Search results for: interface waves
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2087

Search results for: interface waves

287 Transit Facility Planning in Fringe Areas of Kolkata Metropolitan Region

Authors: Soumen Mitra, Aparna Saha

Abstract:

The perceived link between the city and the countryside is evolving rapidly and is getting shifted away from the assumptions of mainstream paradigms to new conceptual networks where rural-urban links are being redefined. In this conceptual field, the fringe interface is still considered as a transitional zone between city and countryside, and is defined as a diffused area rather than a discrete territory. In developing countries fringe areas are said to have both rural and urban characteristics but are devoid of basic municipal facilities. Again, when the urban core areas envelopes the fringe areas along with it the character of fringe changes but services are not well facilitated which in turn results to uneven growth, rapid and haphazard development. One of the major services present in fringe areas is inter-linkages in terms of transit corridors. Planning for the appropriate and sustainable future of fringe areas requires a sheer focus on these corridors pertaining to transit facility, for better accessibility and mobility. Inducing a transit facility plan enhances the various facilities and also increases their proximity for user groups. The study focuses on the western fringe region of Kolkata metropolis which is a major source of industrial hub and housing sector, thus converting the agricultural lands into non-agricultural use. The study emphasizes on providing transit facilities both physical (stops, sheds, terminals, etc.) and operational (ticketing system, route prioritization, integration of transit modes, etc.), to facilitate the region as well as accelerate the growth pattern systematically. Hence, the scope of this work is on the basis of prevailing conditions in fringe areas and attempts for an effective transit facility plan. The strategies and recommendations are in terms of road widening, service coverage, feeder route prioritization, bus stops facilitation, pedestrian facilities, etc, which in turn enhances the region’s growth pattern. Thus, this context of transit facility planning acts as a catalytic agent to avoid the future unplanned growth and accelerates it towards an integrated development.

Keywords: feeder route, fringe, municipal planning, transit facility

Procedia PDF Downloads 162
286 Alteration of Placental Development and Vascular Dysfunction in Gestational Diabetes Mellitus Has Impact on Maternal and Infant Health

Authors: Sadia Munir

Abstract:

The aim of this study is to investigate changes in placental development and vascular dysfunction which subsequently affect feto-maternal health in pregnancies complicated by gestational diabetes mellitus (GDM). Fetal and postnatal adverse health outcomes of GDM are shown to be associated with disturbances in placental structure and function. Children of women with GDM are more likely to be obese and diabetic in childhood and adulthood. GDM also increases the risk of adverse pregnancy outcomes, including preeclampsia, birth injuries, macrosomia and neonatal hypoglycemia, respiratory distress syndrome, neonatal cardiac dysfunction and stillbirth. Incidences of type 2 diabetes in the MENA region are growing at an alarming rate which is estimated to become more than double by 2030. Five of the top 10 countries for diabetes prevalence in 2010 were in the Gulf region. GDM also increases the risk of development of type 2 diabetes. Interestingly, more than half of the women with GDM develop diabetes later in their life. The human placenta is a temporary organ located at the interface between mother and fetal blood circulation. Placenta has a central role as both a producer as well as a target of several molecules that are involved in placental development and function. We have investigated performed a Pubmed search with key words placenta, GDM, placental villi, vascularization, cytokines, growth factors, inflammation, hypoxia, oxidative stress and pathophysiology. We have investigated differences in the development and vascularization of placenta, their underlying causes and impact on feto-maternal health through literature review. We have also identified gaps in the literature and research questions that need to be answered to completely understand the central role of placenta in the GDM. This study is important in understanding the pathophysiology of placenta due to changes in the vascularization of villi, surface area and diameter of villous capillaries in pregnancies complicated by GDM. It is necessary to understand these mechanisms in order to develop treatments to reverse their effects on placental malfunctioning, which in turn, will result in improved mother and child health.

Keywords: gestational diabetes mellitus, placenta, vasculature, villi

Procedia PDF Downloads 306
285 Health Care Teams during COVID-19: Roles, Challenges, Emotional State and Perceived Preparedness to the Next Pandemic

Authors: Miriam Schiff, Hadas Rosenne, Ran Nir-Paz, Shiri Shinan Altman

Abstract:

To examine (1) the level, predictors, and subjective perception of professional quality of life (PRoQL), posttraumatic growth, roles, task changes during the pandemic, and perceived preparedness for the next pandemic. These variables were added as part of an international study on social workers in healthcare stress, resilience, and perceived preparedness we took part in, along with Australia, Canada, China, Hong Kong, Singapore, and Taiwan. (2) The extent to which background variables, rate of exposure to the virus, working in COVID wards, profession, personal resilience, and resistance to organizational change predict posttraumatic growth, perceived preparedness, and PRoQL (the latter was examined among social workers only). (3) The teams' perceptions of how the pandemic impacted them at the personal, professional, and organizational levels and what assisted them. Methodologies: Mixed quantitative and qualitative methods were used. 1039 hospital healthcare workers from various professions participated in the quantitative study while 32 participated in in-depth interviews. The same methods were used in six other countries. Findings: The level of PRoQL was moderate, with higher burnout and secondary traumatization level than during routine times. Differences between countries in the level of PRoQL were found as well. Perceived preparedness for the next pandemic at the personal level was moderate and similar among the different health professions. Higher exposure to the virus was associated with lower perceived preparedness of the hospitals. Compared to other professions, doctors and nurses perceived hospitals as significantly less prepared for the next pandemic. The preparedness of the State of Israel for the next pandemic is perceived as low by all healthcare professionals. A moderate level of posttraumatic growth was found. Staff who worked at the COVID ward reported a greater level of growth. Doctors reported the lowest level of growth. The staff's resilience was high, with no differences among professions or levels of exposure. Working in the COVID ward and resilience predicted better preparedness, while resistance to organizational change predicted worse preparedness. Findings from the qualitative part of the study revealed that healthcare workers reported challenges at the personal, professional and organizational level during the different waves of the pandemic. They also report on internal and external resources they either owned or obtained during that period. Conclusion: Exposure to the COVID-19 virus is associated with secondary traumatization on one hand and personal posttraumatic growth on the other hand. Personal and professional discoveries and a sense of mission helped cope with the pandemic that was perceived as a historical event, war, or mass casualty event. Personal resilience, along with the support of colleagues, family, and direct management, were seen as significant components of coping. Hospitals should plan ahead and improve their preparedness to the next pandemic.

Keywords: covid-19, health-care, social workers, burnout, preparedness, international perspective

Procedia PDF Downloads 64
284 Empirical Analysis of the Effect of Cloud Movement in a Basic Off-Grid Photovoltaic System: Case Study Using Transient Response of DC-DC Converters

Authors: Asowata Osamede, Christo Pienaar, Johan Bekker

Abstract:

Mismatch in electrical energy (power) or outage from commercial providers, in general, does not promote development to the public and private sector, these basically limit the development of industries. The necessity for a well-structured photovoltaic (PV) system is of importance for an efficient and cost-effective monitoring system. The major renewable energy potential on earth is provided from solar radiation and solar photovoltaics (PV) are considered a promising technological solution to support the global transformation to a low-carbon economy and reduction on the dependence on fossil fuels. Solar arrays which consist of various PV module should be operated at the maximum power point in order to reduce the overall cost of the system. So power regulation and conditioning circuits should be incorporated in the set-up of a PV system. Power regulation circuits used in PV systems include maximum power point trackers, DC-DC converters and solar chargers. Inappropriate choice of power conditioning device in a basic off-grid PV system can attribute to power loss, hence the need for a right choice of power conditioning device to be coupled with the system of the essence. This paper presents the design and implementation of a power conditioning devices in order to improve the overall yield from the availability of solar energy and the system’s total efficiency. The power conditioning devices taken into consideration in the project includes the Buck and Boost DC-DC converters as well as solar chargers with MPPT. A logging interface circuit (LIC) is designed and employed into the system. The LIC is designed on a printed circuit board. It basically has DC current signalling sensors, specifically the LTS 6-NP. The LIC is consequently required to program the voltages in the system (these include the PV voltage and the power conditioning device voltage). The voltage is structured in such a way that it can be accommodated by the data logger. Preliminary results which include availability of power as well as power loss in the system and efficiency will be presented and this would be used to draw the final conclusion.

