Search results for: TiO₂ thin film
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2250

Search results for: TiO₂ thin film

2070 Synthesis of Mesoporous In₂O₃-TiO₂ Nanocomposites as Efficient Photocatalyst for Treatment Industrial Wastewater under Visible Light and UV Illumination

Authors: Ibrahim Abdelfattah, Adel Ismail, Ahmed Helal, Mohamed Faisal

Abstract:

Advanced oxidation technologies are an environment friendly approach for the remediation of industrial wastewaters. Here, one pot synthesis of mesoporous In₂O₃-TiO₂ nanocomposites at different In₂O₃ contents (0-3 wt%) have been synthesized through a facile sol-gel method to evaluate their photocatalytic performance for the degradation of the imazapyr herbicide and phenol under visible light and UV illumination compared with commercially available either Degussa P-25 or UV-100 Hombikat. The prepared mesoporous In₂O₃-TiO₂ nanocomposites were characterized by TEM, STEM, XRD, Raman FT-IR, Raman spectra and diffuse reflectance UV-visible. The bandgap energy of the prepared photocatalysts was derived from the diffuse reflectance spectra. XRD Raman's spectra confirmed that highly crystalline anatase TiO₂ phase was formed. TEM images show TiO₂ particles are quite uniform with 10±2 nm sizes with mesoporous structure. The mesoporous TiO₂ exhibits large pore volumes of 0.267 cm³g⁻¹ and high surface areas of 178 m²g⁻¹, but they become reduced to 0.211 cm³g⁻¹ and 112 m²g⁻¹, respectively upon In₂O₃ incorporation, with tunable mesopore diameter in the range of 5 - 7 nm. The 0.5% In₂O₃-TiO₂ nanocomposite is considered to be the optimum photocatalyst which is able to degrade 90% of imazapyr herbicide and phenol along 180 min and 60 min respectively. The proposed mechanism of this system and the role of In₂O₃ are explained by details.

Keywords: In₂O₃-TiO₂ nanocomposites, sol-gel method, visible light illumination, UV illumination, herbicide and phenol wastewater, removal

Procedia PDF Downloads 291
2069 Bio-Nano Mask: Antivirus and Antimicrobial Mouth Mask Coating with Nano-TiO2 and Anthocyanin Utilization as an Effective Solution of High ARI Patients in Riau

Authors: Annisa Ulfah Pristya, Andi Setiawan

Abstract:

Indonesia placed in sixth rank total Acute Respiratory Infection (ARI) patient in the world and Riau as one of the province with the highest number of people with respiratory infection in Indonesia reached 37 thousand people. Usually society using a mask as prevention action. Unfortunately the commercial mouth mask only can work maximum for 4 hours and the pores are too large to filter out microorganisms and viruses carried by infectious droplets nucleated 1-5 μm. On the other hand, Indonesia is rich with Titanium dioxide (TiO2) and purple sweet potato anthocyanin pigment. Therefore, offered Bio-nano-mask which is a antimicrobial and antiviral mouth mask with Nano-TiO2 coating and purple sweet potato anthocyanins utilization as an effective solution to high ARI patients in Riau, which has the advantage of the mask surface can’t be attached by infectious droplets, self-cleaning and have anthocyanins biosensors that give visual response can be understood easily by the general public in the form of a mask color change from blue/purple to pink when acid levels increase. Acid level is an indicator of microorganisms accumulation in the mouth and surrounding areas. Bio-nano mask making process begins with the preparation (design, Nano-TiO2 liquid preparation, anthocyanins biosensors manufacture) and then superimposing the Nano-TiO2 on the outer surface of spunbond color using a sprayer, then superimposing anthocyanins biosensors film on the Meltdown surface, making bio nano-mask and it pack. Bio-nano mask has the advantage is effectively preventing pathogenic microorganisms and infectious droplets and has accumulated indicator microorganisms that color changes which easily observed by the common people though.

Keywords: anthocyanins, ARI, nano-TiO2 liquid, self cleaning

Procedia PDF Downloads 564
2068 Effect of Ti+ Irradiation on the Photoluminescence of TiO2 Nanofibers

Authors: L. Chetibi, D. Hamana, T. O. Busko, M. P. Kulish, S. Achour

Abstract:

TiO2 nanostructures have attracted much attention due to their optical, dielectric and photocatalytic properties as well as applications including optical coating, photocatalysis and photoelectrochemical solar cells. This work aims to prepare TiO2 nanofibers (NFs) on titanium substrate (Ti) by in situ oxidation of Ti foils in a mixture solution of concentrated H2O2 and NaOH followed by proton exchange and calcinations. Scanning Electron microscopy (SEM) revealed an obvious network of TiO2 nanofibers. The photoluminescence (PL) spectra of these nanostructures revealed a broad intense band in the visible light range with a reduced near edge band emission. The PL bands in the visible region, mainly, results from surface oxygen vacancies and others defects. After irradiation with Ti+ ions (the irradiation energy was E = 140 keV with doses of 1013 ions/cm2), the intensity of the PL spectrum decreased as a consequence of the radiation treatment. The irradiation with Ti+ leads to a reduction of defects and generation of non irradiative defects near to the level of the conduction band as evidenced by the PL results. On the other hand, reducing the surface defects on TiO2 nanostructures may improve photocatalytic and optoelectronic properties of this nanostructure.

