Search results for: scope 3 emissions
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2602

Search results for: scope 3 emissions

562 Health Risk Assessment and Source Apportionment of Elemental Particulate Contents from a South Asian Future Megacity

Authors: Afifa Aslam, Muhammad Ibrahim, Abid Mahmood, Muhammad Usman Alvi, Fariha Jabeen, Umara Tabassum

Abstract:

Many factors cause air pollution in Pakistan, which poses a significant threat to human health. Diesel fuel and gasoline motor vehicles, as well as industrial companies, pollute the air in Pakistan's cities. The study's goal is to determine the level of air pollution in a Pakistani industrial city and to establish risk levels for the health of the population. We measured the intensity of air pollution by chemical characterization and examination of air samples collected at stationary remark sites. The PM10 levels observed at all sampling sites, including residential, commercial, high-traffic, and industrial areas were well above the limits imposed by Pakistan EPA, the United States EPA, and WHO. We assessed the health risk via chemical factors using a methodology approved for risk assessment. All Igeo index values greater than one were considered moderately contaminated or moderately to severely contaminated. Heavy metals have a substantial risk of acute adverse effects. In Faisalabad, Pakistan, there was an enormously high risk of chronic effects produced by a heavy metal acquaintance. Concerning specified toxic metals, intolerable levels of carcinogenic risks have been determined for the entire population. As a result, in most of the investigated areas of Faisalabad, the indices and hazard quotients for chronic and acute exposure exceeded the permissible level of 1.0. In the current study, re-suspended roadside mineral dust, anthropogenic exhaust emissions from traffic and industry, and industrial dust were identified as major emission sources of elemental particulate contents. Because of the unacceptable levels of risk in the research area, it is strongly suggested that a comprehensive study of the population's health status as a result of air pollution should be conducted for policies to be developed against these risks.

Keywords: elemental composition, particulate pollution, Igeo index, health risk assessment, hazard quotient

Procedia PDF Downloads 91
561 Investigation of Turbulent Flow in a Bubble Column Photobioreactor and Consequent Effects on Microalgae Cultivation Using Computational Fluid Dynamic Simulation

Authors: Geetanjali Yadav, Arpit Mishra, Parthsarathi Ghosh, Ramkrishna Sen

Abstract:

The world is facing problems of increasing global CO2 emissions, climate change and fuel crisis. Therefore, several renewable and sustainable energy alternatives should be investigated to replace non-renewable fuels in future. Algae presents itself a versatile feedstock for the production of variety of fuels (biodiesel, bioethanol, bio-hydrogen etc.) and high value compounds for food, fodder, cosmetics and pharmaceuticals. Microalgae are simple microorganisms that require water, light, CO2 and nutrients for growth by the process of photosynthesis and can grow in extreme environments, utilize waste gas (flue gas) and waste waters. Mixing, however, is a crucial parameter within the culture system for the uniform distribution of light, nutrients and gaseous exchange in addition to preventing settling/sedimentation, creation of dark zones etc. The overarching goal of the present study is to improve photobioreactor (PBR) design for enhancing dissolution of CO2 from ambient air (0.039%, v/v), pure CO2 and coal-fired flue gas (10 ± 2%) into microalgal PBRs. Computational fluid dynamics (CFD), a state-of-the-art technique has been used to solve partial differential equations with turbulence closure which represents the dynamics of fluid in a photobioreactor. In this paper, the hydrodynamic performance of the PBR has been characterized and compared with that of the conventional bubble column PBR using CFD. Parameters such as flow rate (Q), mean velocity (u), mean turbulent kinetic energy (TKE) were characterized for each experiment that was tested across different aeration schemes. The results showed that the modified PBR design had superior liquid circulation properties and gas-liquid transfer that resulted in creation of uniform environment inside PBR as compared to conventional bubble column PBR. The CFD technique has shown to be promising to successfully design and paves path for a future research in order to develop PBRs which can be commercially available for scale-up microalgal production.

Keywords: computational fluid dynamics, microalgae, bubble column photbioreactor, flue gas, simulation

Procedia PDF Downloads 232
560 Estimation of Small Hydropower Potential Using Remote Sensing and GIS Techniques in Pakistan

Authors: Malik Abid Hussain Khokhar, Muhammad Naveed Tahir, Muhammad Amin

Abstract:

Energy demand has been increased manifold due to increasing population, urban sprawl and rapid socio-economic improvements. Low water capacity in dams for continuation of hydrological power, land cover and land use are the key parameters which are creating problems for more energy production. Overall installed hydropower capacity of Pakistan is more than 35000 MW whereas Pakistan is producing up to 17000 MW and the requirement is more than 22000 that is resulting shortfall of 5000 - 7000 MW. Therefore, there is a dire need to develop small hydropower to fulfill the up-coming requirements. In this regards, excessive rainfall, snow nurtured fast flowing perennial tributaries and streams in northern mountain regions of Pakistan offer a gigantic scope of hydropower potential throughout the year. Rivers flowing in KP (Khyber Pakhtunkhwa) province, GB (Gilgit Baltistan) and AJK (Azad Jammu & Kashmir) possess sufficient water availability for rapid energy growth. In the backdrop of such scenario, small hydropower plants are believed very suitable measures for more green environment and power sustainable option for the development of such regions. Aim of this study is to estimate hydropower potential sites for small hydropower plants and stream distribution as per steam network available in the available basins in the study area. The proposed methodology will focus on features to meet the objectives i.e. site selection of maximum hydropower potential for hydroelectric generation using well emerging GIS tool SWAT as hydrological run-off model on the Neelum, Kunhar and the Dor Rivers’ basins. For validation of the results, NDWI will be computed to show water concentration in the study area while overlaying on geospatial enhanced DEM. This study will represent analysis of basins, watershed, stream links, and flow directions with slope elevation for hydropower potential to produce increasing demand of electricity by installing small hydropower stations. Later on, this study will be benefitted for other adjacent regions for further estimation of site selection for installation of such small power plants as well.

Keywords: energy, stream network, basins, SWAT, evapotranspiration

Procedia PDF Downloads 222
559 Zinc Sorption by Six Agricultural Soils Amended with Municipal Biosolids

Authors: Antoine Karam, Lotfi Khiari, Bruno Breton, Alfred Jaouich

Abstract:

Anthropogenic sources of zinc (Zn), including industrial emissions and effluents, Zn–rich fertilizer materials and pesticides containing Zn, can contribute to increasing the concentration of soluble Zn at levels toxic to plants in acid sandy soils. The application of municipal sewage sludge or biosolids (MBS) which contain metal immobilizing agents on coarse-textured soils could improve the metal sorption capacity of the low-CEC soils. The purpose of this experiment was to evaluate the sorption of Zn in surface samples (0-15 cm) of six Quebec (Canada) soils amended with MBS (pH 6.9) from Val d’Or (Quebec, Canada). Soil samples amended with increasing amounts (0 to 20%) of MBS were equilibrated with various amounts of Zn as ZnCl2 in 0.01 M CaCl2 for 48 hours at room temperature. Sorbed Zn was calculated from the difference between the initial and final Zn concentration in solution. Zn sorption data conformed to the linear form of Freundlich equation. The amount of sorbed Zn increased considerably with increasing MBS rate. Analysis of variance revealed a highly significant effect (p ≤ 0.001) of soil texture and MBS rate on the amount of sorbed Zn. The average values of the Zn-sorption capacity of MBS-amended coarse-textured soils were lower than those of MBS-amended fine textured soils. The two sandy soils (86-99% sand) amended with MBS retained 2- to 5-fold Zn than those without MBS (control). Significant Pearson correlation coefficients between the Zn sorption isotherm parameter, i.e. the Freundlich sorption isotherm (KF), and commonly measured physical and chemical entities were obtained. Among all the soil properties measured, soil pH gave the best significant correlation coefficients (p ≤ 0.001) for soils receiving 0, 5 and 10% MBS. Furthermore, KF values were positively correlated with soil clay content, exchangeable basic cations (Ca, Mg or K), CEC and clay content to CEC ratio. From these results, it can be concluded that (i) municipal biosolids provide sorption sites that have a strong affinity for Zn, (ii) both soil texture, especially clay content, and soil pH are the main factors controlling anthropogenic Zn sorption in the municipal biosolids-amended soils, and (iii) the effect of municipal biosolids on Zn sorption will be more pronounced for a sandy soil than for a clay soil.