Keywords: tilt and orientation angles, solar chargers, PV panels, storage devices, direct solar radiation

Procedia PDF Downloads 123
283 Atomic Scale Storage Mechanism Study of the Advanced Anode Materials for Lithium-Ion Batteries

Authors: Xi Wang, Yoshio Bando

Abstract:

Lithium-ion batteries (LIBs) can deliver high levels of energy storage density and offer long operating lifetimes, but their power density is too low for many important applications. Therefore, we developed some new strategies and fabricated novel electrodes for fast Li transport and its facile synthesis including N-doped graphene-SnO2 sandwich papers, bicontinuous nanoporous Cu/Li4Ti5O12 electrode, and binder-free N-doped graphene papers. In addition, by using advanced in-TEM, STEM techniques and the theoretical simulations, we systematically studied and understood their storage mechanisms at the atomic scale, which shed a new light on the reasons of the ultrafast lithium storage property and high capacity for these advanced anodes. For example, by using advanced in-situ TEM, we directly investigated these processes using an individual CuO nanowire anode and constructed a LIB prototype within a TEM. Being promising candidates for anodes in lithium-ion batteries (LIBs), transition metal oxide anodes utilizing the so-called conversion mechanism principle typically suffer from the severe capacity fading during the 1st cycle of lithiation–delithiation. Also we report on the atomistic insights of the GN energy storage as revealed by in situ TEM. The lithiation process on edges and basal planes is directly visualized, the pyrrolic N "hole" defect and the perturbed solid-electrolyte-interface (SEI) configurations are observed, and charge transfer states for three N-existing forms are also investigated. In situ HRTEM experiments together with theoretical calculations provide a solid evidence that enlarged edge {0001} spacings and surface "hole" defects result in improved surface capacitive effects and thus high rate capability and the high capacity is owing to short-distance orderings at the edges during discharging and numerous surface defects; the phenomena cannot be understood previously by standard electron or X-ray diffraction analyses.

Keywords: in-situ TEM, STEM, advanced anode, lithium-ion batteries, storage mechanism

Procedia PDF Downloads 344
282 Electro-Hydrodynamic Effects Due to Plasma Bullet Propagation

Authors: Panagiotis Svarnas, Polykarpos Papadopoulos

Abstract:

Atmospheric-pressure cold plasmas continue to gain increasing interest for various applications due to their unique properties, like cost-efficient production, high chemical reactivity, low gas temperature, adaptability, etc. Numerous designs have been proposed for these plasmas production in terms of electrode configuration, driving voltage waveform and working gas(es). However, in order to exploit most of the advantages of these systems, the majority of the designs are based on dielectric-barrier discharges (DBDs) either in filamentary or glow regimes. A special category of the DBD-based atmospheric-pressure cold plasmas refers to the so-called plasma jets, where a carrier noble gas is guided by the dielectric barrier (usually a hollow cylinder) and left to flow up to the atmospheric air where a complicated hydrodynamic interplay takes place. Although it is now well established that these plasmas are generated due to ionizing waves reminding in many ways streamer propagation, they exhibit discrete characteristics which are better mirrored on the terms 'guided streamers' or 'plasma bullets'. These 'bullets' travel with supersonic velocities both inside the dielectric barrier and the channel formed by the noble gas during its penetration into the air. The present work is devoted to the interpretation of the electro-hydrodynamic effects that take place downstream of the dielectric barrier opening, i.e., in the noble gas-air mixing area where plasma bullet propagate under the influence of local electric fields in regions of variable noble gas concentration. Herein, we focus on the role of the local space charge and the residual ionic charge left behind after the bullet propagation in the gas flow field modification. The study communicates both experimental and numerical results, coupled in a comprehensive manner. The plasma bullets are here produced by a custom device having a quartz tube as a dielectric barrier and two external ring-type electrodes driven by sinusoidal high voltage at 10 kHz. Helium gas is fed to the tube and schlieren photography is employed for mapping the flow field downstream of the tube orifice. Mixture mass conservation equation, momentum conservation equation, energy conservation equation in terms of temperature and helium transfer equation are simultaneously solved, leading to the physical mechanisms that govern the experimental results. Namely, we deal with electro-hydrodynamic effects mainly due to momentum transfer from atomic ions to neutrals. The atomic ions are left behind as residual charge after the bullet propagation and gain energy from the locally created electric field. The electro-hydrodynamic force is eventually evaluated.

Keywords: atmospheric-pressure plasmas, dielectric-barrier discharges, schlieren photography, electro-hydrodynamic force

Procedia PDF Downloads 131
281 2106 kA/cm² Peak Tunneling Current Density in GaN-Based Resonant Tunneling Diode with an Intrinsic Oscillation Frequency of ~260GHz at Room Temperature

Authors: Fang Liu, JunShuai Xue, JiaJia Yao, GuanLin Wu, ZuMaoLi, XueYan Yang, HePeng Zhang, ZhiPeng Sun

Abstract:

Terahertz spectra is in great demand since last two decades for many photonic and electronic applications. III-Nitride resonant tunneling diode is one of the promising candidates for portable and compact THz sources. Room temperature microwave oscillator based on GaN/AlN resonant tunneling diode was reported in this work. The devices, grown by plasma-assisted molecular-beam epitaxy on free-standing c-plane GaN substrates, exhibit highly repeatable and robust negative differential resistance (NDR) characteristics at room temperature. To improve the interface quality at the active region in RTD, indium surfactant assisted growth is adopted to enhance the surface mobility of metal atoms on growing film front. Thanks to the lowered valley current associated with the suppression of threading dislocation scattering on low dislocation GaN substrate, a positive peak current density of record-high 2.1 MA/cm2 in conjunction with a peak-to-valley current ratio (PVCR) of 1.2 are obtained, which is the best results reported in nitride-based RTDs up to now considering the peak current density and PVCR values simultaneously. When biased within the NDR region, microwave oscillations are measured with a fundamental frequency of 0.31 GHz, yielding an output power of 5.37 µW. Impedance mismatch results in the limited output power and oscillation frequency described above. The actual measured intrinsic capacitance is only 30fF. Using a small-signal equivalent circuit model, the maximum intrinsic frequency of oscillation for these diodes is estimated to be ~260GHz. This work demonstrates a microwave oscillator based on resonant tunneling effect, which can meet the demands of terahertz spectral devices, more importantly providing guidance for the fabrication of the complex nitride terahertz and quantum effect devices.