Keywords: TiO2, nanofibers, photoluminescence, irradiation

Procedia PDF Downloads 242
2067 Structural Analysis of Phase Transformation and Particle Formation in Metastable Metallic Thin Films Grown by Plasma-Enhanced Atomic Layer Deposition

Authors: Pouyan Motamedi, Ken Bosnick, Ken Cadien, James Hogan

Abstract:

Growth of conformal ultrathin metal films has attracted a considerable amount of attention recently. Plasma-enhanced atomic layer deposition (PEALD) is a method capable of growing conformal thin films at low temperatures, with an exemplary control over thickness. The authors have recently reported on growth of metastable epitaxial nickel thin films via PEALD, along with a comprehensive characterization of the films and a study on the relationship between the growth parameters and the film characteristics. The goal of the current study is to use the mentioned films as a case study to investigate the temperature-activated phase transformation and agglomeration in ultrathin metallic films. For this purpose, metastable hexagonal nickel thin films were annealed using a controlled heating/cooling apparatus. The transformations in the crystal structure were observed via in-situ synchrotron x-ray diffraction. The samples were annealed to various temperatures in the range of 400-1100° C. The onset and progression of particle formation were studied in-situ via laser measurements. In addition, a four-point probe measurement tool was used to record the changes in the resistivity of the films, which is affected by phase transformation, as well as roughening and agglomeration. Thin films annealed at various temperature steps were then studied via atomic force microscopy, scanning electron microscopy and high-resolution transmission electron microscopy, in order to get a better understanding of the correlated mechanisms, through which phase transformation and particle formation occur. The results indicate that the onset of hcp-to-bcc transformation is at 400°C, while particle formations commences at 590° C. If the annealed films are quenched after transformation, but prior to agglomeration, they show a noticeable drop in resistivity. This can be attributed to the fact that the hcp films are grown epitaxially, and are under severe tensile strain, and annealing leads to relaxation of the mismatch strain. In general, the results shed light on the nature of structural transformation in nickel thin films, as well as metallic thin films, in general.

Keywords: atomic layer deposition, metastable, nickel, phase transformation, thin film

Procedia PDF Downloads 325
2066 The Photocatalytic Approach for the Conversion of Polluted Seawater CO₂ into Renewable Source of Energy

Authors: Yasar N. Kavil, Yasser A. Shaban, Radwan K. Al Farawati, Mohamed I. Orif, Shahed U. M. Khanc

Abstract:

Photocatalytic way of reduction of CO₂ in polluted seawater into chemical fuel, methanol, was successfully gained over Cu/C-co-doped TiO₂ nanoparticles under UV and natural sunlight. A homemade stirred batch annular reactor was used to carry out the photocatalytic reduction experiments. Photocatalysts with various Cu loadings (0, 0.5, 1, 3, 5 and 7 wt.%) were synthesized by the sol-gel procedure and were characterized by XRD, SEM, UV–Vis, FTIR, and XPS. The photocatalytic production of methanol was promoted by the co-doping with C and Cu into TiO₂. This improvement was attributed to the modification of bandgap energy and the hindrance of the charges recombination. The polluted seawater showing the yield depended on its background hydrographic parameters. We assessed two types of polluted seawater system, the observed yield was 2910 and 990 µmol g⁻¹ after 5 h of illumination under UV and natural sunlight respectively in system 1 and the corresponding yield in system 2 was 2250 and 910 µmol g⁻¹ after 5 h of illumination. The production of methanol in the case of oxygen-depleted water was low, this is mainly attributed to the competition of methanogenic bacteria over methanol production. The results indicated that the methanol yield produced by Cu-C/TiO₂ was much higher than those of carbon-modified titanium oxide (C/TiO₂) and Degussa (P25-TiO₂). Under the current experimental condition, the optimum loading was achieved by the doping of 3 wt % of Cu. The highest methanol yield was obtained over 1 g L-1 of 3wt% Cu/C-TiO₂.

Keywords: CO₂ photoreduction, copper, Cu/C-co-doped TiO₂, methanol, seawater

Procedia PDF Downloads 273
2065 Fe₃O₄/SiO₂/TiO₂ Nanoparticles as Catalyst for Recovery of Gold from the Mixture of Au(III) and Cu(II) Ions

Authors: Eko S. Kunarti, Akhmad Syoufian, Indriana Kartini, Agnes

Abstract:

Fe₃O₄/SiO₂/TiO₂ nanoparticles have been synthesized and applied as a photocatalyst for the recovery of gold from the mixture of Au(III) and Cu(II) ions. The synthesis was started by the preparation of magnetite (Fe₃O₄) using coprecipitation and sonication methods, followed by SiO₂ coating on magnetite using sol-gel reactions, and then TiO₂ coating using sol-gel process. Characterization was performed by using infrared spectroscopy, X-ray diffraction, transmission electron microscopy methods. Activity of Fe₃O₄/SiO₂/TiO₂ nanoparticles was evaluated as a photocatalyst for recovery of gold through photoreduction of Au(III) ions in Au(III) and Cu(II) ions mixture with a ratio of 1:1, in a closed reactor equipped with UV lamp. The photoreduction yield was represented as a percentage (%) of reduced Au(III) which was calculated by substraction of initial Au(III) concentration by the unreduced one. The unreduced Au(III) was determined by atomic absorption spectrometry. Results showed that the Fe₃O₄/SiO₂/TiO₂ nanoparticles were successfully synthesised with excellent magnetic and photocatalytic properties. The nanoparticles present optimum activity at a pH of 5 under UV irradiation for 120 minutes. At the optimum condition, the Fe₃O₄/SiO₂/TiO₂ nanoparticles could reduce Au³⁺ to Au⁰ 97.24%. In the mixture of Au(III) and Cu(II) ions, the Au(III) ions are more easily reducible than Cu(II) ions with the reduction results of 96.9% and 45.80% for Au(III) and Cu(II) ions, respectively. In addition, the presence of Cu(II) ions has no significant effect on the amount of gold recovered and its reduction reaction rate.

