-distance runners, due to the directives to reduce interactions; coaches have taken to providing their athletes with guidance on training on social media using applications such as WhatsApp. More local stores are now offering the shopping online option to their customers. Churches have also felt the brunt of the situation, especially because of the restrictions on crowds resulting in online services becoming more popular in 2020 than ever before. Artists, innovatively have started online musical concerts. The findings indicate that one of the outcomes in the Kenyan society that is evident as a result of the COVID-19 period is a population that is using technology more to communicate and get work done. Vices that have thrived in this season where the use of technology has increased, include the spreading of rumors on social media and cyberbullying. The place of technology seems to have been cemented by demand during this period.Keywords: communication, coronavirus, COVID-19, Kenya, technology
Procedia PDF Downloads 1394863 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process
Authors: Shan-Hong Ying, Ying-Fang Wang
Abstract:
A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC
Procedia PDF Downloads 1504862 Effect of Environmental Parameters on the Water Solubility of the Polycyclic Aromatic Hydrocarbons and Derivatives using Taguchi Experimental Design Methodology
Authors: Pranudda Pimsee, Caroline Sablayrolles, Pascale De Caro, Julien Guyomarch, Nicolas Lesage, Mireille Montréjaud-Vignoles
Abstract:
The MIGR’HYCAR research project was initiated to provide decisional tools for risks connected to oil spill drifts in continental waters. These tools aim to serve in the decision-making process once oil spill pollution occurs and/or as reference tools to study scenarios of potential impacts of pollutions on a given site. This paper focuses on the study of the distribution of polycyclic aromatic hydrocarbons (PAHs) and derivatives from oil spill in water as function of environmental parameters. Eight petroleum oils covering a representative range of commercially available products were tested. 41 Polycyclic Aromatic Hydrocarbons (PAHs) and derivate, among them 16 EPA priority pollutants were studied by dynamic tests at laboratory scale. The chemical profile of the water soluble fraction was different from the parent oil profile due to the various water solubility of oil components. Semi-volatile compounds (naphtalenes) constitute the major part of the water soluble fraction. A large variation in composition of the water soluble fraction was highlighted depending on oil type. Moreover, four environmental parameters (temperature, suspended solid quantity, salinity, and oil: water surface ratio) were investigated with the Taguchi experimental design methodology. The results showed that oils are divided into three groups: the solubility of Domestic fuel and Jet A1 presented a high sensitivity to parameters studied, meaning they must be taken into account. For gasoline (SP95-E10) and diesel fuel, a medium sensitivity to parameters was observed. In fact, the four others oils have shown low sensitivity to parameters studied. Finally, three parameters were found to be significant towards the water soluble fraction.Keywords: mornitoring, PAHs, water soluble fraction, SBSE, Taguchi experimental design
Procedia PDF Downloads 3254861 Optimization of Waste Plastic to Fuel Oil Plants' Deployment Using Mixed Integer Programming
Authors: David Muyise
Abstract:
Mixed Integer Programming (MIP) is an approach that involves the optimization of a range of decision variables in order to minimize or maximize a particular objective function. The main objective of this study was to apply the MIP approach to optimize the deployment of waste plastic to fuel oil processing plants in Uganda. The processing plants are meant to reduce plastic pollution by pyrolyzing the waste plastic into a cleaner fuel that can be used to power diesel/paraffin engines, so as (1) to reduce the negative environmental impacts associated with plastic pollution and also (2) to curb down the energy gap by utilizing the fuel oil. A programming model was established and tested in two case study applications that are, small-scale applications in rural towns and large-scale deployment across major cities in the country. In order to design the supply chain, optimal decisions on the types of waste plastic to be processed, size, location and number of plants, and downstream fuel applications were concurrently made based on the payback period, investor requirements for capital cost and production cost of fuel and electricity. The model comprises qualitative data gathered from waste plastic pickers at landfills and potential investors, and quantitative data obtained from primary research. It was found out from the study that a distributed system is suitable for small rural towns, whereas a decentralized system is only suitable for big cities. Small towns of Kalagi, Mukono, Ishaka, and Jinja were found to be the ideal locations for the deployment of distributed processing systems, whereas Kampala, Mbarara, and Gulu cities were found to be the ideal locations initially utilize the decentralized pyrolysis technology system. We conclude that the model findings will be most important to investors, engineers, plant developers, and municipalities interested in waste plastic to fuel processing in Uganda and elsewhere in developing economy.Keywords: mixed integer programming, fuel oil plants, optimisation of waste plastics, plastic pollution, pyrolyzing