Keywords: GaN resonant tunneling diode, peak current density, microwave oscillation, intrinsic capacitance

Procedia PDF Downloads 119
280 Voyage Analysis of a Marine Gas Turbine Engine Installed to Power and Propel an Ocean-Going Cruise Ship

Authors: Mathias U. Bonet, Pericles Pilidis, Georgios Doulgeris

Abstract:

A gas turbine-powered cruise Liner is scheduled to transport pilgrim passengers from Lagos-Nigeria to the Islamic port city of Jeddah in Saudi Arabia. Since the gas turbine is an air breathing machine, changes in the density and/or mass flow at the compressor inlet due to an encounter with variations in weather conditions induce negative effects on the performance of the power plant during the voyage. In practice, all deviations from the reference atmospheric conditions of 15 oC and 1.103 bar tend to affect the power output and other thermodynamic parameters of the gas turbine cycle. Therefore, this paper seeks to evaluate how a simple cycle marine gas turbine power plant would react under a variety of scenarios that may be encountered during a voyage as the ship sails across the Atlantic Ocean and the Mediterranean Sea before arriving at its designated port of discharge. It is also an assessment that focuses on the effect of varying aerodynamic and hydrodynamic conditions which deteriorate the efficient operation of the propulsion system due to an increase in resistance that results from some projected levels of the ship hull fouling. The investigated passenger ship is designed to run at a service speed of 22 knots and cover a distance of 5787 nautical miles. The performance evaluation consists of three separate voyages that cover a variety of weather conditions in winter, spring and summer seasons. Real-time daily temperatures and the sea states for the selected transit route were obtained and used to simulate the voyage under the aforementioned operating conditions. Changes in engine firing temperature, power output as well as the total fuel consumed per voyage including other performance variables were separately predicted under both calm and adverse weather conditions. The collated data were obtained online from the UK Meteorological Office as well as the UK Hydrographic Office websites, while adopting the Beaufort scale for determining the magnitude of sea waves resulting from rough weather situations. The simulation of the gas turbine performance and voyage analysis was effected through the use of an integrated Cranfield-University-developed computer code known as ‘Turbomatch’ and ‘Poseidon’. It is a project that is aimed at developing a method for predicting the off design behavior of the marine gas turbine when installed and operated as the main prime mover for both propulsion and powering of all other auxiliary services onboard a passenger cruise liner. Furthermore, it is a techno-economic and environmental assessment that seeks to enable the forecast of the marine gas turbine part and full load performance as it relates to the fuel requirement for a complete voyage.

Keywords: cruise ship, gas turbine, hull fouling, performance, propulsion, weather

Procedia PDF Downloads 159
279 What Happens When We Try to Bridge the Science-Practice Gap? An Example from the Brazilian Native Vegetation Protection Law

Authors: Alice Brites, Gerd Sparovek, Jean Paul Metzger, Ricardo Rodrigues

Abstract:

The segregation between science and policy in decision making process hinders nature conservation efforts worldwide. Scientists have been criticized for not producing information that leads to effective solutions for environmental problems. In an attempt to bridge this gap between science and practice, we conducted a project aimed at supporting the implementation of the Brazilian Native Vegetation Protection Law (NVPL) implementation in São Paulo State (SP), Brazil. To do so, we conducted multiple open meetings with the stakeholders involved in this discussion. Throughout this process, we raised stakeholders' demands for scientific information and brought feedbacks about our findings. However, our main scientific advice was not taken into account during the NVPL implementation in SP. The NVPL has a mechanism that exempts landholders who converted native vegetation without offending the legislation in place at the time of the conversion from restoration requirements. We found out that there were no accurate spatialized data for native vegetation cover before the 1960s. Thus, the initial benchmark for the mechanism application should be the 1965 Brazilian Forest Act. Even so, SP kept the 1934 Brazilian Forest Act as the initial legal benchmark for the law application. This decision implies the use of a probabilistic native vegetation map that has uncertainty and subjectivity as its intrinsic characteristics, thus its use can lead to legal queries, corruption, and an unfair benefit application. But why this decision was made even after the scientific advice was vastly divulgated? We raised some possible reasons to explain it. First, the decision was made during a government transition, showing that circumstantial political events can overshadow scientific arguments. Second, the debate about the NVPL in SP was not pacified and powerful stakeholders could benefit from the confusion created by this decision. Finally, the native vegetation protection mechanism is a complex issue, with many technical aspects that can be hard to understand for a non-specialized courtroom, such as the one that made the final decision at SP. This example shows that science and decision-makers still have a long way ahead to improve their way to interact and that science needs to find its way to be heard above the political buzz.

Keywords: Brazil, forest act, science-based dialogue, science-policy interface

Procedia PDF Downloads 111
278 Indigenous Knowledge and Nature of Science Interface: Content Considerations for Science, Technology, Engineering, and Mathematics Education

Authors: Mpofu Vongai, Vhurumuku Elaosi

Abstract:

Many African countries, such as Zimbabwe and South Africa, have curricula reform agendas that include incorporation of Indigenous Knowledge and Nature of Science (NOS) into school Science, Technology, Engineering and Mathematics (STEM) education. It is argued that at high school level, STEM learning, which incorporates understandings of indigenization science and NOS, has the potential to provide a strong foundation for a culturally embedded scientific knowledge essential for their advancement in Science and Technology. Globally, investment in STEM education is recognized as essential for economic development. For this reason, developing countries such as Zimbabwe and South Africa have been investing into training specialized teachers in natural sciences and technology. However, in many cases this training has been detached from the cultural realities and contexts of indigenous learners. For this reason, the STEM curricula reform has provided implementation challenges to teachers. An issue of major concern is the teachers’ pedagogical content knowledge (PCK), which is essential for effective implementation of these STEM curricula. Well-developed Teacher PCK include an understanding of both the nature of indigenous knowledge (NOIK) and of NOS. This paper reports the results of a study that investigated the development of 3 South African and 3 Zimbabwean in-service teachers’ abilities to integrate NOS and NOIK as part of their PCK. A participatory action research design was utilized. The main focus was on capturing, determining and developing teachers STEM knowledge for integrating NOIK and NOS in science classrooms. Their use of indigenous games was used to determine how their subject knowledge for STEM and pedagogical abilities could be developed. Qualitative data were gathered through the use dialogues between the researchers and the in-service teachers, as well as interviewing the participating teachers. Analysis of the data provides a methodological window through which in-service teachers’ PCK can be STEMITIZED and their abilities to integrate NOS and NOIK developed. Implications are raised for developing teachers’ STEM education in universities and teacher training colleges.