Keywords: Fe₃O₄/SiO₂/TiO₂, photocatalyst, recovery, gold, Au(III) and Cu(II) mixture

Procedia PDF Downloads 269
2064 Thin-Film Nanocomposite Membrane with Single-Walled Carbon Nanotubes Axial Positioning in Support Layer for Desalination of Water

Authors: Ahmed A. Alghamdi

Abstract:

Single-walled carbon nanotubes (SWCNTs) are an outstanding material for applications in thermoelectric power generation, nanoelectronics, electrochemical energy storage, photovoltaics, and light emission. They are ultra-lightweight and possess electrical as well as thermal conductivity, flexibility, and mechanical strength. SWCNT is applicable in water treatment, brine desalination, removal of heavy metal ions associated with pollutants, and oil-water separation. Carbon nanotube (CNT) is believed to tackle the trade-off issue between permeability, selectivity, and fouling issues in membrane filtration applications. Studying these CNT structures, as well as their interconnection in nanotechnology, assists in finding the precise position to be placed for water desalination. Reverse osmosis (RO) has been used globally for desalination, resulting in purified water. Thin film composite (TFC) membranes were utilized in the RO process for desalination. The sheet thickness increases the salt rejection and decreases the water flux when CNT is utilized as a support layer to this membrane. Thus, through a temperature-induced phase separation technique (TIPS), axially aligned SWCNT (AASWCNT) is fabricated, and its use enhances the salt rejection and water flux at short reaction times with a modified procedure. An evaluation was conducted and analogized with prior works in the literature, which exhibited that the prepared TFC membrane showed a better outcome.

Keywords: single-walled carbon nanotubes, thin film composite, axially aligned swcnt, temperature induced phase separation technique, reverse osmosis

Procedia PDF Downloads 48
2063 Light Harvesting Titanium Nanocatalyst for Remediation of Methyl Orange

Authors: Brajesh Kumar, Luis Cumbal

Abstract:

An eco-friendly Citrus paradisi peel extract mediated synthesis of TiO2 nanoparticles is reported under sonication. U.V.-vis, Transmission Electron Microscopy, Dynamic Light Scattering and X-ray analyses are performed to characterize the formation of TiO2 nanoparticles. It is almost spherical in shape, having a size of 60–140 nm and the XRD peaks at 2θ = 25.363° confirm the characteristic facets for anatase form. The synthesized nano catalyst is highly active in the decomposition of methyl orange (64 mg/L) in sunlight (~73%) for 2.5 hours.

Keywords: eco-friendly, TiO2 nanoparticles, citrus paradisi, TEM

Procedia PDF Downloads 523
2062 Commercialization of Film Festivals: An Autobiographical Analysis

Authors: Önder M. Özdem

Abstract:

Producing and circulating films of professional standards have become technically easier with the development and widespread use of digital recording and distribution technologies. Additionally, film festivals on common platforms have rapidly increased in numbers and diversity. On the one hand, no-charge applications result in excessive submissions; thus, it complicates the evaluation and selection process. On the other hand, festival’s high submission fees may make the distribution of films with a limited budget very difficult. Inspired by the author’s engagement with the film industry as both a pre-jury member of an international film festival and an applicant to many festivals, this study discusses the causes and consequences of the increasing commercialization of film festivals. The author’s double identity, both as a jury and an applicant, provides a comparative perspective through which one can unfold the different dimensions and dynamics in the film production and distribution processes.

Keywords: commercialization, film distribution, film festivals, film production

Procedia PDF Downloads 74
2061 Ultrasonic Degradation of Acephate in Aqueous Solution: Effects of Operating Parameters

Authors: Naina S. Deshmukh, Manik P. Deosarkar

Abstract:

With the wide production, consumption, and disposal of pesticides in the world, the concerns over their human and environmental health impacts are rapidly growing. Among developing treatment technologies, ultrasonication, as an emerging and promising technology for the removal of pesticides in the aqueous environment, has attracted the attention of many researchers in recent years. The degradation of acephate in aqueous solutions was investigated under the influence of ultrasound irradiation (20 kHz) in the presence of heterogeneous catalysts titanium dioxide (TiO2) and Zinc oxide (ZnO). The influence of various factors such as amount of catalyst (0.25, 0.5, 0.75, 1.0, 1.25 g/l), initial acephate concentration (100, 200, 300, 400 mg/l), and pH (3, 5, 7, 9, 11) were studied. The optimum catalyst dose was found to be 1 g/l of TiO2 and 1.25 g/l of ZnO for acephate at 100 mg/l, respectively. The maximum percentage degradation of acephate was observed at pH 11 for catalyst TiO2 and ZnO, respectively.