Procedia PDF Downloads 1294860 Investigation on 3D Printing of Calcium silicate Bioceramic Slurry for Bone Tissue Engineering
Authors: Amin Jabbari
Abstract:
The state of the art in major 3D printing technologies, such as powder-based and slurry based, has led researchers to investigate the ability to fabricate bone scaffolds for bone tissue engineering using biomaterials. In addition, 3D printing technology can simulate mechanical and biological surface properties and print with high precision complex internal and external structures that match their functional properties. Polymer matrix composites reinforced with particulate bioceramics, hydrogels reinforced with particulate bioceramics, polymers coated with bioceramics, and non-porous bioceramics are among the materials that can be investigated for bone scaffold printing. Furthermore, it was shown that the introduction of high-density micropores into the sparingly dissolvable CSiMg10 and dissolvable CSiMg4 shell layer inevitably leads to a nearly 30% reduction in compressive strength, but such micropores can easily influence the ion release behavior of the scaffolds. Also, biocompatibility tests such as cytotoxicity, hemocompatibility and genotoxicity were tested on printed parts. The printed part was tested in vitro, and after 24-26 h for cytotoxicity, and 4h for hemocompatibility test, the CSiMg4@CSiMg10-p scaffolds were found to have significantly higher osteogenic capability than the other scaffolds of implantation. Overall, these experimental studies demonstrate that 3D printed, additively-manufactured bioceramic calcium (Ca)-silicate scaffolds with appropriate pore dimensions are promising to guide new bone ingrowth.Keywords: AM, 3D printed implants, bioceramic, tissue engineering
Procedia PDF Downloads 664859 Recovery of Chromium(III) from Tannery Wastewater by Nanoparticles and Whiskers of Chitosan
Authors: El Montassir Dahmane, Nadia Eladlani, Aziz Ouahrouch, Mohammed Rhazi, Moha Taourirte
Abstract:
The present study was aimed to approximate the optimal conditions to chromium recovery from wastewater by nanoparticles and whiskers of chitosan. Chitosan with an average molecular weight of 63 kDa and a 96% deacetylation degree was prepared according to our previous study. Chromium recovery is influenced by different parameters. In our search, we determined the appropriate range of pH to form chitosan–Cr(III), nanoparticles Cr(III), and whiskers– Cr(III) complex. We studied also the influence of chromium concentration and the nature of chitosan-based materials on the complexation process. Our main aim is to approximate the optimal conditions to remove chromium(III) from the tanning bath, recuperated from tannery wastewater of Marrakech in Morocco. A Perkin Elmer optima 2000 Inductively Coupled Plasma- Optical Emission Spectrometer (ICP-OES), was used to determine the quantity of chromium persistent in tannery wastewater after complexation phenomenon. To the best of our knowledge, this is the first report interested in the optimal conditions for chromium recovery from wastewater by nanoparticles and whiskers of chitosan. From our research, we found that in chromium solution, the appropriate range of pH to form complex is between 5.6 and 6.7. Also, the complexation of Cr(III) is depending on the nature of complexing ligand and chromium concentration. The obtained results reveal that nanoparticles present an excellent adsorption capacity regardless of chromium concentration. In addition, after a critical chromium concentration (250 mg/l), our ligand becomes saturated, that requires an increase of ligand mass for increasing chromium concentration in order to have a better adsorption capacity. Hence, in the same conditions, we used chitosan, its nanoparticles, whiskers, and chitosan based films to remove Cr(III) from tannery wastewater. The pH of this effluent was around 6, and its chromium concentration was 300 mg/l. The results expose that the sequence of complexing ligand in the effluent is the same in chromium solution, determined via our previous study. However, the adsorbed quantity is less due to the presence of other metallic ions in tannery wastewater. We conclude that the best complexing ligand-based chitosan is chitosan nanoaprticles whether it’s in chromium solution or in tannery wastewater. Nanoparticles are the best complexing ligand after 24 h of contact nanoparticles can remove 70% of chromium from this tannery wastewater.Keywords: nanoparticles, whiskers, chitosan, chromium
