World Academy of Science, Engineering and Technology International Journal of Chemical and Materials Engineering Vol:11, No:02, 2017

Development of a Nano-Alumina-Zirconia Composite Catalyst as an Active Thin Film in Biodiesel Production

Authors: N. Marzban, J. K. Heydarzadeh M. Pourmohammadbagher, M. H. Hatami, A. Samia

Abstract: A nano-alumina-zirconia composite catalyst was synthesized by a simple aqueous sol-gel method using AlCl₃.6H₂O and ZrCl₄ as precursors. Thermal decomposition of the precursor and subsequent formation of γ-Al₂O₃ and t-Zr were investigated by thermal analysis. XRD analysis showed that γ-Al₂O₃ and t-ZrO₂phases were formed at 700 °C. FT-IR analysis also indicated that the phase transition to γ-Al₂O₃ occurred in corroboration with X-ray studies. TEM analysis of the calcined powder revealed that spherical particles were in the range of 8-12 nm. The nano-alumina-zirconia composite particles were mesoporous and uniformly distributed in their crystalline phase. In order to measure the catalytic activity, esterification reaction was carried out. Biodiesel, as a renewable fuel, was formed in a continuous packed column reactor. Free fatty acid (FFA) was esterified with ethanol in a heterogeneous catalytic reactor. It was found that the synthesized γ-Al₂O₃/ZrO₂ composite had the potential to be used as a heterogeneous base catalyst for biodiesel production processes.

Keywords: nano alumina-zirconia, composite catalyst, thin film, biodiesel

Conference Title: ICCEA 2017: International Conference on Chemical Engineering and Applications

Conference Location : Melbourne, Australia **Conference Dates :** February 02-03, 2017