Keywords: indigenous knowledge, nature of science, pedagogical content knowledge, STEM education

Procedia PDF Downloads 267
277 UV-Enhanced Room-Temperature Gas-Sensing Properties of ZnO-SnO2 Nanocomposites Obtained by Hydrothermal Treatment

Authors: Luís F. da Silva, Ariadne C. Catto, Osmando F. Lopes, Khalifa Aguir, Valmor R. Mastelaro, Caue Ribeiro, Elson Longo

Abstract:

Gas detection is important for controlling industrial, and vehicle emissions, agricultural residues, and environmental control. In last decades, several semiconducting oxides have been used to detect dangerous or toxic gases. The excellent gas-sensing performance of these devices have been observed at high temperatures (~250 °C), which forbids the use for the detection of flammable and explosive gases. In this way, ultraviolet light activated gas sensors have been a simple and promising alternative to achieve room temperature sensitivity. Among the semiconductor oxides which exhibit a good performance as gas sensor, the zinc oxide (ZnO) and tin oxide (SnO2) have been highlighted. Nevertheless, their poor selectivity is the main disadvantage for application as gas sensor devices. Recently, heterostructures combining these two semiconductors (ZnO-SnO2) have been studied as an alternative way to enhance the gas sensor performance (sensitivity, selectivity, and stability). In this work, we investigated the influence of mass ratio Zn:Sn on the properties of ZnO-SnO2 nanocomposites prepared by hydrothermal treatment for 4 hours at 200 °C. The crystalline phase, surface, and morphological features were characterized by X-ray diffraction (XRD), high-resolution transmission electron (HR-TEM), and X-ray photoelectron spectroscopy (XPS) measurements. The gas sensor measurements were carried out at room-temperature under ultraviolet (UV) light irradiation using different ozone levels (0.06 to 0.61 ppm). The XRD measurements indicate the presence of ZnO and SnO2 crystalline phases, without the evidence of solid solution formation. HR-TEM analysis revealed that a good contact between the SnO2 nanoparticles and the ZnO nanorods, which are very important since interface characteristics between nanostructures are considered as challenge to development new and efficient heterostructures. Electrical measurements proved that the best ozone gas-sensing performance is obtained for ZnO:SnO2 (50:50) nanocomposite under UV light irradiation. Its sensitivity was around 6 times higher when compared to SnO2 pure, a traditional ozone gas sensor. These results demonstrate the potential of ZnO-SnO2 heterojunctions for the detection of ozone gas at room-temperature when irradiated with UV light irradiation.

Keywords: hydrothermal, zno-sno2, ozone sensor, uv-activation, room-temperature

Procedia PDF Downloads 274
276 3D CFD Model of Hydrodynamics in Lowland Dam Reservoir in Poland

Authors: Aleksandra Zieminska-Stolarska, Ireneusz Zbicinski

Abstract:

Introduction: The objective of the present work was to develop and validate a 3D CFD numerical model for simulating flow through 17 kilometers long dam reservoir of a complex bathymetry. In contrast to flowing waters, dam reservoirs were not emphasized in the early years of water quality modeling, as this issue has never been the major focus of urban development. Starting in the 1970s, however, it was recognized that natural and man-made lakes are equal, if not more important than estuaries and rivers from a recreational standpoint. The Sulejow Reservoir (Central Poland) was selected as the study area as representative of many lowland dam reservoirs and due availability of a large database of the ecological, hydrological and morphological parameters of the lake. Method: 3D, 2-phase and 1-phase CFD models were analysed to determine hydrodynamics in the Sulejow Reservoir. Development of 3D, 2-phase CFD model of flow requires a construction of mesh with millions of elements and overcome serious convergence problems. As 1-phase CFD model of flow in relation to 2-phase CFD model excludes from the simulations the dynamics of waves only, which should not change significantly water flow pattern for the case of lowland, dam reservoirs. In 1-phase CFD model, the phases (water-air) are separated by a plate which allows calculations of one phase (water) flow only. As the wind affects velocity of flow, to take into account the effect of the wind on hydrodynamics in 1-phase CFD model, the plate must move with speed and direction equal to the speed and direction of the upper water layer. To determine the velocity at which the plate will move on the water surface and interacts with the underlying layers of water and apply this value in 1-phase CFD model, the 2D, 2-phase model was elaborated. Result: Model was verified on the basis of the extensive flow measurements (StreamPro ADCP, USA). Excellent agreement (an average error less than 10%) between computed and measured velocity profiles was found. As a result of work, the following main conclusions can be presented: •The results indicate that the flow field in the Sulejow Reservoir is transient in nature, with swirl flows in the lower part of the lake. Recirculating zones, with the size of even half kilometer, may increase water retention time in this region •The results of simulations confirm the pronounced effect of the wind on the development of the water circulation zones in the reservoir which might affect the accumulation of nutrients in the epilimnion layer and result e.g. in the algae bloom. Conclusion: The resulting model is accurate and the methodology develop in the frame of this work can be applied to all types of storage reservoir configurations, characteristics, and hydrodynamics conditions. Large recirculating zones in the lake which increase water retention time and might affect the accumulation of nutrients were detected. Accurate CFD model of hydrodynamics in large water body could help in the development of forecast of water quality, especially in terms of eutrophication and water management of the big water bodies.

Keywords: CFD, mathematical modelling, dam reservoirs, hydrodynamics

Procedia PDF Downloads 392
275 Development of a Mechanical Ventilator Using A Manual Artificial Respiration Unit

Authors: Isomar Lima da Silva, Alcilene Batalha Pontes, Aristeu Jonatas Leite de Oliveira, Roberto Maia Augusto

Abstract:

Context: Mechanical ventilators are medical devices that help provide oxygen and ventilation to patients with respiratory difficulties. This equipment consists of a manual breathing unit that can be operated by a doctor or nurse and a mechanical ventilator that controls the airflow and pressure in the patient's respiratory system. This type of ventilator is commonly used in emergencies and intensive care units where it is necessary to provide breathing support to critically ill or injured patients. Objective: In this context, this work aims to develop a reliable and low-cost mechanical ventilator to meet the demand of hospitals in treating people affected by Covid-19 and other severe respiratory diseases, offering a chance of treatment as an alternative to mechanical ventilators currently available in the market. Method: The project presents the development of a low-cost auxiliary ventilator with a controlled ventilatory system assisted by integrated hardware and firmware for respiratory cycle control in non-invasive mechanical ventilation treatments using a manual artificial respiration unit. The hardware includes pressure sensors capable of identifying positive expiratory pressure, peak inspiratory flow, and injected air volume. The embedded system controls the data sent by the sensors. It ensures efficient patient breathing through the operation of the sensors, microcontroller, and actuator, providing patient data information to the healthcare professional (system operator) through the graphical interface and enabling clinical parameter adjustments as needed. Results: The test data of the developed mechanical ventilator presented satisfactory results in terms of performance and reliability, showing that the equipment developed can be a viable alternative to commercial mechanical ventilators currently available, offering a low-cost solution to meet the increasing demand for respiratory support equipment.

Keywords: mechanical fans, breathing, medical equipment, COVID-19, intensive care units

Procedia PDF Downloads 55
274 A Simplified, Low-Cost Mechanical Design for an Automated Motorized Mechanism to Clean Large Diameter Pipes

Authors: Imad Khan, Imran Shafi, Sarmad Farooq

Abstract:

Large diameter pipes, barrels, tubes, and ducts are used in a variety of applications covering civil and defense-related technologies. This may include heating/cooling networks, sign poles, bracing, casing, and artillery and tank gun barrels. These large diameter assemblies require regular inspection and cleaning to increase their life and reduce replacement costs. This paper describes the design, development, and testing results of an efficient yet simplified, low maintenance mechanical design controlled with minimal essential electronics using an electric motor for a non-technical staff. The proposed solution provides a simplified user interface and an automated cleaning mechanism that requires a single user to optimally clean pipes and barrels in the range of 105 mm to 203 mm caliber. The proposed system employs linear motion of specially designed brush along the barrel using a chain of specific strength and a pulley anchor attached to both ends of the barrel. A specially designed and manufactured gearbox is coupled with an AC motor to allow movement of contact brush with high torque to allow efficient cleaning. A suitably powered AC motor is fixed to the front adapter mounted on the muzzle side whereas the rear adapter has a pulley-based anchor mounted towards the breach block in case of a gun barrel. A mix of soft nylon and hard copper bristles-based large surface brush is connected through a strong steel chain to motor and anchor pulley. The system is equipped with limit switches to auto switch the direction when one end is reached on its operation. The testing results based on carefully established performance indicators indicate the superiority of the proposed user-friendly cleaning mechanism vis-à-vis its life cycle cost.