Procedia PDF Downloads 1374858 One-Class Classification Approach Using Fukunaga-Koontz Transform and Selective Multiple Kernel Learning
Authors: Abdullah Bal
Abstract:
This paper presents a one-class classification (OCC) technique based on Fukunaga-Koontz Transform (FKT) for binary classification problems. The FKT is originally a powerful tool to feature selection and ordering for two-class problems. To utilize the standard FKT for data domain description problem (i.e., one-class classification), in this paper, a set of non-class samples which exist outside of positive class (target class) describing boundary formed with limited training data has been constructed synthetically. The tunnel-like decision boundary around upper and lower border of target class samples has been designed using statistical properties of feature vectors belonging to the training data. To capture higher order of statistics of data and increase discrimination ability, the proposed method, termed one-class FKT (OC-FKT), has been extended to its nonlinear version via kernel machines and referred as OC-KFKT for short. Multiple kernel learning (MKL) is a favorable family of machine learning such that tries to find an optimal combination of a set of sub-kernels to achieve a better result. However, the discriminative ability of some of the base kernels may be low and the OC-KFKT designed by this type of kernels leads to unsatisfactory classification performance. To address this problem, the quality of sub-kernels should be evaluated, and the weak kernels must be discarded before the final decision making process. MKL/OC-FKT and selective MKL/OC-FKT frameworks have been designed stimulated by ensemble learning (EL) to weight and then select the sub-classifiers using the discriminability and diversities measured by eigenvalue ratios. The eigenvalue ratios have been assessed based on their regions on the FKT subspaces. The comparative experiments, performed on various low and high dimensional data, against state-of-the-art algorithms confirm the effectiveness of our techniques, especially in case of small sample size (SSS) conditions.Keywords: ensemble methods, fukunaga-koontz transform, kernel-based methods, multiple kernel learning, one-class classification
Procedia PDF Downloads 214857 AI-Based Techniques for Online Social Media Network Sentiment Analysis: A Methodical Review
Authors: A. M. John-Otumu, M. M. Rahman, O. C. Nwokonkwo, M. C. Onuoha
Abstract:
Online social media networks have long served as a primary arena for group conversations, gossip, text-based information sharing and distribution. The use of natural language processing techniques for text classification and unbiased decision-making has not been far-fetched. Proper classification of this textual information in a given context has also been very difficult. As a result, we decided to conduct a systematic review of previous literature on sentiment classification and AI-based techniques that have been used in order to gain a better understanding of the process of designing and developing a robust and more accurate sentiment classifier that can correctly classify social media textual information of a given context between hate speech and inverted compliments with a high level of accuracy by assessing different artificial intelligence techniques. We evaluated over 250 articles from digital sources like ScienceDirect, ACM, Google Scholar, and IEEE Xplore and whittled down the number of research to 31. Findings revealed that Deep learning approaches such as CNN, RNN, BERT, and LSTM outperformed various machine learning techniques in terms of performance accuracy. A large dataset is also necessary for developing a robust sentiment classifier and can be obtained from places like Twitter, movie reviews, Kaggle, SST, and SemEval Task4. Hybrid Deep Learning techniques like CNN+LSTM, CNN+GRU, CNN+BERT outperformed single Deep Learning techniques and machine learning techniques. Python programming language outperformed Java programming language in terms of sentiment analyzer development due to its simplicity and AI-based library functionalities. Based on some of the important findings from this study, we made a recommendation for future research.Keywords: artificial intelligence, natural language processing, sentiment analysis, social network, text
Procedia PDF Downloads 1154856 Performance of Rural and Urban Adult Participants on Neuropsychological Tests in Zambia
Authors: Happy Zulu
Abstract:
Neuropsychological examination is an important way of formally assessing brain function. While there is so much documentation about the influence that some factors, such as age and education, have on neuropsychological tests (NP), not so much has been done to assess the influence that residency (rural/urban) may have. The specific objectives of this study were to establish if there is a significant difference in mean test scores on NP tests between rural and urban participants and to assess which tests on the Zambia Neurobehavioural Test Battery (ZNTB) are more affected by the participants‘ residency (rural/urban) and to determine the extent to which education, gender, and age predict test performance on NP tests for rural and urban participants. The participants (324) were drawn from both urban and rural areas of Zambia (Rural = 152 and Urban = 172). However, only 234 participants (Rural = 152 and Urban 82) were used for all the analyses in this particular study. The 234 participants were used as the actual proportion of the rural vs urban population in Zambia was 65% : 35%, respectively (CSO, 2003). The rural-urban ratio for the participants that were captured during the data collection process was 152 : 172, respectively. Thus, all the rural participants (152) were included and 90 of the 172 urban participants were randomly excluded so that the rural/urban ratio reached the desired 65% : 35 % which was the required ideal statistic for appropriate representation of the actual population in Zambia. Data on NP tests were analyzed from 234 participants, rural (N=152) reflecting 65% and urban (N=82) reflecting 35%. T-tests indicated that urban participants had superior performances in all the seven NP test domains, and all the mean differences in all these domains were found to be statistically significant. Residency had a large or moderate effect in five domains, while its effect size was small only in two of the domains. A standard multiple regression revealed that education, age and residency as predictor variables made a significant contribution to variance in performance on various domains of the ZNTB. However, the gender of participants was not a major factor in determining one‘s performance on neuropsychological tests. This particular report is part of an ongoing, larger, cutting-edge study aimed at formulating the normative data for Zambia with regard to performance on neuropsychological tests. This is necessary for appropriate, effective, and efficient assessment or diagnosis of various neurocognitive and neurobehavioural deficits that a number of people may currently be suffering from. It has been shown in this study that it is vital to make careful analyses of the variables that may be associated with one‘s performance on neuropsychological tests.Keywords: neuropsychology, neurobehavioural, residency, Zambia
Procedia PDF Downloads 554855 Application of Functionalized Magnetic Particles as Demulsifier for Oil‐in‐Water Emulsions
Authors: Hamideh Hamedi, Nima Rezaei, Sohrab Zendehboudi
Abstract:
Separating emulsified oil contaminations from waste- or produced water is of interest to various industries. Magnetic particles (MPs) application for separating dispersed and emulsified oil from wastewater is becoming more popular. Stabilization of MPs is required through developing a coating layer on their surfaces to prevent their agglomeration and enhance their dispersibility. In this research, we study the effects of coating material, size, and concentration of iron oxide MPs on oil separation efficiency, using oil adsorption capacity measurements. We functionalize both micro-and nanoparticles of Fe3O4 using sodium dodecyl sulfate (SDS) as an anionic surfactant, cetyltrimethylammonium bromide (CTAB) as a cationic surfactant, and stearic acid (SA). The chemical structures and morphologies of these particles are characterized using Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Energy Dispersive X-ray (EDX). The oil-water separation results indicate that a low dosage of the coated magnetic nanoparticle with CTAB (0.5 g/L MNP-CTAB) results the highest oil adsorption capacity (nearly 100%) for 1000 ppm dodecane-in-water emulsion, containing ultra-small droplets (250–300 nm). While separation efficiency of the same dosage of bare MNPs is around 57.5%. Demulsification results of magnetic microparticles (MMPs) also reveal that the functionalizing particles with CTAB increase oil removal efficiency from 86.3% for bare MMP to 92% for MMP-CTAB. Comparing the results of different coating materials implies that the major interaction reaction is an electrostatic attraction between negatively charged oil droplets and positively charged MNP-CTAB and MMP-CTAB. Furthermore, the synthesized nanoparticles could be recycled and reused; after ten cycles the oil adsorption capacity slightly decreases to near 95%. In conclusion, functionalized magnetic particles with high oil separation efficiency could be used effectively in treatment of oily wastewater. Finally, optimization of the adsorption process is required by considering the effective system variables, and fluid properties.Keywords: oily wastewater treatment, emulsions, oil-water separation, adsorption, magnetic nanoparticles