Keywords: ultrasonic degradation, acephate, TiO2, ZnO, heterogeneous catalyst

Procedia PDF Downloads 95
2060 Enhanced Photoelectrochemical performance of TiO₂ Nanorods: The Critical Role of Hydrothermal Reaction Time

Authors: Srijitra Khanpakdee, Teera Butburee, Jung-Ho Yun, Miaoqiang Lyu, Supphasin Thaweesak, Piangjai Peerakiatkhajohn

Abstract:

The synthesis of titanium dioxide (TiO₂) nanorods (NRs) on fluorine-doped tin oxide (FTO) glass via hydrothermal methods was investigated to determine the optimal reaction time for enhanced photocatalytic and optical performance. Reaction times of 4, 6, and 8 hours were studied. Characterization through SEM, UV-vis, XRD, FTIR, Raman spectroscopy and photoelectrochemical (PEC) techniques revealed significant differences in the properties of the TiO₂ NRs based on the reaction duration. XRD and Raman spectroscopy analysis confirmed the formation of the rutile phase of TiO₂. As photoanodes in PEC cells, TiO₂ NRs synthesized for 4 hours exhibited the best photocatalytic activity, with the highest photocurrent density and superior charge transport properties, attributed to their densely packed vertical structure. Longer reaction times resulted in less optimal morphological and photoelectrochemical characteristics. The bandgap of the TiO₂ NRs remained consistent around 3.06 eV, with only slight variations observed. This study highlights the critical role of reaction time in hydrothermal synthesis, identifying 4 hours as the optimal duration for producing TiO₂ NRs with superior photoelectrochemical performance. These findings provide valuable insights for optimizing TiO₂-based materials for solar energy conversion and renewable energy applications.

Keywords: titanium dioxide, nanorods, hydrothermal, photocatalytic, photoelectrochemical

Procedia PDF Downloads 36
2059 Blade-Coating Deposition of Semiconducting Polymer Thin Films: Light-To-Heat Converters

Authors: M. Lehtihet, S. Rosado, C. Pradère, J. Leng

Abstract:

Poly(3,4-ethylene dioxythiophene) polystyrene sulfonate (PEDOT: PSS), is a polymer mixture well-known for its semiconducting properties and is widely used in the coating industry for its visible transparency and high electronic conductivity (up to 4600 S/cm) as a transparent non-metallic electrode and in organic light-emitting diodes (OLED). It also possesses strong absorption properties in the Near Infra-Red (NIR) range (λ ranging between 900 nm to 2.5 µm). In the present work, we take advantage of this absorption to explore its potential use as a transparent light-to-heat converter. PEDOT: PSS aqueous dispersions are deposited onto a glass substrate using a blade-coating technique in order to produce uniform coatings with controlled thicknesses ranging in ≈ 400 nm to 2 µm. Blade-coating technique allows us good control of the deposit thickness and uniformity by the tuning of several experimental conditions (blade velocity, evaporation rate, temperature, etc…). This liquid coating technique is a well-known, non-expensive technique to realize thin film coatings on various substrates. For coatings on glass substrates destined to solar insulation applications, the ideal coating would be made of a material able to transmit all the visible range while reflecting the NIR range perfectly, but materials possessing similar properties still have unsatisfactory opacity in the visible too (for example, titanium dioxide nanoparticles). NIR absorbing thin films is a more realistic alternative for such an application. Under solar illumination, PEDOT: PSS thin films heat up due to absorption of NIR light and thus act as planar heaters while maintaining good transparency in the visible range. Whereas they screen some NIR radiation, they also generate heat which is then conducted into the substrate that re-emits this energy by thermal emission in every direction. In order to quantify the heating power of these coatings, a sample (coating on glass) is placed in a black enclosure and illuminated with a solar simulator, a lamp emitting a calibrated radiation very similar to the solar spectrum. The temperature of the rear face of the substrate is measured in real-time using thermocouples and a black-painted Peltier sensor measures the total entering flux (sum of transmitted and re-emitted fluxes). The heating power density of the thin films is estimated from a model of the thin film/glass substrate describing the system, and we estimate the Solar Heat Gain Coefficient (SHGC) to quantify the light-to-heat conversion efficiency of such systems. Eventually, the effect of additives such as dimethyl sulfoxide (DMSO) or optical scatterers (particles) on the performances are also studied, as the first one can alter the IR absorption properties of PEDOT: PSS drastically and the second one can increase the apparent optical path of light within the thin film material.

Keywords: PEDOT: PSS, blade-coating, heat, thin-film, Solar spectrum

Procedia PDF Downloads 159
2058 Stem Cell Fate Decision Depending on TiO2 Nanotubular Geometry

Authors: Jung Park, Anca Mazare, Klaus Von Der Mark, Patrik Schmuki

Abstract:

In clinical application of TiO2 implants on tooth and hip replacement, migration, adhesion and differentiation of neighboring mesenchymal stem cells onto implant surfaces are critical steps for successful bone regeneration. In a recent decade, accumulated attention has been paid on nanoscale electrochemical surface modifications on TiO2 layer for improving bone-TiO2 surface integration. We generated, on titanium surfaces, self-assembled layers of vertically oriented TiO2 nanotubes with defined diameters between 15 and 100 nm and here we show that mesenchymal stem cells finely sense TiO2 nanotubular geometry and quickly decide their cell fate either to differentiation into osteoblasts or to programmed cell death (apoptosis) on TiO2 nanotube layers. These cell fate decisions are critically dependent on nanotube size differences (15-100nm in diameters) of TiO2 nanotubes sensing by integrin clustering. We further demonstrate that nanoscale topography-sensing is feasible not only in mesenchymal stem cells but rather seems as generalized nanoscale microenvironment-cell interaction mechanism in several cell types composing bone tissue network including osteoblasts, osteoclast, endothelial cells and hematopoietic stem cells. Additionally we discuss the synergistic effect of simultaneous stimulation by nanotube-bound growth factor and nanoscale topographic cues on enhanced bone regeneration.