Keywords: pipe cleaning mechanism, limiting switch, pipe cleaning robot, large pipes

Procedia PDF Downloads 94
273 On a Determination of Residual Stresses and Wear Resistance of Thermally Sprayed Stainless Steel Coating

Authors: Merzak Laribi, Abdelmadjid Kasser

Abstract:

Thermal spraying processes are widely used to produce coatings on original constructions as well as in repair and maintenance of long standing structures. A lot of efforts forwarding to develop thermal spray coatings technology have been focused on improving mechanical characteristics, minimizing residual stress level and reducing porosity of the coatings. The specific aim of this paper is to determine either residual stresses distribution or wear resistance of stainless steel coating thermally sprayed on a carbon steel substrate. Internal stresses determination was performed using an extensometric method in combination with a simultaneous progressive electrolytic polishing. The procedure consists of measuring micro-deformations using a bi-directional extensometric gauges glued on the substrate side of the materials. Very thin layers of the deposits are removed by electrochemical polishing across the sample surface. Micro-deformations are instantaneously measured, leading to residual stresses calculation after each removal. Wear resistance of the coating has been determined using a ball-on-plate tribometer. Friction coefficient is instantaneously measured during the tribological test. Attention was particularly focused on the influence of a post-annealing at 850 °C for one hour in vacuum either on the residual stresses distribution or on the wear resistance behavior under specific wear and lubrication conditions. The obtained results showed that the microstructure of the obtained arc sprayed stainless steel coating is classical. It is homogeneous and contains un-melted particles, metallic oxides and also pores and micro-cracks. The internal stresses are in compression in the coating. They are more or less scattered between -50 and -270 MPa on the surface and decreased more at the interface. The value at the surface of the substrate is about –700 MPa, partially due to the molten particles impact with the substrate. The post annealing has reduced the residual stresses in both coating and surface of the steel substrate so that the hole material becomes more relaxed. Friction coefficient has an average value of 0.3 and 0.4 respectively for non annealed and annealed specimen. It is rather oil lubrication which is really benefit so that friction coefficient is decreased to about 0.06.

Keywords: residual stresses, wear resistance, stainless steel, coating, thermal spraying, annealing, lubrication

Procedia PDF Downloads 117
272 Nuancing the Indentured Migration in Amitav Ghosh's Sea of Poppies

Authors: Murari Prasad

Abstract:

This paper is motivated by the implications of indentured migration depicted in Amitav Ghosh’s critically acclaimed novel, Sea of Poppies (2008). Ghosh’s perspective on the experiences of North Indian indentured labourers moving from their homeland to a distant and unknown location across the seas suggests a radical attitudinal change among the migrants on board the Ibis, a schooner chartered to carry the recruits from Calcutta to Mauritius in the late 1830s. The novel unfolds the life-altering trauma of the bonded servants, including their efforts to maintain a sense of self while negotiating significant social and cultural transformations during the voyage which leads to the breakdown of familiar life-worlds. Equally, the migrants are introduced to an alternative network of relationships to ensure their survival away from land. They relinquish their entrenched beliefs and prejudices and commit themselves to a new brotherhood formed by ‘ship siblings.’ With the official abolition of direct slavery in 1833, the supply of cheap labour to the sugar plantation in British colonies as far-flung as Mauritius and Fiji to East Africa and the Caribbean sharply declined. Around the same time, China’s attempt to prohibit the illegal importation of opium from British India into China threatened the lucrative opium trade. To run the ever-profitable plantation colonies with cheap labour, Indian peasants, wrenched from their village economies, were indentured to plantations as girmitiyas (vernacularized from ‘agreement’) by the colonial government using the ploy of an optional form of recruitment. After the British conquest of the Isle of France in 1810, Mauritius became Britain’s premier sugar colony bringing waves of Indian immigrants to the island. In the articulations of their subjectivities one notices how the recruits cope with the alienating drudgery of indenture, mitigate the hardships of the voyage and forge new ties with pragmatic acts of cultural syncretism in a forward-looking autonomous community of ‘ship-siblings’ following the fracture of traditional identities. This paper tests the hypothesis that Ghosh envisions a kind of futuristic/utopian political collectivity in a hierarchically rigid, racially segregated and identity-obsessed world. In order to ground the claim and frame the complex representations of alliance and love across the boundaries of caste, religion, gender and nation, the essential methodology here is a close textual analysis of the novel. This methodology will be geared to explicate the utopian futurity that the novel gestures towards by underlining new regulations of life during voyage and dissolution of multiple differences among the indentured migrants on board the Ibis.

Keywords: indenture, colonial, opium, sugar plantation

Procedia PDF Downloads 384
271 Engineering Photodynamic with Radioactive Therapeutic Systems for Sustainable Molecular Polarity: Autopoiesis Systems

Authors: Moustafa Osman Mohammed

Abstract:

This paper introduces Luhmann’s autopoietic social systems starting with the original concept of autopoiesis by biologists and scientists, including the modification of general systems based on socialized medicine. A specific type of autopoietic system is explained in the three existing groups of the ecological phenomena: interaction, social and medical sciences. This hypothesis model, nevertheless, has a nonlinear interaction with its natural environment ‘interactional cycle’ for the exchange of photon energy with molecular without any changes in topology. The external forces in the systems environment might be concomitant with the natural fluctuations’ influence (e.g. radioactive radiation, electromagnetic waves). The cantilever sensor deploys insights to the future chip processor for prevention of social metabolic systems. Thus, the circuits with resonant electric and optical properties are prototyped on board as an intra–chip inter–chip transmission for producing electromagnetic energy approximately ranges from 1.7 mA at 3.3 V to service the detection in locomotion with the least significant power losses. Nowadays, therapeutic systems are assimilated materials from embryonic stem cells to aggregate multiple functions of the vessels nature de-cellular structure for replenishment. While, the interior actuators deploy base-pair complementarity of nucleotides for the symmetric arrangement in particular bacterial nanonetworks of the sequence cycle creating double-stranded DNA strings. The DNA strands must be sequenced, assembled, and decoded in order to reconstruct the original source reliably. The design of exterior actuators have the ability in sensing different variations in the corresponding patterns regarding beat-to-beat heart rate variability (HRV) for spatial autocorrelation of molecular communication, which consists of human electromagnetic, piezoelectric, electrostatic and electrothermal energy to monitor and transfer the dynamic changes of all the cantilevers simultaneously in real-time workspace with high precision. A prototype-enabled dynamic energy sensor has been investigated in the laboratory for inclusion of nanoscale devices in the architecture with a fuzzy logic control for detection of thermal and electrostatic changes with optoelectronic devices to interpret uncertainty associated with signal interference. Ultimately, the controversial aspect of molecular frictional properties is adjusted to each other and forms its unique spatial structure modules for providing the environment mutual contribution in the investigation of mass temperature changes due to pathogenic archival architecture of clusters.