Keywords: metal, recycling, sewage sludge, trace element

Procedia PDF Downloads 284
558 The Application of Sensory Integration Techniques in Science Teaching Students with Autism

Authors: Joanna Estkowska

Abstract:

The Sensory Integration Method is aimed primarily at children with learning disabilities. It can also be used as a complementary method in treatment of children with cerebral palsy, autistic, mentally handicapped, blind and deaf. Autism is holistic development disorder that manifests itself in the specific functioning of a child. The most characteristic are: disorders in communication, difficulties in social relations, rigid patterns of behavior and impairment in sensory processing. In addition to these disorders may occur abnormal intellectual development, attention deficit disorders, perceptual disorders and others. This study was focused on the application sensory integration techniques in science education of autistic students. The lack of proper sensory integration causes problems with complicated processes such as motor coordination, movement planning, visual or auditory perception, speech, writing, reading or counting. Good functioning and cooperation of proprioceptive, tactile and vestibular sense affect the child’s mastery of skills that require coordination of both sides of the body and synchronization of the cerebral hemispheres. These include, for example, all sports activities, precise manual skills such writing, as well as, reading and counting skills. All this takes place in stages. Achieving skills from the first stage determines the development of fitness from the next level. Any deficit in the scope of the first three stages can affect the development of new skills. This ultimately reflects on the achievements at school and in further professional and personal life. After careful analysis symptoms from the emotional and social spheres appear to be secondary to deficits of sensory integration. During our research, the students gained knowledge and skills in the classroom of experience by learning biology, chemistry and physics with application sensory integration techniques. Sensory integration therapy aims to teach the child an adequate response to stimuli coming to him from both the outside world and the body. Thanks to properly selected exercises, a child can improve perception and interpretation skills, motor skills, coordination of movements, attention and concentration or self-awareness, as well as social and emotional functioning.

Keywords: autism spectrum disorder, science education, sensory integration, special educational needs

Procedia PDF Downloads 186
557 The Impact of Artificial Intelligence on Digital Factory

Authors: Mona Awad Wanis Gad

Abstract:

The method of factory making plans has changed loads, in particular, whilst it's miles approximately making plans the factory building itself. Factory making plans have the venture of designing merchandise, plants, tactics, organization, regions, and the construction of a factory. Ordinary restructuring is turning into greater essential for you to preserve the competitiveness of a manufacturing unit. Regulations in new regions, shorter lifestyle cycles of product and manufacturing era, in addition to a VUCA global (Volatility, Uncertainty, Complexity and Ambiguity) cause extra common restructuring measures inside a factory. A digital factory model is the planning foundation for rebuilding measures and turns into a critical device. Furthermore, digital building fashions are increasingly being utilized in factories to help facility management and manufacturing processes. First, exclusive styles of digital manufacturing unit fashions are investigated, and their residences and usabilities to be used instances are analyzed. Within the scope of research are point cloud fashions, building statistics fashions, photogrammetry fashions, and those enriched with sensor information are tested. It investigated which digital fashions permit a simple integration of sensor facts and in which the variations are. In the end, viable application areas of virtual manufacturing unit models are determined by a survey, and the respective digital manufacturing facility fashions are assigned to the application areas. Ultimately, an application case from upkeep is selected and implemented with the assistance of the best virtual factory version. It is shown how a completely digitalized preservation process can be supported by a digital manufacturing facility version by offering facts. Among different functions, the virtual manufacturing facility version is used for indoor navigation, facts provision, and display of sensor statistics. In summary, the paper suggests a structuring of virtual factory fashions that concentrates on the geometric representation of a manufacturing facility building and its technical facilities. A practical application case is proven and implemented. For that reason, the systematic selection of virtual manufacturing facility models with the corresponding utility cases is evaluated.

Keywords: augmented reality, digital factory model, factory planning, restructuring digital factory model, photogrammetry, factory planning, restructuring building information modeling, digital factory model, factory planning, maintenance

Procedia PDF Downloads 40
556 Place-Based Practice: A New Zealand Rural Nursing Study

Authors: Jean Ross

Abstract:

Rural nursing is not an identified professional identity in the UK, unlike the USA, Canada, and Australia which recognizes rural nursing as a specialty scope of practice. In New Zealand rural nursing is an underrepresented aspect of nursing practice, is misunderstood and does not fit easily within the wider nursing profession and policies governing practice. This study situated within the New Zealand context adds to the international studies’ aligned with rural nursing practice. The study addresses a gap in the literature by striving to identify and strengthen the awareness of and increase rural nurses’ understanding and articulation of their changing and adapting identity and furthermore an opportunity to appreciate their contribution to the delivery of rural health care. In addition, this study adds to the growing global rural nursing knowledge and theoretical base. This research is a continuation of the author’s academic involvement and ongoing relationships with the rural nursing sector, national policy analysts and health care planners since the 1990s. These relationships have led to awareness, that despite rural nurses’ efforts to explain the particular nuances which make up their practice, there has been little recognition by profession to establish rural nursing as a specialty. The research explored why nurses’ who practiced in the rural Otago region of New Zealand, between the 1990s and early 2000s moved away from the traditional identity as a district, practice or public health nurse and looked towards a more appropriate identity which reflected their emerging practice. This qualitative research situated within the interpretive paradigm embeds this retrospective study within the discipline of nursing and engages with the concepts of place and governmentality. National key informant and Otago regional rural nurse interviews generated data and were analyzed using thematic analysis. Stemming from the analyses, an analytical diagrammatic matrix was developed demonstrating rural nursing as a ‘place–based practice’ governed both from within and beyond location presenting how the nurse aligns the self in the rural community as a meaningful provider of health care. Promoting this matrix may encourage a focal discussion point within the international spectrum of nursing and likewise between rural and non-rural nurses which it is hoped will generate further debate in relation to the different nuances aligned with rural nursing practice. Further, insights from this paper may capture key aspects and issues related to identity formation in respect to rural nurses, from the UK, New Zealand, Canada, USA, and Australia.