Procedia PDF Downloads 1074854 The Impact of Client Leadership, Building Information Modelling (BIM) and Integrated Project Delivery (IPD) on Construction Project: A Case Study in UAE
Authors: C. W. F. Che Wan Putra, M. Alshawi, M. S. Al Ahbabi, M. Jabakhanji
Abstract:
The construction industry is a multi-disciplinary and multi-national industry, which has an important role to play within the overall economy of any country. There are major challenges to an improved performance within the industry. Particularly lacking is, the ability to capture the large amounts of information generated during the life-cycle of projects and to make these available, in the right format, so that professionals can then evaluate alternative solutions based on life-cycle analysis. The fragmented nature of the industry is the main reason behind the unavailability and ill utilisation of project information. The lack of adequately engaging clients and managing their requirements contributes adversely to construction budget and schedule overruns. This is a difficult task to achieve, particularly if clients are not continuously and formally involved in the design and construction process, which means that the design intent is left to designers that may not always satisfy clients’ requirements. Client lead is strongly recognised in bringing change through better collaboration between project stakeholders. However, one of the major challenges is that collaboration is operated under conventional procurement methods, which hugely limit the stakeholders’ roles and responsibilities to bring about the required level of collaboration. A research has been conducted with a typical project in the UAE. A qualitative research work was conducted including semi-structured interviews with project partners to discover the real reasons behind this delay. The case study also investigated the real causes of the problems and if they can be adequately addressed by BIM and IPD. Special focus was also placed on the Client leadership and the role the Client can play to eliminate/minimize these problems. It was found that part of the ‘key elements’ from which the problems exist can be attributed to the client leadership and the collaborative environment and BIM.Keywords: client leadership, building information modelling (BIM), integrated project delivery (IPD), case study
Procedia PDF Downloads 3234853 Circle Work as a Relational Praxis to Facilitate Collaborative Learning within Higher Education: A Decolonial Pedagogical Framework for Teaching and Learning in the Virtual Classroom
Authors: Jennifer Nutton, Gayle Ployer, Ky Scott, Jenny Morgan
Abstract:
Working in a circle within higher education creates a decolonial space of mutual respect, responsibility, and reciprocity that facilitates collaborative learning and deep connections among learners and instructors. This approach is beyond simply facilitating a group in a circle but opens the door to creating a sacred space connecting each member to the land, to the Indigenous peoples who have taken care of the lands since time immemorial, to one another, and to one’s own positionality. These deep connections not only center human knowledges and relationships but also acknowledges responsibilities to land. Working in a circle as a relational pedagogical praxis also disrupts institutional power dynamics by creating a space of collaborative learning and deep connections in the classroom. Inherent within circle work is to facilitate connections not just academically but emotionally, physically, culturally, and spiritually. Recent literature supports the use of online talking circles, finding that it can offer a more relational and experiential learning environment, which is often absent in the virtual world and has been made more evident and necessary since the pandemic. These deeper experiences of learning and connection, rooted in both knowledge and the land, can then be shared with openness and vulnerability with one another, facilitating growth and change. This process of beginning with the land is critical to ensure we have the grounding to obstruct the ongoing realities of colonialism. The authors, who identify as both Indigenous and non-Indigenous, as both educators and learners, reflect on their teaching and learning experiences in circle. They share a relational pedagogical praxis framework that has been successful in educating future social workers, environmental activists, and leaders in social and human services, health, legal and political fields.Keywords: circle work, relational pedagogies, decolonization, distance education
Procedia PDF Downloads 764852 Metabolic and Adaptive Laboratory Evolutionary Engineering (ALE) of Saccharomyces cerevisiae for Second Generation Biofuel Production
Authors: Farnaz Yusuf, Naseem A. Gaur
Abstract:
The increase in environmental concerns, rapid depletion of fossil fuel reserves and intense interest in achieving energy security has led to a global research effort towards developing renewable sources of fuels. Second generation biofuels have attracted more attention recently as the use of lignocellulosic biomass can reduce fossil fuel dependence and is environment-friendly. Xylose is the main pentose and second most abundant sugar after glucose in lignocelluloses. Saccharomyces cerevisiae does not readily uptake and use pentose sugars. For an economically feasible biofuel production, both hexose and pentose sugars must be fermented to ethanol. Therefore, it is important to develop S. cerevisiae host platforms with more efficient xylose utilization. This work aims to construct a xylose fermenting yeast strains with engineered oxido-reductative pathway for xylose metabolism. Engineered strain was further improved by adaptive evolutionary engineering approach. The engineered strain is able to grow on xylose as sole carbon source with the maximum ethanol yield of 0.39g/g xylose and productivity of 0.139g/l/h at 96 hours. The further improvement in strain development involves over expression of pentose phosphate pathway and protein engineering of xylose reductase/xylitol dehydrogenase to change their cofactor specificity in order to reduce xylitol accumulation.Keywords: biofuel, lignocellulosic biomass, saccharomyces cerevisiae, xylose
Procedia PDF Downloads 2144851 Development of Probiotic Cereal Beverage Using Yeast and Lactic Acid Bacteria Fermentation
Authors: Tuaumelsan Shumye Gebre, Shimelis Admassu Emire, Simon Okomo Aloo, Ramachandran Chelliah, Deog-Hwan Oh
Abstract:
This study investigates the fermentation of cereal substrates, based on the Ethiopian traditional beverage borde, using probiotic strains of Pediococcus acidilactici WS07 and Saccharomyces cerevisiae AM18 used singly and in co-culture. The pH and titratable acidity, microbial growth dynamics, fermentable sugars profile, volatile organic compounds, total flavonoid content, total phenolic content, antioxidant activity, pancreatic lipase, and α-glucosidase inhibition were analyzed. The viability of every tested strain remained higher than 7 log CFU/mL, satisfying the requirements suggested for probiotic food items. The formation of organic acids is what caused the pH to decrease from roughly 6.6 to 3.8, yet this had no effect on the viability of the microorganisms. The fermentation process, involving P. acidilactici WS07 and S. cerevisiae AM18, led to the utilization of initial carbohydrates, production of organic acids, and generation of volatile compounds that enhance flavor and aroma. Ethanol and glycerol concentrations increased during fermentation, particularly in co-culture assays, contributing to the sensory qualities and stability of the beverages. The primary organic acids generated during fermentation were lactic and acetic acids. A total of 22 volatile substances, such as acids, alcohols, aldehydes, esters, ketones, and other substances, were found. Furthermore, the study demonstrates that fermentation of maize and sorghum with P. acidilactici WS07 and S. cerevisiae AM18 enhances the antioxidant activity and inhibition of pancreatic lipase and α-glucosidase, suggesting potential benefits in managing obesity and diabetes. Therefore, co-cultivating S. cerevisiae AM18 and P. acidilactici WS07 in cereal fermentation led to the successful production of probiotic drinks.Keywords: probiotic beverage, Pediococcus acidilactici, Saccharomyces cerevisiae, volatile compounds
Procedia PDF Downloads 364850 Sustainable Thermal Energy Storage Technologies: Enhancing Post-Harvest Drying Efficiency in Sub-Saharan Agriculture
Authors: Luís Miguel Estevão Cristóvão, Constâncio Augusto Machanguana, Fernando Chichango, Salvador Grande
Abstract:
Sub-Saharan African nations depend greatly on agriculture, a sector mainly marked by low production. Most of the farmers live in rural areas and employ basic labor-intensive technologies that lead to time inefficiencies and low overall effectiveness. Even with attempts to enhance farmers’ welfare through improved seeds and fertilizers, meaningful outcomes are yet to be achieved due to huge amounts of post-harvest losses. Such losses significantly endanger food security, economic stability, and result in unsustainable agricultural practices because more land, water, labor, energy, fertilizer, and other inputs must be used to produce more food. Drying, as a critical post-harvest process involving simultaneous heat and mass transfer, deserves attention. Among alternative green-energy sources, solar energy-based drying garners attention, particularly for small-scale farmers in remote communities. However, the intermittent nature of solar radiation poses challenges. To address this, energy storage solutions like rock-based thermal energy storage offer cost-effective solutions tailored to the needs of farmers. Methodologically, three solar dryers were constructed of metal, wood, and clay brick. Several tests were carried out with and without energy storage material. Notably, it has been demonstrated that soapstone stands out as a promising material due to its affordability and high specific energy capacity. By implementing these greener technologies, Sub-Saharan African countries could mitigate post-harvest losses, enhance food availability, improve nutrition, and promote sustainable resource utilization.Keywords: energy storage, food security, post-harvest, solar dryer