Keywords: TiO2 nanotube, stem cell fate decision, nano-scale microenvironment, bone regeneration

Procedia PDF Downloads 427
2057 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 153
2056 Investigation of Thickness Dependent Optical Properties of Bi₂Sb(₃-ₓ):Te ₓ (where x = 0.1, 0.2, 0.3) Thin Films

Authors: Reena Panchal, Maunik Jani, S. M. Vyas, G. R. Pandya

Abstract:

Group V-VI compounds have a narrow bandgap, which makes them useful in many electronic devices. In bulk form, BiSbTe alloys are semi-metals or semi-conductors. They are used in thermoelectric and thermomagnetic devices, fabrication of ionizing, radiation detectors, LEDs, solid-state electrodes, photosensitive heterostructures, solar cells, ionic batteries, etc. Thin films of Bi₂Sb(₃-ₓ):Tex (where x = 0.1, 0.2, 0.3) of various thicknesses were grown by the thermal evaporation technique on a glass substrate at room temperature under a pressure of 10-₄ mbar for different time periods such as 10s, 15s, and 20s. The thickness of these thin films was also obtained by using the swaneopeol envelop method and compared those values with instrumental values. The optical absorption (%) data of thin films was measured in the wave number range of 650 cm-¹ to 4000 cm-¹. The band gap has been evaluated from these optical absorption data, and the results indicate that absorption occurred by a direct interband transition. It was discovered that when thickness decreased, the band gap increased; this dependency was inversely related to the square of thickness, which is explained by the quantum size effect. Using the values of bandgap, found the values of optical electronegativity (∆χ) and optical refractive index (η) using various relations.

Keywords: thin films, band gap, film thickness, optical study, size effect

Procedia PDF Downloads 13
2055 OLED Encapsulation Process Using Low Melting Point Alloy and Epoxy Mixture by Instantaneous Discharge

Authors: Kyung Min Park, Cheol Hee Moon

Abstract:

In this study we are to develop a sealing process using a mixture of a LMPA and an epoxy for the atmospheric OLED sealing process as a substitute for the thin-film process. Electrode lines were formed on the substrates, which were covered with insulating layers and sacrificial layers. A mixture of a LMPA and an epoxy was screen printed between the two electrodes. In order to generate a heat for the melting of the mixture, Joule heating method was used. Were used instantaneous discharge process for generating Joule heating. Experimental conditions such as voltage, time and constituent of the electrode were varied to optimize the heating conditions. As a result, the mixture structure of this study showed a great potential for a low-cost, low-temperature, atmospheric OLED sealing process as a substitute for the thin-film process.

Keywords: organic light emitting diode, encapsulation, low melting point alloy, joule heat

Procedia PDF Downloads 542
2054 Effect of Transition Metal (Fe, Mn) Ion Doping on TiO2 Nano Particles

Authors: Kirit Siddhapara, Dimple Shah

Abstract:

In this research, we have studied the doping behaviors of two transition metal ion dopants on the crystal phase, particle sizes, XRD patterns, EDAX spectra, and photoreactivity of TiO2 nanoparticles. The crystalline size of TiO2 is close to 4 nm Calculated from (1 0 1) peak by using FWHM method in Scherrer’s equation. Test metal ion concentrations ranged from 1% to 4 at.%, we report the growth of [Fe, Mn]xTiO2 nanocrystals prepared by Sol-Gel technique, followed by freeze-drying treatment at -30°C temperature for 12hrs. The obtained Gel was thermally treated at different temperature like 200°C, 400°C, 600°C, 800°C. Thermal gravimetric analysis (TGA) shows that dopant concentration affects thermal decomposition. The photoreactivities of transition metal ion-doped TiO2 nanoparticles under UV irradiation were quantified by the degradation of formaldehyde.

Keywords: growth from solution, sol-gel method, nanomaterials, oxides, magnetic materials, titanium compounds

Procedia PDF Downloads 427
2053 Analysis of Casting Call Process in Thai Film Industry

Authors: Panprae Bunyapukkna

Abstract:

The purpose of this research is to analyze the process that most of the Thai film industries commonly use in order to find the right cast to play the role. The result proved that most of the low-budget film productions find the cast by asking from the crew’s friends or friend of friend. Therefore, finding the cast in low-budget film productions normally has only few people shown up for the auditions and sometimes either none of them has acting knowledge or their appearances do not match the character. However, since most of the low-budget film productions do not have much ability to find members of the cast, thus some of them still will be selected. On the other hand, most of the high-budget film productions use modeling companies to find the cast for them. However, most of modeling agencies in Thailand seek and select their cast members from the cast’s appearances or talents rather than the knowledge of acting.

Keywords: casting for film, modeling business, acting, film, performing arts, film business

Procedia PDF Downloads 419
2052 Film Sensors for the Harsh Environment Application

Authors: Wenmin Qu

Abstract:

A capacitance level sensor with a segmented film electrode and a thin-film volume flow sensor with an innovative by-pass sleeve is presented as industrial products for the application in a harsh environment. The working principle of such sensors is well known; however, the traditional sensors show some limitations for certain industrial measurements. The two sensors presented in this paper overcome this limitation and enlarge the application spectrum. The problem is analyzed, and the solution is given. The emphasis of the paper is on developing the problem-solving concepts and the realization of the corresponding measuring circuits. These should give advice and encouragement, how we can still develop electronic measuring products in an almost saturated market.