Keywords: matrix, place, nursing, rural

Procedia PDF Downloads 142
555 Displaced People in International Marriage Law: Choice of Law and the 1951 Convention Relating to the Status of Refugees

Authors: Rorick Daniel Tovar Galvan

Abstract:

The 1951 Convention relating to the status of refugees contains a conflict of law rule for the determination of the applicable law to marriage. The wording of this provision leaves much to be desired as it uses the domicile and the residence of the spouses as single main and subsidiary connecting factors. In cases where couples live in different countries, the law applicable to the case is unclear. The same problem arises when refugees are married to individuals outside of the convention’s scope of application. Different interpretations of this legal provision have arisen to solve this problem. Courts in a number of European countries apply the so-called modification doctrine: states should apply their domestic private international rules in all cases involving refugees. Courts shall, however, replace the national connecting factor by the domicile or residence in situations where nationality is used to determine the applicable law. The internal conflict of law rule will then be slightly modified in order to be applied according to the convention. However, this approach excludes these people from using their national law if they so desire. As nationality is, in all cases, replaced by domicile or residence as connecting factor, refugees are automatically deprived of the possibility to choose this law in jurisdictions that include the party autonomy in international marriage law. This contribution aims to shed light on the international legal framework applicable to marriages celebrated by refugees and the unnecessary restrictions to the exercise of the party autonomy these individuals are subjected to. The interest is motivated by the increasing number of displaced people, the significant number of states party to the Refugee Convention – approximately 150 – and the fact that more and more countries allow choice of law agreements in marriage law. Based on a study of German, Spanish and Swiss case law, the current practices in Europe, as well as some incoherencies derived from the current interpretation of the convention, will be discussed. The main objective is showing that there is neither an economic nor a legal basis to deny refugees the right to choose the law of their country of origin in those jurisdictions providing for this possibility to other foreigners. Quite the contrary, after analyzing other provisions contained in the conventions, this restriction would mean a contravention of other obligations included in the text.

Keywords: choice of law, conflict of laws, international marriage law, refugees

Procedia PDF Downloads 146
554 Applying Integrated QFD-MCDM Approach to Strengthen Supply Chain Agility for Mitigating Sustainable Risks

Authors: Enes Caliskan, Hatice Camgoz Akdag

Abstract:

There is no doubt that humanity needs to realize the sustainability problems in the world and take serious action regarding that. All members of the United Nations adopted the 2030 Agenda for Sustainable Development, the most comprehensive study on sustainability internationally, in 2015. The summary of the study is 17 sustainable development goals. It covers everything about sustainability, such as environment, society and governance. The use of Information and Communication Technology (ICT), such as the Internet, mobile phones, and satellites, is essential for tackling the main issues facing sustainable development. Hence, the contributions of 3 major ICT companies to the sustainable development goals are assessed in this study. Quality Function Deployment (QFD) is utilized as a methodology for this study. Since QFD is an excellent instrument for comparing businesses on relevant subjects, a House of Quality must be established to complete the QFD application. In order to develop a House of Quality, the demanded qualities (voice of the customer) and quality characteristics (technical requirements) must first be determined. UN SDGs are used as demanded qualities. Quality characteristics are derived from annual sustainability and corporate social responsibility reports of ICT companies. The companies' efforts, as indicated by the QFD results, are concentrated on the use of recycled raw materials and recycling, reducing GHG emissions through energy saving and improved connectivity, decarbonizing the value chain, protecting the environment and water resources by collaborating with businesses that have completed CDP water assessments and paying attention to reducing water consumption, ethical business practices, and reducing inequality. The evaluations of the three businesses are found to be very similar when they are compared. The small differences between the companies are usually about the region they serve. Efforts made by the companies mostly concentrate on responsible consumption and production, life below water, climate action, and sustainable cities and community goals. These efforts include improving connectivity in needed areas for providing access to information, education and healthcare.

Keywords: multi-criteria decision-making, sustainable supply chain risk, supply chain agility, quality function deployment, Sustainable development goals

Procedia PDF Downloads 51
553 On Consolidated Predictive Model of the Natural History of Breast Cancer Considering Primary Tumor and Secondary Distant Metastases Growth in Patients with Lymph Nodes Metastases

Authors: Ella Tyuryumina, Alexey Neznanov

Abstract:

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. We propose Consolidated mathematical growth model of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases (CoM-III) as a new research tool. We are interested in: 1) modelling the whole natural history of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; 2) developing adequate and precise CoM-III which reflects relations between primary tumor and secondary distant metastases; 3) analyzing the CoM-III scope of application; 4) implementing the model as a software tool. Firstly, the CoM-III includes exponential tumor growth model as a system of determinate nonlinear and linear equations. Secondly, mathematical model corresponds to TNM classification. It allows to calculate different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases: 1) ‘non-visible period’ for primary tumor; 2) ‘non-visible period’ for secondary distant metastases growth in patients with lymph nodes metastases; 3) ‘visible period’ for secondary distant metastases growth in patients with lymph nodes metastases. The new predictive tool: 1) is a solid foundation to develop future studies of breast cancer models; 2) does not require any expensive diagnostic tests; 3) is the first predictor which makes forecast using only current patient data, the others are based on the additional statistical data. Thus, the CoM-III model and predictive software: a) detect different growth periods of primary tumor and secondary distant metastases growth in patients with lymph nodes metastases; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes metastases; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimization of diagnostic tests. The following are calculated by CoM-III: the number of doublings for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases; tumor volume doubling time (days) for ‘non-visible’ and ‘visible’ growth period of secondary distant metastases. The CoM-III enables, for the first time, to predict the whole natural history of primary tumor and secondary distant metastases growth on each stage (pT1, pT2, pT3, pT4) relying only on primary tumor sizes. Summarizing: a) CoM-III describes correctly primary tumor and secondary distant metastases growth of IA, IIA, IIB, IIIB (T1-4N1-3M0) stages in patients with lymph nodes metastases (N1-3); b) facilitates the understanding of the appearance period and inception of secondary distant metastases.

Keywords: breast cancer, exponential growth model, mathematical model, primary tumor, secondary metastases, survival

Procedia PDF Downloads 302
552 Use of Pragmatic Cues for Word Learning in Bilingual and Monolingual Children

Authors: Isabelle Lorge, Napoleon Katsos

Abstract:

BACKGROUND: Children growing up in a multilingual environment face challenges related to the need to monitor the speaker’s linguistic abilities, more frequent communication failures, and having to acquire a large number of words in a limited amount of time compared to monolinguals. As a result, bilingual learners may develop different word learning strategies, rely more on some strategies than others, and engage cognitive resources such as theory of mind and attention skills in different ways. HYPOTHESIS: The goal of our study is to investigate whether multilingual exposure leads to improvements in the ability to use pragmatic inference for word learning, i.e., to use speaker cues to derive their referring intentions, often by overcoming lower level salience effects. The speaker cues we identified as relevant are (a) use of a modifier with or without stress (‘the WET dax’ prompting the choice of the referent which has a dry counterpart), (b) referent extension (‘this is a kitten with a fep’ prompting the choice of the unique rather than shared object), (c) referent novelty (choosing novel action rather than novel object which has been manipulated already), (d) teacher versus random sampling (assuming the choice of specific examples for a novel word to be relevant to the extension of that new category), and finally (e) emotional affect (‘look at the figoo’ uttered in a sad or happy voice) . METHOD: To this end, we implemented on a touchscreen computer a task corresponding to each of the cues above, where the child had to pick the referent of a novel word. These word learning tasks (a), (b), (c), (d) and (e) were adapted from previous word learning studies. 113 children have been tested (54 reception and 59 year 1, ranging from 4 to 6 years old) in a London primary school. Bilingual or monolingual status and other relevant information (age of onset, proficiency, literacy for bilinguals) is ascertained through language questionnaires from parents (34 out of 113 received to date). While we do not yet have the data that will allow us to test for effect of bilingualism, we can already see that performances are far from approaching ceiling in any of the tasks. In some cases the children’s performances radically differ from adults’ in a qualitative way, which means that there is scope for quantitative and qualitative effects to arise between language groups. The findings should contribute to explain the puzzling speed and efficiency that bilinguals demonstrate in acquiring competence in two languages.