Procedia PDF Downloads 234849 Framework for Explicit Social Justice Nursing Education and Practice: A Constructivist Grounded Theory Research
Authors: Victor Abu
Abstract:
Background: Social justice ideals are considered as the foundation of nursing practice. These ideals are not always clearly integrated into nursing professional standards or curricula. This hinders concerted global nursing agendas for becoming aware of social injustice or engaging in action for social justice to improve the health of individuals and groups. Aim and objectives: The aim was to create an educational framework for empowering nursing students for social justice awareness and action. This purpose was attained by understanding the meaning of social justice, the effect of social injustice, the visibility of social justice learning, and ways of integrating social justice in nursing education and practice. Methods: Critical interpretive methodologies and constructivist grounded theory research designs guided the processes of recruiting nursing students (n = 11) and nurse educators (n = 11) at a London nursing university to participate in interviews and focus groups, which were analysed by coding systems. Findings: Firstly, social justice was described as ethical practices that enable individuals and groups to have good access to health resources. Secondly, social injustice was understood as unfair practices that caused minimal access to resources, social deprivation, and poor health. Thirdly, social justice learning was considered to be invisible in nursing education due to a lack of explicit modules, educator knowledge, and organisational support. Lastly, explicit modules, educating educators, and attracting leaders’ support were suggested as approaches for the visible integration of social justice in nursing education and practice. Discussion: This research proposes approaches for nursing awareness and action for the development of critical active nurse-learner, critical conscious nurse-educator, and servant nurse leader. The framework on Awareness for Social Justice Action (ASJA) created in this research is an approach for empowering nursing students for social justice practices. Conclusion: This research contributes to and advocates for greater nursing scholarship to raise the spotlight on social justice in the profession.Keywords: social justice, nursing practice, nursing education, nursing curriculum, social justice awareness, social justice action, constructivist grounded theory
Procedia PDF Downloads 584848 Development of Cobalt Doped Alumina Hybrids for Adsorption of Textile Effluents
Authors: Uzaira Rafique, Kousar Parveen
Abstract:
The discharge volume and composition of Textile effluents gains scientific concern due to its hazards and biotoxcity of azo dyes. Azo dyes are non-biodegradable due to its complex molecular structure and recalcitrant nature. Serious attempts have been made to synthesize and develop new materials to combat the environmental problems. The present study is designed for removal of a range of azo dyes (Methyl orange, Congo red and Basic fuchsine) from synthetic aqueous solutions and real textile effluents. For this purpose, Metal (cobalt) doped alumina hybrids are synthesized and applied as adsorbents in the batch experiment. Two different aluminium precursor (aluminium nitrate and spent aluminium foil) and glucose are mixed following sol gel method to get hybrids. The synthesized materials are characterized for surface and bulk properties using FTIR, SEM-EDX and XRD techniques. The characterization of materials under FTIR revealed that –OH (3487-3504 cm-1), C-H (2935-2985 cm-1), Al-O (~ 800 cm-1), Al-O-C (~1380 cm-1), Al-O-Al (659-669 cm-1) groups participates in the binding of dyes onto the surface of hybrids. Amorphous shaped particles and elemental composition of carbon (23%-44%), aluminium (29%-395%), and oxygen (11%-20%) is demonstrated in SEM-EDX micrograph. Time-dependent batch-experiments under identical experimental parameters showed 74% congo red, 68% methyl orange and 85% maximum removal of basic fuchsine onto the surface of cobalt doped alumina hybrids probably through the ion-exchange mechanism. The experimental data when treated with adsorption models is found to have good agreement with pseudo second order kinetic and freundlich isotherm for adsorption process. The present study concludes the successful synthesis of novel and efficient cobalt doped alumina hybrids providing environmental friendly and economical alternative to the commercial adsorbents for the treatment of industrial effluents.Keywords: alumina hybrid, adsorption, dopant, isotherm, kinetic