Keywords: autopoiesis, nanoparticles, quantum photonics, portable energy, photonic structure, photodynamic therapeutic system

Procedia PDF Downloads 109
270 Impact of Sufism on Indian Cinema: A New Cultural Construct for Mediating Conflict

Authors: Ravi Chaturvedi, Ghanshyam Beniwal

Abstract:

Without going much into the detail of long history of Sufism in the world and the etymological definition of the word ‘Sufi’, it will be sufficient to underline that the concept of Sufism was to focus the mystic power on the spiritual dimension of Islam with a view-shielding the believers from the outwardly and unrealistic dogma of the faith. Sufis adopted rather a liberal view in propagating the religious order of Islam suitable to the cultural and social environment of the land. It is, in fact, a mission of higher religious order of any faith, which disdains strife and conflict in any form. The joy of self-realization being the essence of religion is experienced after a long spiritual practice. India had Sufi and Bhakti (devotion) traditions in Islam and Hinduism, respectively. Both Sufism and Bhakti traditions were based on respect for different religions. The poorer and lower caste Hindus and Muslims were greatly influenced by these traditions. Unlike Ulemas and Brahmans, the Sufi and Bhakti saints were highly tolerant and open to the truth in other faiths. They never adopted sectarian attitudes and were never involved in power struggles. They kept away from power structures. Sufism is integrated with the Indian cinema since its initial days. In the earliest Bollywood movies, Sufism was represented in the form of qawwali which made its way from dargahs (shrines). Mixing it with pop influences, Hindi movies began using Sufi music in a big way only in the current decade. However, of late, songs with Sufi influences have become de rigueur in almost every film being released these days, irrespective of the genre, whether it is a romantic Gangster or a cerebral Corporate. 'Sufi is in the DNA of the Indian sub-continent', according to several contemporary filmmakers, critics, and spectators.The inherent theatricality motivates the performer of the 'Sufi' rituals for a dramatic behavior. The theatrical force of these stages of Sufi practice is so powerful that even the spectator cannot resist himself from being moved. In a multi-cultural country like India, the mediating streams have acquired a multi-layered importance in recent history. The second half of Indian post-colonial era has witnessed a regular chain of some conflicting religio-political waves arising from various sectarian camps in the country, which have compelled the counter forces to activate for keeping the spirit of composite cultural ethos alive. The study has revealed that the Sufi practice methodology is also being adapted for inclusion of spirituality in life at par to Yoga practice. This paper, a part of research study, is an attempt to establish that the Sufism in Indian cinema is one such mediating voice which is very active and alive throughout the length and width of the country continuously bridging the gap between various religious and social factions, and have a significant role to play in future as well.

Keywords: Indian cinema, mediating voice, Sufi, yoga practice

Procedia PDF Downloads 480
269 Multilingual Students Acting as Language Brokers in Italy: Their Points of View and Feelings towards This Activity

Authors: Federica Ceccoli

Abstract:

Italy is undergoing one of its largest migratory waves, and Italian schools are reporting the highest numbers of multilingual students coming from immigrant families and speaking minority languages. For these pupils, who have not perfectly acquired their mother tongue yet, learning a second language may represent a burden on their linguistic development and may have some repercussions on their school performances and relational skills. These are some of the reasons why they have turned out to be those who have the worst grades and the highest school drop-out rates. However, despite these negative outcomes, it has been demonstrated that multilingual immigrant students frequently act as translators or language brokers for their peers or family members who do not speak Italian fluently. This activity has been defined as Child Language Brokering (hereinafter CLB) and it has become a common practice especially in minority communities as immigrants’ children often learn the host language much more quickly than their parents, thus contributing to their family life by acting as language and cultural mediators. This presentation aims to analyse the data collected by a research carried out during the school year 2014-2015 in the province of Ravenna, in the Northern Italian region of Emilia-Romagna, among 126 immigrant students attending junior high schools. The purpose of the study was to analyse by means of a structured questionnaire whether multilingualism matched with language brokering experiences or not and to examine the perspectives of those students who reported having acted as translators using their linguistic knowledge to help people understand each other. The questionnaire consisted of 34 items roughly divided into 2 sections. The first section required multilingual students to provide personal details like their date and place of birth, as well as details about their families (number of siblings, parents’ jobs). In the second section, they were asked about the languages spoken in their families as well as their language brokering experience. The in-depth questionnaire sought to investigate a wide variety of brokering issues such as frequency and purpose of the activity, where, when and which documents young language brokers translate and how they feel about this practice. The results have demonstrated that CLB is a very common practice among immigrants’ children living in Ravenna and almost all students reported positive feelings when asked about their brokering experience with their families and also at school. In line with previous studies, responses to the questionnaire item regarding the people they brokered for revealed that the category ranking first is parents. Similarly, language-brokering activities tend to occur most often at home and the documents they translate the most (either orally or in writing) are notes from teachers. Such positive feelings towards this activity together with the evidence that it occurs very often in schools have laid the foundation for further projects on how this common practice may be valued and used to strengthen the linguistic skills of these multilingual immigrant students and thus their school performances.

Keywords: immigration, language brokering, multilingualism, students' points of view

Procedia PDF Downloads 167
268 The Contact between a Rigid Substrate and a Thick Elastic Layer

Authors: Nicola Menga, Giuseppe Carbone

Abstract:

Although contact mechanics has been widely focused on the study of contacts between half-space, it has been recently pointed out that in presence of finite thickness elastic layers the results of the contact problem show significant difference in terms of the main contact quantities (e.g. contact area, penetration, mean pressure, etc.). Actually, there exist a wide range of industrial application demanding for this kind of studies, such as seals leakage prediction or pressure-sensitive coatings for electrical applications. In this work, we focus on the contact between a rigid profile and an elastic layer of thickness h confined under two different configurations: rigid constrain and applied uniform pressure. The elastic problem at hand has been formalized following Green’s function method and then numerically solved by means of a matrix inversion. We study different contact conditions, both considering and neglecting adhesive interactions at the interface. This leads to different solution techniques: Adhesive contacts equilibrium solution is found, in term of contact area for given penetration, making stationary the total free energy of the system; whereas, adhesiveless contacts are addressed defining an equilibrium criterion, again on the contact area, relying on the fracture mechanics stress intensity factor KI. In particular, we make the KI vanish at the edges of the contact area, as peculiar for adhesiveless elastic contacts. The results are obtained in terms of contact area, penetration, and mean pressure for both adhesive and adhesiveless contact conditions. As expected, in the case of a uniform applied pressure the slab turns out much more compliant than the rigidly constrained one. Indeed, we have observed that the peak value of the contact pressure, for both the adhesive and adhesiveless condition, is much higher for the rigidly constrained configuration than in the case of applied uniform pressure. Furthermore, we observed that, for little contact area, both systems behave the same and the pull-off occurs at approximately the same contact area and mean contact pressure. This is an expected result since in this condition the ratio between the layers thickness and the contact area is very high and both layer configurations recover the half-space behavior where the pull-off occurrence is mainly controlled by the adhesive interactions, which are kept constant among the cases.