Keywords: bilingualism, pragmatics, word learning, attention

Procedia PDF Downloads 140
551 Improving Climate Awareness and the Knowledge Related to Climate Change's Health Impacts on Medical Schools

Authors: Abram Zoltan

Abstract:

Over the past hundred years, human activities, particularly the burning of fossil fuels, have released enough carbon dioxide and other greenhouse gases to dissipate additional heat into the lower atmosphere and affect the global climate. Climate change affects many social and environmental determinants of health: clean air, safe drinking water, and adequate food. Our aim is to draw attention to the effects of climate change on the health and health care system. Improving climate awareness and the knowledge related to climate change's health impacts are essential among medical students and practicing medical doctors. Therefore, in their everyday practice, they also need some assistance and up-to-date knowledge of how climate change can endanger human health and deal with these novel health problems. Our activity, based on the cooperation of more universities, aims to develop new curriculum outlines and learning materials on climate change's health impacts for medical schools. Special attention is intended to pay to the possible preventative measures against these impacts. For all of this, the project plans to create new curriculum outlines and learning materials for medical students, elaborate methodological guidelines and create training materials for medical doctors' postgraduate learning programs. The target groups of the project are medical students, educational staff of medical schools and universities, practicing medical doctors with special attention to the general practitioners and family doctors. We had searched various surveys, domestic and international studies about the effects of climate change and statistical estimation of the possible consequences. The health effects of climate change can be measured only approximately by considering only a fraction of the potential health effects and assuming continued economic growth and health progress. We can estimate that climate change is expected to cause about 250,000 more deaths. We conclude that climate change is one of the most serious problems of the 21st century, affecting all populations. In the short- to medium-term, the health effects of climate change will be determined mainly by human vulnerability. In the longer term, the effects depend increasingly on the extent to which transformational action is taken now to reduce emissions. We can contribute to reducing environmental pollution by raising awareness and by educating the population.

Keywords: climate change, health impacts, medical students, education

Procedia PDF Downloads 127
550 Role of Tourism and Hospitality Industry in economic Development

Authors: S. M. Abdus Sattar

Abstract:

Introduction: The objectives of the study are to assess different aspects of the tourism and hospitality industry, analyze its contributions to the Gross Domestic Product of Bangladesh, identify the importance of the tourism and hospitality industry, explore future prospects in the sectors, identify challenges and provide recommendations for the development of these industries. The study explores the significance of the tourism and hospitality industry in economic growth and defines its role. Tourism is one of the fastest-growing industries in the world today. Methodology: The study adopts statistical methods and utilizes both quantitative and qualitative research techniques. Data is collected through surveys, interviews, visitor registration, online platforms and analysis of various tourism-related records. The study focuses on marketing, management, attractions and services in the tourism and hospitality sectors. Result: The tourism and hospitality industry offers great opportunities for emerging economies and developing countries. The industry provides job creation, infrastructure development, cultural assets and environmental conservation, essential skills development, revenue generated, foreign exchange earned, economic growth and reduced poverty and inequality. Discussion: The study focuses on improving infrastructure and service quality in the tourism and hospitality industry to attract tourists. The industry significantly contributes to the Gross Domestic Product of Bangladesh. It highlights how the tourism and hospitality sectors can drive economic development, reduce poverty and promote cultural and environmental conservation. It also explores the challenges and future prospects in the tourism and hospitality sectors. Conclusion and Future Scope: The opportunities for tourism of Bangladesh are agricultural tourism, religious tourism, sports tourism, eco-tourism, educational tourism, rural tourism and cultural tourism. However, there is a lack of research and plans to explore the development of the industry. The tourism and hospitality industry offers numerous opportunities for growth and development. There are job opportunities for travel consultants, tour operators, event planners, hotel managers, travel writers, tourism development officers and airline executives in the future. The study recommends to development of tourism infrastructure, maintaining tourist destinations, railway stations, airports, rest houses, hotels and improving the quality of services.

Keywords: tourism, hospitality, employment, economic, development

Procedia PDF Downloads 30
549 Probabilistic Life Cycle Assessment of the Nano Membrane Toilet

Authors: A. Anastasopoulou, A. Kolios, T. Somorin, A. Sowale, Y. Jiang, B. Fidalgo, A. Parker, L. Williams, M. Collins, E. J. McAdam, S. Tyrrel

Abstract:

Developing countries are nowadays confronted with great challenges related to domestic sanitation services in view of the imminent water scarcity. Contemporary sanitation technologies established in these countries are likely to pose health risks unless waste management standards are followed properly. This paper provides a solution to sustainable sanitation with the development of an innovative toilet system, called Nano Membrane Toilet (NMT), which has been developed by Cranfield University and sponsored by the Bill & Melinda Gates Foundation. The particular technology converts human faeces into energy through gasification and provides treated wastewater from urine through membrane filtration. In order to evaluate the environmental profile of the NMT system, a deterministic life cycle assessment (LCA) has been conducted in SimaPro software employing the Ecoinvent v3.3 database. The particular study has determined the most contributory factors to the environmental footprint of the NMT system. However, as sensitivity analysis has identified certain critical operating parameters for the robustness of the LCA results, adopting a stochastic approach to the Life Cycle Inventory (LCI) will comprehensively capture the input data uncertainty and enhance the credibility of the LCA outcome. For that purpose, Monte Carlo simulations, in combination with an artificial neural network (ANN) model, have been conducted for the input parameters of raw material, produced electricity, NOX emissions, amount of ash and transportation of fertilizer. The given analysis has provided the distribution and the confidence intervals of the selected impact categories and, in turn, more credible conclusions are drawn on the respective LCIA (Life Cycle Impact Assessment) profile of NMT system. Last but not least, the specific study will also yield essential insights into the methodological framework that can be adopted in the environmental impact assessment of other complex engineering systems subject to a high level of input data uncertainty.

Keywords: sanitation systems, nano-membrane toilet, lca, stochastic uncertainty analysis, Monte Carlo simulations, artificial neural network

Procedia PDF Downloads 226
548 Impact of Civil Engineering and Economic Growth in the Sustainability of the Environment: Case of Albania

Authors: Rigers Dodaj

Abstract:

Nowadays, the environment is a critical goal for civil engineers, human activity, construction projects, economic growth, and whole national development. Regarding the development of Albania's economy, people's living standards are increasing, and the requirements for the living environment are also increasing. Under these circumstances, environmental protection and sustainability this is the critical issue. The rising industrialization, urbanization, and energy demand affect the environment by emission of carbon dioxide gas (CO2), a significant parameter known to impact air pollution directly. Consequently, many governments and international organizations conducted policies and regulations to address environmental degradation in the pursuit of economic development, for instance in Albania, the CO2 emission calculated in metric tons per capita has increased by 23% in the last 20 years. This paper analyzes the importance of civil engineering and economic growth in the sustainability of the environment focusing on CO2 emission. The analyzed data are time series 2001 - 2020 (with annual frequency), based on official publications of the World Bank. The statistical approach with vector error correction model and time series forecasting model are used to perform the parameter’s estimations and long-run equilibrium. The research in this paper adds a new perspective to the evaluation of a sustainable environment in the context of carbon emission reduction. Also, it provides reference and technical support for the government toward green and sustainable environmental policies. In the context of low-carbon development, effectively improving carbon emission efficiency is an inevitable requirement for achieving sustainable economic and environmental protection. Also, the study reveals that civil engineering development projects impact greatly the environment in the long run, especially in areas of flooding, noise pollution, water pollution, erosion, ecological disorder, natural hazards, etc. The potential for reducing industrial carbon emissions in recent years indicates that reduction is becoming more difficult, it needs another economic growth policy and more civil engineering development, by improving the level of industrialization and promoting technological innovation in industrial low-carbonization.