Keywords: by-pass sleeve, charge transfer circuit, fixed ΔT circuit, harsh environment, industrial application, segmented electrode

Procedia PDF Downloads 114
2051 Effect of Substrate Temperature on Some Physical Properties of Doubly doped Tin Oxide Thin Films

Authors: Ahmet Battal, Demet Tatar, Bahattin Düzgün

Abstract:

Various transparent conducting oxides (TCOs) are mostly used much applications due to many properties such as cheap, high transmittance/electrical conductivity etc. One of the clearest among TCOs, indium tin oxide (ITO), is the most widely used in many areas. However, as ITO is expensive and very low regarding reserve, other materials with suitable properties (especially SnO2 thin films) are be using instead of it. In this report, tin oxide thin films doubly doped with antimony and fluorine (AFTO) were deposited by spray at different substrate temperatures on glass substrate. It was investigated their structural, optical, electrical and luminescence properties. The substrate temperature was varied from 320 to 480 ˚C at the interval of 40 (±5) ºC. X-ray results were shown that the films are polycrystalline with tetragonal structure and oriented preferentially along (101), (200) and (210) directions. It was observed that the preferential orientations of crystal growth are not dependent on substrate temperature, but the intensity of preferential orientation was increased with increasing substrate temperature until 400 ºC. After this substrate temperature, they decreased. So, substrate temperature impact structure of these thin films. It was known from SEM analysis, the thin films have rough and homogenous and the surface of the films was affected by the substrate temperature i.e. grain size are increasing with increasing substrate temperature until 400 ºC. Also, SEM and AFM studies revealed the surface of AFTO thin films to be made of nanocrystalline particles. The average transmittance of the films in the visible range is 70-85%. Eg values of the films were investigated using the absorption spectra and found to be in the range 3,20-3,93 eV. The electrical resistivity decreases with increasing substrate temperature, then the electrical resistivity increases. PL spectra were found as a function of substrate temperature. With increasing substrate temperature, emission spectra shift a little bit to a UV region. Finally, tin oxide thin films were successfully prepared by this method and a spectroscopic characterization of the obtained films was performed. It was found that the films have very good physical properties. It was concluded that substrate temperature impacts thin film structure.

Keywords: thin films, spray pyrolysis, SnO2, doubly doped

Procedia PDF Downloads 470
2050 Structural Analysis of Polymer Thin Films at Single Macromolecule Level

Authors: Hiroyuki Aoki, Toru Asada, Tomomi Tanii

Abstract:

The properties of a spin-cast film of a polymer material are different from those in the bulk material because the polymer chains are frozen in an un-equilibrium state due to the rapid evaporation of the solvent. However, there has been little information on the un-equilibrated conformation and dynamics in a spin-cast film at the single chain level. The real-space observation of individual chains would provide direct information to discuss the morphology and dynamics of single polymer chains. The recent development of super-resolution fluorescence microscopy methods allows the conformational analysis of single polymer chain. In the current study, the conformation of a polymer chain in a spin-cast film by the super-resolution microscopy. Poly(methyl methacrylate) (PMMA) with the molecular weight of 2.2 x 10^6 was spin-cast onto a glass substrate from toluene and chloroform. For the super-resolution fluorescence imaging, a small amount of the PMMA labeled by rhodamine spiroamide dye was added. The radius of gyration (Rg) was evaluated from the super-resolution fluorescence image of each PMMA chain. The mean-square-root of Rg was 48.7 and 54.0 nm in the spin-cast films prepared from the toluene and chloroform solutions, respectively. On the other hand, the chain dimension in a bulk state (a thermally annealed 10- μm-thick sample) was observed to be 43.1 nm. This indicates that the PMMA chain in the spin-cast film takes an expanded conformation compared to the unperturbed chain and that the chain dimension is dependent on the solvent quality. In a good solvent, the PMMA chain has an expanded conformation by the excluded volume effect. The polymer chain is frozen before the relaxation from an un-equilibrated expanded conformation to an unperturbed one by the rapid solvent evaporation.

Keywords: chain conformation, polymer thin film, spin-coating, super-resolution optical microscopy

Procedia PDF Downloads 281
2049 Determination of Elasticity Constants of Isotropic Thin Films Using Impulse Excitation Technique

Authors: M. F. Slim, A. Alhussein, F. Sanchette, M. François

Abstract:

Thin films are widely used in various applications to enhance the surface properties and characteristics of materials. They are used in many domains such as: biomedical, automotive, aeronautics, military, electronics and energy. Depending on the elaboration technique, the elastic behavior of thin films may be different from this of bulk materials. This dependence on the elaboration techniques and their parameters makes the control of the elasticity constants of coated components necessary. Our work is focused on the characterization of the elasticity constants of isotropic thin films by means of Impulse Excitation Techniques. The tests rely on the measurement of the sample resonance frequency before and after deposition. In this work, a finite element model was performed with ABAQUS software. This model was then compared with the analytical approaches used to determine the Young’s and shear moduli. The best model to determine the film Young’s modulus was identified and a relation allowing the determination of the shear modulus of thin films of any thickness was developed. In order to confirm the model experimentally, Tungsten films were deposited on glass substrates by DC magnetron sputtering of a 99.99% purity tungsten target. The choice of tungsten was done because it is well known that its elastic behavior at crystal scale is ideally isotropic. The macroscopic elasticity constants, Young’s and shear moduli and Poisson’s ratio of the deposited film were determined by means of Impulse Excitation Technique. The Young’s modulus obtained from IET was compared with measurements by the nano-indentation technique. We did not observe any significant difference and the value is in accordance with the one reported in the literature. This work presents a new methodology on the determination of the elasticity constants of thin films using Impulse Excitation Technique. A formulation allowing the determination of the shear modulus of a coating, whatever the thickness, was developed and used to determine the macroscopic elasticity constants of tungsten films. The developed model was validated numerically and experimentally.

Keywords: characterization, coating, dynamical resonant method, Poisson's ratio, PVD, shear modulus, Young's modulus

Procedia PDF Downloads 359
2048 The Effect of the Deposition Parameters on the Microstructural and Optical Properties of Mn-Doped GeTe Chalcogenide Materials

Authors: Adam Abdalla Elbashir Adam, Xiaomin Cheng, Xiang Shui Miao

Abstract:

In this work, the effect of the magnetron sputtering system parameters on the optical properties of the Mn doped GeTe were investigated. The optical properties of the Ge1-xMnxTe thin films with different thicknesses are determined by analyzing the transmittance and reflectance data. The energy band gaps of the amorphous Mn-doped GeTe thin films with different thicknesses were calculated. The obtained results demonstrated that the energy band gap values of the amorphous films are quite different and they are dependent on the films thicknesses. The extinction coefficients of amorphous Mn-doped GeTe thin films as function of wavelength for different thicknesses were measured. The results showed that the extinction coefficients of all films are varying inversely with their optical transmission. Moreover, the results emphasis that, not only the microstructure, electrical and magnetic properties of Mn doped GeTe thin films vary with the films thicknesses but also the optical properties differ with the film thickness.

Keywords: phase change magnetic materials, transmittance, absorbance, extinction coefficients

Procedia PDF Downloads 398
2047 Enhanced of Corrosion Resistance of Carbon Steel C1018 with Nano-Tio2 Films Using Dip-Coating Method

Authors: Mai M. Khalaf, Hany M. Abd El-Lateef

Abstract:

A new good application for the sol gel method is to improve the corrosion inhibition properties of carbon steel by the dip coating method of Nano TiO2 films and its modification with Poly Ethylene Glycol (PEG). The prepared coating samples were investigated by different techniques, X-ray diffraction, Scanning Electron Microscopy (SEM), transmission electron microscopy and Energy Dispersive X-ray Spectroscopy (EDAX). The corrosion inhibition performance of the blank carbon steel and prepared coatings samples were evaluated in 0.5 M H2SO4 by using Electrochemical Impedance Spectroscopy (EIS) and potentiodynamic polarization measurements. The results showed that corrosion resistance of carbon steel increases with increasing the number of coated layers of both nano–TiO2 films and its modification of PEG. SEM-EDAX analyses confirmed that the percentage atomic content of iron for the carbon steel in 0.5 M H2SO4 is 83% and after the deposition of the steel in nano TiO2 sol and that with PEG are 94.3% and 93.7% respectively.

Keywords: dip-coatings, corrosion protection, sol gel, TiO2 films, PEG

Procedia PDF Downloads 426
2046 Surface Modification of TiO2 Layer with Phosphonic Acid Monolayer in Perovskite Solar Cells: Effect of Chain Length and Terminal Functional Group

Authors: Seid Yimer Abate, Ding-Chi Huang, Yu-Tai Tao

Abstract:

In this study, charge extraction characteristics at the perovskite/TiO2 interface in the conventional perovskite solar cell is studied by interface engineering. Self-assembled monolayers of phosphonic acids with different chain length and terminal functional group were used to modify mesoporous TiO2 surface to modulate the surface property and interfacial energy barrier to investigate their effect on charge extraction and transport from the perovskite to the mp-TiO2 and then the electrode. The chain length introduces a tunnelling distance and the end group modulate the energy level alignment at the mp-TiO2 and perovskite interface. The work function of these SAM-modified mp-TiO2 varied from −3.89 eV to −4.61 eV, with that of the pristine mp-TiO2 at −4.19 eV. A correlation of charge extraction and transport with respect to the modification was attempted. The study serves as a guide to engineer ETL interfaces with simple SAMs to improve the charge extraction, carrier balance and device long term stability. In this study, a maximum PCE of ~16.09% with insignificant hysteresis was obtained, which is 17% higher than the standard device.