Keywords: contact mechanics, adhesion, friction, thick layer

Procedia PDF Downloads 495
267 Development of a Sprayable Piezoelectric Material for E-Textile Applications

Authors: K. Yang, Y. Wei, M. Zhang, S. Yong, R. Torah, J. Tudor, S. Beeby

Abstract:

E-textiles are traditional textiles with integrated electronic functionality. It is an emerging innovation with numerous applications in fashion, wearable computing, health and safety monitoring, and the military and medical sectors. The piezoelectric effect is a widespread and versatile transduction mechanism used in sensor and actuator applications. Piezoelectric materials produce electric charge when stressed. Conversely, mechanical deformation occurs when an electric field is applied across the material. Lead Zirconate Titanate (PZT) is a widely used piezoceramic material which has been used to fabricate e-textiles through screen printing, electro spinning and hydrothermal synthesis. This paper explores an alternative fabrication process: Spray coating. Spray coating is a straightforward and cost effective fabrication method applicable on both flat and curved surfaces. It can also be applied selectively by spraying through a stencil which enables the required design to be realised on the substrate. This work developed a sprayable PZT based piezoelectric ink consisting of a binder (Fabink-Binder-01), PZT powder (80 % 2 µm and 20 % 0.8 µm) and acetone as a thinner. The optimised weight ratio of PZT/binder is 10:1. The components were mixed using a SpeedMixer DAC 150. The fabrication processes is as follows: 1) Screen print a UV-curable polyurethane interface layer on the textile to create a smooth textile surface. 2) Spray one layer of a conductive silver polymer ink through a pre-designed stencil and dry at 90 °C for 10 minutes to form the bottom electrode. 3) Spray three layers of the PZT ink through a pre-designed stencil and dry at 90 °C for 10 minutes for each layer to form a total thickness of ~250µm PZT layer. 4) Spray one layer of the silver ink through a pre-designed stencil on top of the PZT layer and dry at 90 °C for 10 minutes to form the top electrode. The domains of the PZT elements were aligned by polarising the material at an elevated temperature under a strong electric field. A d33 of 37 pC/N has been achieved after polarising at 90 °C for 6 minutes with an electric field of 3 MV/m. The application of the piezoelectric textile was demonstrated by fabricating a pressure sensor to switch an LED on/off. Other potential applications on e-textiles include motion sensing, energy harvesting, force sensing and a buzzer.

Keywords: piezoelectric, PZT, spray coating, pressure sensor, e-textile

Procedia PDF Downloads 455
266 Activation-TV® to Reduce Elderly Loneliness and Insecurity

Authors: Hannele Laaksonen, Seija Nyqvist, Kari Nurmes

Abstract:

Objectives: In the year 2011 the City of Vaasa started to develop know-how in the technology and the introduction of services for aging people in cooperation with the Polytechnic Novia University of Applied Sciences and VAMK, University of Applied Sciences. The project´s targets included: to help elderly people to maintain their ability to function, to provide them social and physical activities, to prevent their social exclusion, to decrease their feelings of loneliness and insecurity and to develop their technical know-how. Methods: The project was built based on open source code, tailor-made service system and user interface for the elderly living at home and their families, based on the users´ expectations and experiences of services. Activation-TV®-project vas carried out 1.4.2011-31.3.2014. A pilot group of eight elderly persons, who were living at home, were selected to the project. All necessary technical means as well as guidance and teaching equipment were provided to the pilot group. The students of University of Applied Sciences (VAMK, Novia) and employees of Center of Ageing were made all programs to the Activation-TV®. The project group were interviewed after and before intervention. The data were evaluated both qualitatively and quantitatively. Results: The built service includes a video library, a group room for interactive programs and a personal room for bilateral meetings and direct shipment. The program is bilingual and produced in both national languages. The Activation TV® reduced elderly peoples´ (n=8) feelings of emptiness, added mental well-being and quality of life with social contacts. Relatives felt, that they were able to get in to older peoples´ everyday life with Activation TV®. Discussion: The built application was tailored to the model that has not been developed elsewhere in Finland. This model can be copied from one server to another and thus transferred to other municipalities but the program requires its own personnel system management and maintenance as well as program production cooperation between the different actors. This service can be used for the elderly who are living at home without dementia.

Keywords: mental well-being, quality of life, elderly people, Finland

Procedia PDF Downloads 330
265 Relevance of Copyright and Trademark in the Gaming Industry

Authors: Deeksha Karunakar

Abstract:

The gaming industry is one of the biggest industries in the world. Video games are interactive works of authorship that require the execution of a computer programme on specialized hardware but which also incorporate a wide variety of other artistic mediums, such as music, scripts, stories, video, paintings, and characters, into which the player takes an active role. Therefore, video games are not made as singular, simple works but rather as a collection of elements that, if they reach a certain level of originality and creativity, can each be copyrighted on their own. A video game is made up of a wide variety of parts, all of which combine to form the overall sensation that we, the players, have while playing. The entirety of the components is implemented in the form of software code, which is then translated into the game's user interface. Even while copyright protection is already in place for the coding of software, the work that is produced because of that coding can also be protected by copyright. This includes the game's storyline or narrative, its characters, and even elements of the code on their own. In each sector, there is a potential legal framework required, and the gaming industry also requires legal frameworks. This represents the importance of intellectual property laws in each sector. This paper will explore the beginnings of video games, the various aspects of game copyrights, and the approach of the courts, including examples of a few different instances. Although the creative arts have always been known to draw inspiration from and build upon the works of others, it has not always been simple to evaluate whether a game has been cloned. The video game business is experiencing growth as it has never seen before today. The majority of today's video games are both pieces of software and works of audio-visual art. Even though the existing legal framework does not have a clause specifically addressing video games, it is clear that there is a great many alternative means by which this protection can be granted. This paper will represent the importance of copyright and trademark laws in the gaming industry and its regulations with the help of relevant case laws via utilizing doctrinal methodology to support its findings. The aim of the paper is to make aware of the applicability of intellectual property laws in the gaming industry and how the justice system is evolving to adapt to such new industries. Furthermore, it will provide in-depth knowledge of their relationship with each other.

Keywords: copyright, DMCA, gaming industry, trademark, WIPO

Procedia PDF Downloads 55
264 A Non-Invasive Neonatal Jaundice Screening Device Measuring Bilirubin on Eyes

Authors: Li Shihao, Dieter Trau

Abstract:

Bilirubin is a yellow substance that is made when the body breaks down old red blood cells. High levels of bilirubin can cause jaundice, a condition that makes the newborn's skin and the white part of the eyes look yellow. Jaundice is a serial-killer in developing countries in Southeast Asia such as Myanmar and most parts of Africa where jaundice screening is largely unavailable. Worldwide, 60% of newborns experience infant jaundice. One in ten will require therapy to prevent serious complications and lifelong neurologic sequelae. Limitations of current solutions: - Blood test: Blood tests are painful may largely unavailable in poor areas of developing countries, and also can be costly and unsafe due to the insufficient investment and lack of access to health care systems. - Transcutaneous jaundice-meter: 1) can only provide reliable results to caucasian newborns, due to skin pigmentations since current technologies measure bilirubin by the color of the skin. Basically, the darker the skin is, the harder to measure, 2) current jaundice meters are not affordable for most underdeveloped areas in Africa like Kenya and Togo, 3) fat tissue under the skin also influences the accuracy, which will give overestimated results, 4) current jaundice meters are not reliable after treatment (phototherapy) because bilirubin levels underneath the skin will be reduced first, while overall levels may be quite high. Thus, there is an urgent need for a low-cost non-invasive device, which can be effective not only for caucasian babies but also Asian and African newborns, to save lives at the most vulnerable time and prevent any complications like brain damage. Instead of measuring bilirubin on skin, we proposed a new method to do the measurement on the sclera, which can avoid the difference of skin pigmentations and ethnicities, due to the necessity for the sclera to be white regardless of racial background. This is a novel approach for measuring bilirubin by an optical method of light reflection off the white part of the eye. Moreover, the device is connected to a smart device, which can provide a user-friendly interface and the ability to record the clinical data continuously A disposable eye cap will be provided avoiding contamination and fixing the distance to the eye.