Keywords: CO₂ emission, civil engineering, economic growth, environmental sustainability

Procedia PDF Downloads 86
547 Assessment of Climate Change Impacts on the Hydrology of Upper Guder Catchment, Upper Blue Nile

Authors: Fikru Fentaw Abera

Abstract:

Climate changes alter regional hydrologic conditions and results in a variety of impacts on water resource systems. Such hydrologic changes will affect almost every aspect of human well-being. The goal of this paper is to assess the impact of climate change on the hydrology of Upper Guder catchment located in northwest of Ethiopia. The GCM derived scenarios (HadCM3 A2a & B2a SRES emission scenarios) experiments were used for the climate projection. The statistical downscaling model (SDSM) was used to generate future possible local meteorological variables in the study area. The down-scaled data were then used as input to the soil and water assessment tool (SWAT) model to simulate the corresponding future stream flow regime in Upper Guder catchment of the Abay River Basin. A semi distributed hydrological model, SWAT was developed and Generalized Likelihood Uncertainty Estimation (GLUE) was utilized for uncertainty analysis. GLUE is linked with SWAT in the Calibration and Uncertainty Program known as SWAT-CUP. Three benchmark periods simulated for this study were 2020s, 2050s and 2080s. The time series generated by GCM of HadCM3 A2a and B2a and Statistical Downscaling Model (SDSM) indicate a significant increasing trend in maximum and minimum temperature values and a slight increasing trend in precipitation for both A2a and B2a emission scenarios in both Gedo and Tikur Inch stations for all three bench mark periods. The hydrologic impact analysis made with the downscaled temperature and precipitation time series as input to the hydrological model SWAT suggested for both A2a and B2a emission scenarios. The model output shows that there may be an annual increase in flow volume up to 35% for both emission scenarios in three benchmark periods in the future. All seasons show an increase in flow volume for both A2a and B2a emission scenarios for all time horizons. Potential evapotranspiration in the catchment also will increase annually on average 3-15% for the 2020s and 7-25% for the 2050s and 2080s for both A2a and B2a emissions scenarios.

Keywords: climate change, Guder sub-basin, GCM, SDSM, SWAT, SWAT-CUP, GLUE

Procedia PDF Downloads 365
546 Feasibility Study for Implementation of Geothermal Energy Technology as a Means of Thermal Energy Supply for Medium Size Community Building

Authors: Sreto Boljevic

Abstract:

Heating systems based on geothermal energy sources are becoming increasingly popular among commercial/community buildings as management of these buildings looks for a more efficient and environmentally friendly way to manage the heating system. The thermal energy supply of most European commercial/community buildings at present is provided mainly by energy extracted from natural gas. In order to reduce greenhouse gas emissions and achieve climate change targets set by the EU, restructuring in the area of thermal energy supply is essential. At present, heating and cooling account for approx... 50% of the EU primary energy supply. Due to its physical characteristics, thermal energy cannot be distributed or exchange over long distances, contrary to electricity and gas energy carriers. Compared to electricity and the gas sectors, heating remains a generally black box, with large unknowns to a researcher and policymaker. Ain literature number of documents address policies for promoting renewable energy technology to facilitate heating for residential/community/commercial buildings and assess the balance between heat supply and heat savings. Ground source heat pump (GSHP) technology has been an extremely attractive alternative to traditional electric and fossil fuel space heating equipment used to supply thermal energy for residential/community/commercial buildings. The main purpose of this paper is to create an algorithm using an analytical approach that could enable a feasibility study regarding the implementation of GSHP technology in community building with existing fossil-fueled heating systems. The main results obtained by the algorithm will enable building management and GSHP system designers to define the optimal size of the system regarding technical, environmental, and economic impacts of the system implementation, including payback period time. In addition, an algorithm is created to be utilized for a feasibility study for many different types of buildings. The algorithm is tested on a building that was built in 1930 and is used as a church located in Cork city. The heating of the building is currently provided by a 105kW gas boiler.

Keywords: GSHP, greenhouse gas emission, low-enthalpy, renewable energy

Procedia PDF Downloads 221
545 The Intersection of Autistic and Trans* Identity: Qualitative Engaged Study in Eastern Europian Activist Groups

Authors: Hana Drštičková

Abstract:

The paper describes the findings of a qualitative, engaged research focused on the intersection between transgender and autistic identity in a politically engaged setting of activist (trans, queer, crip, disability justice or any combination thereof) groups. It explores the relationship that autistic and trans people have towards activism and how do they feel their identity(ies) impact the kind of political action they take. Geographically, the research terrain is located mainly in Czechia; however, there are important overlaps with other Eastern European countries. The basis of the research’s approach is built on the interconnected principles of the feminist theory of intersectionality, queer/trans studies, disability studies and the concept of the Neurodiversity Paradigm. This paper argues that the social phenomenon of autism and transness is formed differently in Czechia/Eastern Europe and, therefore, deserves additional attention. Nevertheless, it points out that, even though the socio-political context is different, the fact that these identities have a radical political potential to disrupt normative structures in society remains the same. The measure of oppression these structures generate, and the near absence of any public discourse beyond the pathological paradigm in the chosen terrain contributes to the emergence of mainly queer and trans-activist, and to a lesser extent crip, disability justice or mad activist groups, that attract trans and autistic membership. The subsections of the research focus on the topics of the mutual influence of both identities in flux within individual participants, the perceived (dis)connection of networks of oppression or, conversely, support and identification with the community or communities, and the question of how the trans* and autistic members feel their presence affects the activity, internal dynamics, thematic scope and general values of the activist groups they participate in. The research methodology includes participant observation and active participation in groups where the researcher acts as a partial insider, semi-structured in-depth interviews and a critical participatory methodology. Also included is the reflection of not only the combination of researcher and insider roles but also the combination of research and activist intent.

Keywords: activism, autism, queer, neurodiversity, neuroqueer, transgender

Procedia PDF Downloads 77
544 In the Valley of the Shadow of Death: Gossip, God, and Scapegoating in Susannah, an American Opera by Carlisle Floyd

Authors: Shirl H. Terrell

Abstract:

In the telling of mythologies, stories of cultural and religious histories, the creative arts provide an archetypal lens through which the personal and collective unconscious are viewed, thus revealing mysteries of the unknown psyche. To that end, the author of this paper, using the hermeneutic approach, proves that Carlisle Floyd’s (1955) English language opera Susannah illuminates humanity’s instinctual nature and behaviors through music, libretto, and drama. While impressive musical works such as Wagner’s Ring Cycle and Webber’s Phantom of the Opera have received extensive Jungian analyses, critics and scholars often ignore lesser esteemed works, such as Susannah, notwithstanding the fact that they have been consistently performed on the theater circuit. Such pieces, when given notice, allow viewers to grasp the soul-making depth and timeless quality of productions which may otherwise go unrecognized as culturally or psychologically significant. Although Susannah has sometimes been described as unsophisticated and simple in scope, the author demonstrates why Floyd’s 'little' opera, set in New Hope Valley, Appalachia, a cultural region in the Eastern United States known for its prevailing myths and distortions of isolation, temperament, and the judgmentally conservative behavior of its inhabitants, belongs to opera’s hallmark works. Its approach to powerful underlying archetypal themes, which give rise to the poignant and haunting depictions of the darker and destructive side of the human soul, the Shadow, provides crucial significance to the work. The Shadow’s manifestation in the form of the scapegoating complex is central to the plot of Susannah; the church’s meting out of rules, judgment, and reparation for sins point to the foreboding aspects of human behavior that evoke their intrinsic nature. The scapegoating complex is highlighted in an eight-step process gleaned from the works of Kenneth Burke and Rene Girard. In summary, through depth psychological terms and mythological motifs, the author provides an insightful approach to perceiving instinctual behaviors as they play out in an American opera that has been staged over eight-hundred times, yet, unfortunately, remains in the shadows. Susannah’s timelessness is now.