Procedia PDF Downloads 1934847 Mesoporous Na2Ti3O7 Nanotube-Constructed Materials with Hierarchical Architecture: Synthesis and Properties
Authors: Neumoin Anton Ivanovich, Opra Denis Pavlovich
Abstract:
Materials based on titanium oxide compounds are widely used in such areas as solar energy, photocatalysis, food industry and hygiene products, biomedical technologies, etc. Demand for them has also formed in the battery industry (an example of this is the commercialization of Li4Ti5O12), where much attention has recently been paid to the development of next-generation systems and technologies, such as sodium-ion batteries. This dictates the need to search for new materials with improved characteristics, as well as ways to obtain them that meet the requirements of scalability. One of the ways to solve these problems can be the creation of nanomaterials that often have a complex of physicochemical properties that radically differ from the characteristics of their counterparts in the micro- or macroscopic state. At the same time, it is important to control the texture (specific surface area, porosity) of such materials. In view of the above, among other methods, the hydrothermal technique seems to be suitable, allowing a wide range of control over the conditions of synthesis. In the present study, a method was developed for the preparation of mesoporous nanostructured sodium trititanate (Na2Ti3O7) with a hierarchical architecture. The materials were synthesized by hydrothermal processing and exhibit a complex hierarchically organized two-layer architecture. At the first level of the hierarchy, materials are represented by particles having a roughness surface, and at the second level, by one-dimensional nanotubes. The products were found to have high specific surface area and porosity with a narrow pore size distribution (about 6 nm). As it is known, the specific surface area and porosity are important characteristics of functional materials, which largely determine the possibilities and directions of their practical application. Electrochemical impedance spectroscopy data show that the resulting sodium trititanate has a sufficiently high electrical conductivity. As expected, the synthesized complexly organized nanoarchitecture based on sodium trititanate with a porous structure can be practically in demand, for example, in the field of new generation electrochemical storage and energy conversion devices.Keywords: sodium trititanate, hierarchical materials, mesoporosity, nanotubes, hydrothermal synthesis
Procedia PDF Downloads 1074846 Balancing Electricity Demand and Supply to Protect a Company from Load Shedding: A Review
Authors: G. W. Greubel, A. Kalam
Abstract:
This paper provides a review of the technical problems facing the South African electricity system and discusses a hypothetical ‘virtual grid’ concept that may assist in solving the problems. The proposed solution has potential application across emerging markets with constrained power infrastructure or for companies who wish to be entirely powered by renewable energy. South Africa finds itself at a confluence of forces where the national electricity supply system is constrained with under-supply primarily from old and failing coal-fired power stations and congested and inadequate transmission and distribution systems. Simultaneously, the country attempts to meet carbon reduction targets driven by both an alignment with international goals and a consumer-driven requirement. The constrained electricity system is an aspect of an economy characterized by very low economic growth, high unemployment, and frequent and significant load shedding. The fiscus does not have the funding to build new generation capacity or strengthen the grid. The under-supply is increasingly alleviated by the penetration of wind and solar generation capacity and embedded roof-top solar. However, this increased penetration results in less inertia, less synchronous generation, and less capability for fast frequency response, with resultant instability. The renewable energy facilities assist in solving the under-supply issues but merely ‘kick the can down the road’ by not contributing to grid stability or by substituting the lost inertia, thus creating an expanding issue for the grid to manage. By technically balancing its electricity demand and supply a company with facilities located across the country can be protected from the effects of load shedding, and thus ensure financial and production performance, protect jobs, and contribute meaningfully to the economy. By treating the company’s load (across the country) and its various distributed generation facilities as a ‘virtual grid’, which by design will provide ancillary services to the grid one is able to create a win-win situation for both the company and the grid.Keywords: load shedding, renewable energy integration, smart grid, virtual grid, virtual power plant
Procedia PDF Downloads 59