Keywords: Energy level alignment, Interface engineering, Perovskite solar cells, Phosphonic acid monolayer, Tunnelling distance

Procedia PDF Downloads 132
2045 Application to Molecular Electronics of Thin Layers of Organic Materials

Authors: M. I. Benamrani, H. Benamrani

Abstract:

In the research to replace silicon and other thin-film semiconductor technologies and to develop long-term technology that is environmentally friendly, low-cost, and abundant, there is growing interest today given to organic materials. Our objective is to prepare polymeric layers containing metal particles deposited on a surface of semiconductor material which can have better electrical properties and which could be applied in the fields of nanotechnology as an alternative to the existing processes involved in the design of electronic circuits. This work consists in the development of composite materials by complexation and electroreduction of copper in a film of poly (pyrrole benzoic acid). The deposition of the polymer film on a monocrystalline silicon substrate is made by electrochemical oxidation in an organic medium. The incorporation of copper particles into the polymer is achieved by dipping the electrode in a solution of copper sulphate to complex the cupric ions, followed by electroreduction in an aqueous solution to precipitate the copper. In order to prepare the monocrystalline silicon substrate as an electrode for electrodeposition, an in-depth study on its surface state was carried out using photoacoustic spectroscopy. An analysis of the optical properties using this technique on the effect of pickling using a chemical solution was carried out. Transmission-photoacoustic and impedance spectroscopic techniques give results in agreement with those of photoacoustic spectroscopy.

Keywords: photoacoustic, spectroscopy, copper sulphate, chemical solution

Procedia PDF Downloads 80
2044 Comparative Studies on Thin Film of ZnO Deposited by Spray Pyrolysis and Sputtering Technique

Authors: Musa Momoh, A. U. Moreh, A. M. Bayawa, Sanusi Abdullahi, I. Atiku

Abstract:

In this study, thin films of ZnO were synthesized by two techniques namely RF sputtering and spray pyrolysis. The films were deposited on corning glass. The primary materials used are 99.99% pure. The optical and structural properties of the samples were studied. It has been noted that the samples deposited by Spray pyrolysis have and average transmittance, refractive index and extinction coefficient as 80-90%, 1.33-1.44 and 13.11-27.52 respectively. Those deposited by sputtering method are 34-80%, 1.51-1.52 and 3.15-3.28. The XRD patterns of the samples show that they are polycrystalline.

Keywords: zinc oxide, spray pyrolysis, rf sputtering, optical properties, electrical properties

Procedia PDF Downloads 260
2043 Removal Capacity of Activated Carbon (AC) by Combining AC and Titanium Dioxide (TIO₂) in a Photocatalytically Regenerative Activated Carbon

Authors: Hanane Belayachi, Sarra Bourahla, Amel Belayachi, Fadela Nemchi, Mostefa Belhakem

Abstract:

The most used techniques to remove pollutants from wastewater are adsorption onto activated carbon (AC) and oxidation using a photocatalyst slurry. The aim of this work is to eliminate such drawbacks by combining AC and titanium dioxide (TiO₂) in a photocatalytically Regenerative Activated Carbon. Anatase titania was deposited on powder-activated carbon made from grape seeds by the impregnation method, and then the composite photocatalyst was employed for the removal of reactive black 5, which is an anionic azo dye, from water. The AGS/TiO₂ was characterized by BET, MEB, RDX and optical absorption spectroscopy. The BET surface area and the pore structure of composite photocatalysts (AGS/TiO₂) and activated grape seeds (AGS) were evaluated from nitrogen adsorption data at 77 K in relation to process conditions. Our results indicate that the photocatalytic activity of AGS/TiO₂ was much higher than single-phase titania. The adsorption equilibrium of reactive black 5 from aqueous solutions on the examined materials was investigated. Langmuir, Freundlich, and Redlich–Petersen models were fitted to experimental equilibrium data, and their goodness of fit is compared. The degradation kinetics fitted well to the Langmuir-Hinselwood pseudo first order rate low. The photocatalytic activity of AGS/TiO₂ was much higher than virgin TiO₂. Chemical oxygen demand (COD) removal was measured at regular intervals to quantify the mineralization of the dye. Above 96% mineralization was observed. These results suggest that UV-irradiated TiO₂ immobilized on activated carbon may be considered an adequate process for the treatment of diluted colored textile wastewater.

Keywords: activated carbon, pollutant, catalysis, TiO₂

Procedia PDF Downloads 44
2042 New Formulation of FFS3 Layered Blown Films Containing Toughened Polypropylene and Plastomer with Superior Properties

Authors: S. Talebnezhad, S. Pourmahdian, D. Soudbar, M. Khosravani, J. Merasi

Abstract:

Adding toughened polypropylene and plastomer in FFS 3 layered blown film formulation resulted in superior dart impact and MD tear resistance along with acceptable tensile properties in TD and MD. The optimum loading of toughened polypropylene and plastomer in each layer depends on miscibility of polypropylene in polyethylene medium, mechanical properties, welding characteristics in bags top and bottoms and friction coefficient of film surfaces. Film property tests and efficiency of FFS machinery during processing in industrial scale showed that about 4% loading of plastomer and 16% of toughened polypropylene (reactor grade) in middle layer and loading of 0-1% plastomer and 5-19% of toughened polypropylene in other layers results optimum characteristics in the formulation based on 1-butene LLDPE grade with MFR of 0.9 and LDPE grade with MFI of 0.3. Both the plastomer and toughened polypropylene had the MFI of blow 1 and the TiO2 and processing aid masterbatches loading was 2%. The friction coefficient test results also represented the anti-block masterbatch could be omitted from formulation with adding toughened polypropylene due to partial miscibility of PP in PE which makes the surface of films somewhat bristly.

Keywords: FFS 3 layered blown film, toughened polypropylene, plastomer, dart impact, tear resistance

Procedia PDF Downloads 407
2041 Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract:

A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl3.6H2O and ZrCl4 as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al2O3 and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al2O3 and t-ZrO2 phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al2O3 occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al2O3/ZrO2 composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Procedia PDF Downloads 230