Keywords: archetypes, mythology, opera, scapegoating, Shadow, Susannah

Procedia PDF Downloads 150
543 Insight into Enhancement of CO2 Capture by Clay Minerals

Authors: Mardin Abdalqadir, Paul Adzakro, Tannaz Pak, Sina Rezaei Gomari

Abstract:

Climate change and global warming recently became significant concerns due to the massive emissions of greenhouse gases into the atmosphere, predominantly CO2 gases. Therefore, it is necessary to find sustainable and inexpensive methods to capture the greenhouse gasses and protect the environment for live species. The application of naturally available and cheap adsorbents of carbon such as clay minerals became a great interest. However, the minerals prone to low storage capacity despite their high affinity to adsorb carbon. This paper aims to explore ways to improve the pore volume and surface area of two selected clay minerals, ‘montmorillonite and kaolinite’ by acid treatment to overcome their low storage capacity. Montmorillonite and kaolinite samples were treated with different sulfuric acid concentrations (0.5, 1.2 and 2.5 M) at 40 °C for 8 hours to achieve the above aim. The grain size distribution and morphology of clay minerals before and after acid treatment were explored with Scanning Electron Microscope to evaluate surface area improvement. The ImageJ software was used to find the porosity and pore volume of treated and untreated clay samples. The structure of the clay minerals was also analyzed using an X-ray Diffraction machine. The results showed that the pore volume and surface area were increased substantially through acid treatment, which speeded up the rate of carbon dioxide adsorption. XRD pattern of kaolinite did not change after sulfuric acid treatment, which indicates that acid treatment would not affect the structure of kaolinite. It was also discovered that kaolinite had a higher pore volume and porosity than montmorillonite before and after acid treatment. For example, the pore volume of untreated kaolinite was equal to 30.498 um3 with a porosity of 23.49%. Raising the concentration of acid from 0.5 M to 2.5 M in 8 hours’ time reaction led to increased pore volume from 30.498 um3 to 34.73 um3. The pore volume of raw montmorillonite was equal to 15.610 um3 with a porosity of 12.7%. When the acid concentration was raised from 0.5 M to 2.5 M for the same reaction time, pore volume also increased from 15.610 um3 to 20.538 um3. However, montmorillonite had a higher specific surface area than kaolinite. This study concludes that clay minerals are inexpensive and available material sources to model the realistic conditions and apply the results of carbon capture to prevent global warming, which is one of the most critical and urgent problems in the world.

Keywords: acid treatment, kaolinite, montmorillonite, pore volume, porosity, surface area

Procedia PDF Downloads 170
542 Monitoring Large-Coverage Forest Canopy Height by Integrating LiDAR and Sentinel-2 Images

Authors: Xiaobo Liu, Rakesh Mishra, Yun Zhang

Abstract:

Continuous monitoring of forest canopy height with large coverage is essential for obtaining forest carbon stocks and emissions, quantifying biomass estimation, analyzing vegetation coverage, and determining biodiversity. LiDAR can be used to collect accurate woody vegetation structure such as canopy height. However, LiDAR’s coverage is usually limited because of its high cost and limited maneuverability, which constrains its use for dynamic and large area forest canopy monitoring. On the other hand, optical satellite images, like Sentinel-2, have the ability to cover large forest areas with a high repeat rate, but they do not have height information. Hence, exploring the solution of integrating LiDAR data and Sentinel-2 images to enlarge the coverage of forest canopy height prediction and increase the prediction repeat rate has been an active research topic in the environmental remote sensing community. In this study, we explore the potential of training a Random Forest Regression (RFR) model and a Convolutional Neural Network (CNN) model, respectively, to develop two predictive models for predicting and validating the forest canopy height of the Acadia Forest in New Brunswick, Canada, with a 10m ground sampling distance (GSD), for the year 2018 and 2021. Two 10m airborne LiDAR-derived canopy height models, one for 2018 and one for 2021, are used as ground truth to train and validate the RFR and CNN predictive models. To evaluate the prediction performance of the trained RFR and CNN models, two new predicted canopy height maps (CHMs), one for 2018 and one for 2021, are generated using the trained RFR and CNN models and 10m Sentinel-2 images of 2018 and 2021, respectively. The two 10m predicted CHMs from Sentinel-2 images are then compared with the two 10m airborne LiDAR-derived canopy height models for accuracy assessment. The validation results show that the mean absolute error (MAE) for year 2018 of the RFR model is 2.93m, CNN model is 1.71m; while the MAE for year 2021 of the RFR model is 3.35m, and the CNN model is 3.78m. These demonstrate the feasibility of using the RFR and CNN models developed in this research for predicting large-coverage forest canopy height at 10m spatial resolution and a high revisit rate.

Keywords: remote sensing, forest canopy height, LiDAR, Sentinel-2, artificial intelligence, random forest regression, convolutional neural network

Procedia PDF Downloads 95
541 Permeable Reactive Pavement for Controlling the Transport of Benzene, Toluene, Ethyl-Benzene, and Xylene (BTEX) Contaminants

Authors: Shengyi Huang, Chenju Liang

Abstract:

Volatile organic compounds such as benzene, toluene, ethyl-benzene, and xylene (BTEX) are common contaminants in environment, which could come from asphalt concrete or exhaust emissions of vehicles. The BTEX may invade to the subsurface environment via wet and dry atmospheric depositions. If there aren’t available ways for controlling contaminants’ fate and transport, they would extensively harm natural environment. In the 1st phase of this study, various adsorbents were screened for a suitable one to be an additive in the porous asphalt mixture. In the 2nd phase, addition of the selected adsorbent was incorporated with the design of porous asphalt concrete (PAC) to produce the permeable reactive pavement (PRP), which was subsequently tested for the potential of adsorbing aqueous BTEX as compared to the PAC, in the 3rd phase. The PRP was prepared according to the following steps: firstly, the suitable adsorbent was chosen based on the analytical results of specific surface area analysis, thermal-gravimetric analysis, adsorption kinetics and isotherms, and thermal dynamics analysis; secondly, the materials of coarse aggregate, fine aggregate, filler, asphalt, and fiber were tested in order to meet regulated specifications (e.g., water adsorption, soundness, viscosity etc.) for preparing the PRP; thirdly, the amount of adsorbent additive was determined in the PRP; fourthly, the prepared PAC and PRP were examined for their physical properties (e.g., abrasion loss, drain-down loss, Marshall stability, Marshall flow, dynamic stability etc.). As a result of comparison between PRP and PAC, the PRP showed better physical performance than the traditional PAC. At last, the Marshall Specimen column tests were conducted to explore the adsorption capacities of PAC and PRPs. The BTEX adsorption capacities of PRPs are higher than those obtained from traditional PAC. In summary, PRPs showed superior physical performance and adsorption capacities, which exhibit the potential of PRP to be applied as a replacement of PAC for better controlling the transport of non-point source pollutants.

Keywords: porous asphalt concrete, volatile organic compounds, permeable reactive pavement, non-point source pollution

Procedia PDF Downloads 211
540 Investigations on Geopolymer Concrete Slabs

Authors: Akhila Jose

Abstract:

The cement industry is one of the major contributors to the global warming due to the release of greenhouse gases. The primary binder in conventional concrete is Ordinary Portland cement (OPC) and billions of tons are produced annually all over the world. An alternative binding material to OPC is needed to reduce the environmental impact caused during the cement manufacturing process. Geopolymer concrete is an ideal material to substitute cement-based binder. Geopolymer is an inorganic alumino-silicate polymer. Geopolymer Concrete (GPC) is formed by the polymerization of aluminates and silicates formed by the reaction of solid aluminosilicates with alkali hydroxides or alkali silicates. Various Industrial bye- products like Fly Ash (FA), Rice Husk Ash (RHA), Ground granulated Blast Furnace Slag (GGBFS), Silica Fume (SF), Red mud (RM) etc. are rich in aluminates and silicates. Using by-products from other industries reduces the carbon dioxide emission and thus giving a sustainable way of reducing greenhouse gas emissions and also a way to dispose the huge wastes generated from the major industries like thermal plants, steel plants, etc. The earlier research about geopolymer were focused on heat cured fly ash based precast members and this limited its applications. The heat curing mechanism itself is highly cumbersome and costly even though they possess high compressive strength, low drying shrinkage and creep, and good resistance to sulphate and acid environments. GPC having comparable strength and durability characteristics of OPC were able to develop under ambient cured conditions is the solution making it a sustainable alternative in future. In this paper an attempt has been made to review and compare the feasibility of ambient cured GPC over heat cured geopolymer concrete with respect to strength and serviceability characteristics. The variation on the behavior of structural members is also reviewed to identify the research gaps for future development of ambient cured geopolymer concrete. The comparison and analysis of studies showed that GPC most importantly ambient cured type has a comparable behavior with respect to OPC based concrete in terms strength and durability criteria.

Keywords: geopolymer concrete, oven heated, durability properties, mechanical properties

Procedia PDF Downloads 183
539 Analysis of Power Demand for the Common Rail Pump Drive in an Aircraft Engine

Authors: Rafal Sochaczewski, Marcin Szlachetka, Miroslaw Wendeker

Abstract:

Increasing requirements to reduce exhaust emissions and fuel consumption while increasing the power factor is increasingly becoming applicable to internal combustion engines intended for aircraft applications. As a result, intensive research work is underway to develop a diesel-powered unit for aircraft propulsion. Due to a number of advantages, such as lack of the head (lower heat loss) and timing system, opposite movement of pistons conducive to balancing the engine, the two-stroke compression-ignition engine with the opposite pistons has been developed and upgraded. Of course, such construction also has drawbacks. The main one is the necessity of using a gear connecting two crankshafts or a complicated crank system with one shaft. The peculiarity of the arrangement of pistons with sleeves, as well as the fulfillment of rigorous requirements, makes it necessary to apply the most modern technologies and constructional solutions. In the case of the fuel supply system, it was decided to use common rail system elements. The paper presents an analysis of the possibility of using a common rail pump to supply an aircraft compression-ignition engine. It is an engine with a two-stroke cycle, three cylinders, opposing pistons, and 100 kW power. Each combustion chamber is powered by two injectors controlled by electromagnetic valves. In order to assess the possibility of using a common rail pump, four high-pressure pumps were tested on a bench. They are piston pumps differing in the number and geometry of the pumping sections. The analysis included the torque on the pump drive shaft and the power needed to drive the pump depending on the rotational speed, pumping pressure and fuel dispenser settings. The research allowed to optimize the engine power supply system depending on the fuel demand and the way the pump is mounted on the engine. Acknowledgment: This work has been realized in the cooperation with The Construction Office of WSK ‘PZL-KALISZ’ S.A.’ and is part of Grant Agreement No. POIR.01.02.00-00-0002/15 financed by the Polish Nation-al Centre for Research and Development.

Keywords: diesel engine, fuel pump, opposing pistons, two-stroke

Procedia PDF Downloads 142
538 Logistics and Supply Chain Management Using Smart Contracts on Blockchain

Authors: Armen Grigoryan, Milena Arakelyan

Abstract:

The idea of smart logistics is still quite a complicated one. It can be used to market products to a large number of customers or to acquire raw materials of the highest quality at the lowest cost in geographically dispersed areas. The use of smart contracts in logistics and supply chain management has the potential to revolutionize the way that goods are tracked, transported, and managed. Smart contracts are simply computer programs written in one of the blockchain programming languages (Solidity, Rust, Vyper), which are capable of self-execution once the predetermined conditions are met. They can be used to automate and streamline many of the traditional manual processes that are currently used in logistics and supply chain management, including the tracking and movement of goods, the management of inventory, and the facilitation of payments and settlements between different parties in the supply chain. Currently, logistics is a core area for companies which is concerned with transporting products between parties. Still, the problem of this sector is that its scale may lead to detainments and defaults in the delivery of goods, as well as other issues. Moreover, large distributors require a large number of workers to meet all the needs of their stores. All this may contribute to big detainments in order processing and increases the potentiality of losing orders. In an attempt to break this problem, companies have automated all their procedures, contributing to a significant augmentation in the number of businesses and distributors in the logistics sector. Hence, blockchain technology and smart contracted legal agreements seem to be suitable concepts to redesign and optimize collaborative business processes and supply chains. The main purpose of this paper is to examine the scope of blockchain technology and smart contracts in the field of logistics and supply chain management. This study discusses the research question of how and to which extent smart contracts and blockchain technology can facilitate and improve the implementation of collaborative business structures for sustainable entrepreneurial activities in smart supply chains. The intention is to provide a comprehensive overview of the existing research on the use of smart contracts in logistics and supply chain management and to identify any gaps or limitations in the current knowledge on this topic. This review aims to provide a summary and evaluation of the key findings and themes that emerge from the research, as well as to suggest potential directions for future research on the use of smart contracts in logistics and supply chain management.

Keywords: smart contracts, smart logistics, smart supply chain management, blockchain and smart contracts in logistics, smart contracts for controlling supply chain management

Procedia PDF Downloads 96
537 Hydrodynamic and Water Quality Modelling to Support Alternative Fuels Maritime Operations Incident Planning & Impact Assessments

Authors: Chow Jeng Hei, Pavel Tkalich, Low Kai Sheng Bryan

Abstract:

Due to the growing demand for sustainability in the maritime industry, there has been a significant increase in focus on alternative fuels such as biofuels, liquefied natural gas (LNG), hydrogen, methanol and ammonia to reduce the carbon footprint of vessels. Alternative fuels offer efficient transportability and significantly reduce carbon dioxide emissions, a critical factor in combating global warming. In an era where the world is determined to tackle climate change, the utilization of methanol is projected to witness a consistent rise in demand, even during downturns in the oil and gas industry. Since 2022, there has been an increase in methanol loading and discharging operations for industrial use in Singapore. These operations were conducted across various storage tank terminals at Jurong Island of varying capacities, which are also used to store alternative fuels for bunkering requirements. The key objective of this research is to support the green shipping industries in the transformation to new fuels such as methanol and ammonia, especially in evolving the capability to inform risk assessment and management of spills. In the unlikely event of accidental spills, a highly reliable forecasting system must be in place to provide mitigation measures and ahead planning. The outcomes of this research would lead to an enhanced metocean prediction capability and, together with advanced sensing, will continuously build up a robust digital twin of the bunkering operating environment. Outputs from the developments will contribute to management strategies for alternative marine fuel spills, including best practices, safety challenges and crisis management. The outputs can also benefit key port operators and the various bunkering, petrochemicals, shipping, protection and indemnity, and emergency response sectors. The forecasted datasets provide a forecast of the expected atmosphere and hydrodynamic conditions prior to bunkering exercises, enabling a better understanding of the metocean conditions ahead and allowing for more refined spill incident management planning

Keywords: clean fuels, hydrodynamics, coastal engineering, impact assessments

Procedia PDF Downloads 70
536 Enhanced CNN for Rice Leaf Disease Classification in Mobile Applications

Authors: Kayne Uriel K. Rodrigo, Jerriane Hillary Heart S. Marcial, Samuel C. Brillo

Abstract:

Rice leaf diseases significantly impact yield production in rice-dependent countries, affecting their agricultural sectors. As part of precision agriculture, early and accurate detection of these diseases is crucial for effective mitigation practices and minimizing crop losses. Hence, this study proposes an enhancement to the Convolutional Neural Network (CNN), a widely-used method for Rice Leaf Disease Image Classification, by incorporating MobileViTV2—a recently advanced architecture that combines CNN and Vision Transformer models while maintaining fewer parameters, making it suitable for broader deployment on edge devices. Our methodology utilizes a publicly available rice disease image dataset from Kaggle, which was validated by a university structural biologist following the guidelines provided by the Philippine Rice Institute (PhilRice). Modifications to the dataset include renaming certain disease categories and augmenting the rice leaf image data through rotation, scaling, and flipping. The enhanced dataset was then used to train the MobileViTV2 model using the Timm library. The results of our approach are as follows: the model achieved notable performance, with 98% accuracy in both training and validation, 6% training and validation loss, and a Receiver Operating Characteristic (ROC) curve ranging from 95% to 100% for each label. Additionally, the F1 score was 97%. These metrics demonstrate a significant improvement compared to a conventional CNN-based approach, which, in a previous 2022 study, achieved only 78% accuracy after using 5 convolutional layers and 2 dense layers. Thus, it can be concluded that MobileViTV2, with its fewer parameters, outperforms traditional CNN models, particularly when applied to Rice Leaf Disease Image Identification. For future work, we recommend extending this model to include datasets validated by international rice experts and broadening the scope to accommodate biotic factors such as rice pest classification, as well as abiotic stressors such as climate, soil quality, and geographic information, which could improve the accuracy of disease prediction.

Keywords: convolutional neural network, MobileViTV2, rice leaf disease, precision agriculture, image classification, vision transformer

Procedia PDF Downloads 29
535 Construction and Demolition Waste Management in Indian Cities

Authors: Vaibhav Rathi, Soumen Maity, Achu R. Sekhar, Abhijit Banerjee

Abstract:

Construction sector in India is extremely resource and carbon intensive. It contributes to significantly to national greenhouse emissions. At the resource end the industry consumes significant portions of the output from mining. Resources such as sand and soil are most exploited and their rampant extraction is becoming constant source of impact on environment and society. Cement is another resource that is used in abundance in building and construction and has a direct impact on limestone resources. Though India is rich in cement grade limestone resource, efforts have to be made for sustainable consumption of this resource to ensure future availability. Use of these resources in high volumes in India is a result of rapid urbanization. More cities have grown to a population of million plus in the last decade and million plus cities are growing further. To cater to needs of growing urban population of construction activities are inevitable in the coming future thereby increasing material consumption. Increased construction will also lead to substantial increase in end of life waste generation from Construction and Demolition (C&D). Therefore proper management of C&D waste has the potential to reduce environmental pollution as well as contribute to the resource efficiency in the construction sector. The present study deals with estimation, characterisation and documenting current management practices of C&D waste in 10 Indian cities of different geographies and classes. Based on primary data the study draws conclusions on the potential of C&D waste to be used as an alternative to primary raw materials. The estimation results show that India generates 716 million tons of C&D waste annually, placing the country as second largest C&D waste generator in the world after China. The study also aimed at utilization of C&D waste in to building materials. The waste samples collected from various cities have been used to replace 100% stone aggregates in paver blocks without any decrease in strength. However, management practices of C&D waste in cities still remains poor instead of notification of rules and regulations notified for C&D waste management. Only a few cities have managed to install processing plant and set up management systems for C&D waste. Therefore there is immense opportunity for management and reuse of C&D waste in Indian cities.

Keywords: building materials, construction and demolition waste, cities, environmental pollution, resource efficiency

Procedia PDF Downloads 304
534 Instant Data-Driven Robotics Fabrication of Light-Transmitting Ceramics: A Responsive Computational Modeling Workflow

Authors: Shunyi Yang, Jingjing Yan, Siyu Dong, Xiangguo Cui

Abstract:

Current architectural façade design practices incorporate various daylighting and solar radiation analysis methods. These emphasize the impact of geometry on façade design. There is scope to extend this knowledge into methods that address material translucency, porosity, and form. Such approaches can also achieve these conditions through adaptive robotic manufacturing approaches that exploit material dynamics within the design, and alleviate fabrication waste from molds, ultimately accelerating the autonomous manufacturing system. Besides analyzing the environmental solar radiant in building facade design, there is also a vacancy research area of how lighting effects can be precisely controlled by engaging the instant real-time data-driven robot control and manipulating the material properties. Ceramics carries a wide range of transmittance and deformation potentials for robotics control with the research of its material property. This paper presents one semi-autonomous system that engages with real-time data-driven robotics control, hardware kit design, environmental building studies, human interaction, and exploratory research and experiments. Our objectives are to investigate the relationship between different clay bodies or ceramics’ physio-material properties and their transmittance; to explore the feedback system of instant lighting data in robotic fabrication to achieve precise lighting effect; to design the sufficient end effector and robot behaviors for different stages of deformation. We experiment with architectural clay, as the material of the façade that is potentially translucent at a certain stage can respond to light. Studying the relationship between form, material properties, and porosity can help create different interior and exterior light effects and provide façade solutions for specific architectural functions. The key idea is to maximize the utilization of in-progress robotics fabrication and ceramics materiality to create a highly integrated autonomous system for lighting facade design and manufacture.

Keywords: light transmittance, data-driven fabrication, computational design, computer vision, gamification for manufacturing

Procedia PDF Downloads 124
533 An Evaluation of Medical Waste in Health Facilities through Data Envelopment Analysis (DEA) Method: Turkey-Amasya Public Hospitals Union Model

Authors: Murat Iskender Aktaş, Sadi Ergin, Rasime Acar Aktaş

Abstract:

In the light of fast-paced changes and developments in the health sector, the Ministry of Health started a new structuring with decree law numbered 663 within the scope of the Project of Transformation in Health. Accordingly, hospitals should ensure patient satisfaction through more efficient, more effective use of resources and sustainable finance by placing patients in the centre and should operate to increase efficiency to its maximum level while doing these. Within this study, in order to find out how efficient the hospitals were in terms of medical waste management between the years 2011-2014, the data from six hospitals of Amasya Public Hospitals Union were evaluated separately through Data Envelopment Analysis (DEA) method. First of all, input variables were determined. Input variables were the number of patients admitted to polyclinics, the number of inpatients in clinics, the number of patients who were operated and the number of patients who applied to the laboratory. Output variable was the cost of medical wastes in Turkish liras. Each hospital’s total medical waste level before and after public hospitals union; the amounts of average medical waste per patient admitted to polyclinics, per inpatient in clinics, per patient admitted to laboratory and per operated patient were compared within each group. In addition, average medical waste levels and costs were compared for Turkey in general and Europe in general. Paired samples t-test was used to find out whether the changes (increase-decrease) after public hospitals union were statistically significant. The health facilities that were unsuccessful in terms of medical waste management before and after public hospital union and the factors that caused this failure were determined. Based on the results, for each health facility that was ineffective in terms of medical waste management, the level of improvement required for each input was determined. The results of the study showed that there was an improvement in medical waste management applications after the health facilities became a member of public hospitals union; their medical waste levels were lower than the average of Turkey and Europe while the averages of cost of disposal were the highest.

Keywords: medical waste management, cost of medical waste, public hospitals, data envelopment analysis

Procedia PDF Downloads 416