Keywords: Jaundice, bilirubin, non-invasive, sclera

Procedia PDF Downloads 222
263 Electromagnetic Modeling of a MESFET Transistor Using the Moments Method Combined with Generalised Equivalent Circuit Method

Authors: Takoua Soltani, Imen Soltani, Taoufik Aguili

Abstract:

The communications' and radar systems' demands give rise to new developments in the domain of active integrated antennas (AIA) and arrays. The main advantages of AIA arrays are the simplicity of fabrication, low cost of manufacturing, and the combination between free space power and the scanner without a phase shifter. The integrated active antenna modeling is the coupling between the electromagnetic model and the transport model that will be affected in the high frequencies. Global modeling of active circuits is important for simulating EM coupling, interaction between active devices and the EM waves, and the effects of EM radiation on active and passive components. The current review focuses on the modeling of the active element which is a MESFET transistor immersed in a rectangular waveguide. The proposed EM analysis is based on the Method of Moments combined with the Generalised Equivalent Circuit method (MOM-GEC). The Method of Moments which is the most common and powerful software as numerical techniques have been used in resolving the electromagnetic problems. In the class of numerical techniques, MOM is the dominant technique in solving of Maxwell and Transport’s integral equations for an active integrated antenna. In this situation, the equivalent circuit is introduced to the development of an integral method formulation based on the transposition of field problems in a Generalised equivalent circuit that is simpler to treat. The method of Generalised Equivalent Circuit (MGEC) was suggested in order to represent integral equations circuits that describe the unknown electromagnetic boundary conditions. The equivalent circuit presents a true electric image of the studied structures for describing the discontinuity and its environment. The aim of our developed method is to investigate the antenna parameters such as the input impedance and the current density distribution and the electric field distribution. In this work, we propose a global EM modeling of the MESFET AsGa transistor using an integral method. We will begin by describing the modeling structure that allows defining an equivalent EM scheme translating the electromagnetic equations considered. Secondly, the projection of these equations on common-type test functions leads to a linear matrix equation where the unknown variable represents the amplitudes of the current density. Solving this equation resulted in providing the input impedance, the distribution of the current density and the electric field distribution. From electromagnetic calculations, we were able to present the convergence of input impedance for different test function number as a function of the guide mode numbers. This paper presents a pilot study to find the answer to map out the variation of the existing current evaluated by the MOM-GEC. The essential improvement of our method is reducing computing time and memory requirements in order to provide a sufficient global model of the MESFET transistor.

Keywords: active integrated antenna, current density, input impedance, MESFET transistor, MOM-GEC method

Procedia PDF Downloads 189
262 LTE Modelling of a DC Arc Ignition on Cold Electrodes

Authors: O. Ojeda Mena, Y. Cressault, P. Teulet, J. P. Gonnet, D. F. N. Santos, MD. Cunha, M. S. Benilov

Abstract:

The assumption of plasma in local thermal equilibrium (LTE) is commonly used to perform electric arc simulations for industrial applications. This assumption allows to model the arc using a set of magneto-hydromagnetic equations that can be solved with a computational fluid dynamic code. However, the LTE description is only valid in the arc column, whereas in the regions close to the electrodes the plasma deviates from the LTE state. The importance of these near-electrode regions is non-trivial since they define the energy and current transfer between the arc and the electrodes. Therefore, any accurate modelling of the arc must include a good description of the arc-electrode phenomena. Due to the modelling complexity and computational cost of solving the near-electrode layers, a simplified description of the arc-electrode interaction was developed in a previous work to study a steady high-pressure arc discharge, where the near-electrode regions are introduced at the interface between arc and electrode as boundary conditions. The present work proposes a similar approach to simulate the arc ignition in a free-burning arc configuration following an LTE description of the plasma. To obtain the transient evolution of the arc characteristics, appropriate boundary conditions for both the near-cathode and the near-anode regions are used based on recent publications. The arc-cathode interaction is modeled using a non-linear surface heating approach considering the secondary electron emission. On the other hand, the interaction between the arc and the anode is taken into account by means of the heating voltage approach. From the numerical modelling, three main stages can be identified during the arc ignition. Initially, a glow discharge is observed, where the cold non-thermionic cathode is uniformly heated at its surface and the near-cathode voltage drop is in the order of a few hundred volts. Next, a spot with high temperature is formed at the cathode tip followed by a sudden decrease of the near-cathode voltage drop, marking the glow-to-arc discharge transition. During this stage, the LTE plasma also presents an important increase of the temperature in the region adjacent to the hot spot. Finally, the near-cathode voltage drop stabilizes at a few volts and both the electrode and plasma temperatures reach the steady solution. The results after some seconds are similar to those presented for thermionic cathodes.

Keywords: arc-electrode interaction, thermal plasmas, electric arc simulation, cold electrodes

Procedia PDF Downloads 109
261 Seafloor and Sea Surface Modelling in the East Coast Region of North America

Authors: Magdalena Idzikowska, Katarzyna Pająk, Kamil Kowalczyk

Abstract:

Seafloor topography is a fundamental issue in geological, geophysical, and oceanographic studies. Single-beam or multibeam sonars attached to the hulls of ships are used to emit a hydroacoustic signal from transducers and reproduce the topography of the seabed. This solution provides relevant accuracy and spatial resolution. Bathymetric data from ships surveys provides National Centers for Environmental Information – National Oceanic and Atmospheric Administration. Unfortunately, most of the seabed is still unidentified, as there are still many gaps to be explored between ship survey tracks. Moreover, such measurements are very expensive and time-consuming. The solution is raster bathymetric models shared by The General Bathymetric Chart of the Oceans. The offered products are a compilation of different sets of data - raw or processed. Indirect data for the development of bathymetric models are also measurements of gravity anomalies. Some forms of seafloor relief (e.g. seamounts) increase the force of the Earth's pull, leading to changes in the sea surface. Based on satellite altimetry data, Sea Surface Height and marine gravity anomalies can be estimated, and based on the anomalies, it’s possible to infer the structure of the seabed. The main goal of the work is to create regional bathymetric models and models of the sea surface in the area of the east coast of North America – a region of seamounts and undulating seafloor. The research includes an analysis of the methods and techniques used, an evaluation of the interpolation algorithms used, model thickening, and the creation of grid models. Obtained data are raster bathymetric models in NetCDF format, survey data from multibeam soundings in MB-System format, and satellite altimetry data from Copernicus Marine Environment Monitoring Service. The methodology includes data extraction, processing, mapping, and spatial analysis. Visualization of the obtained results was carried out with Geographic Information System tools. The result is an extension of the state of the knowledge of the quality and usefulness of the data used for seabed and sea surface modeling and knowledge of the accuracy of the generated models. Sea level is averaged over time and space (excluding waves, tides, etc.). Its changes, along with knowledge of the topography of the ocean floor - inform us indirectly about the volume of the entire water ocean. The true shape of the ocean surface is further varied by such phenomena as tides, differences in atmospheric pressure, wind systems, thermal expansion of water, or phases of ocean circulation. Depending on the location of the point, the higher the depth, the lower the trend of sea level change. Studies show that combining data sets, from different sources, with different accuracies can affect the quality of sea surface and seafloor topography models.

Keywords: seafloor, sea surface height, bathymetry, satellite altimetry

Procedia PDF Downloads 67
260 Open Source Cloud Managed Enterprise WiFi

Authors: James Skon, Irina Beshentseva, Michelle Polak

Abstract:

Wifi solutions come in two major classes. Small Office/Home Office (SOHO) WiFi, characterized by inexpensive WiFi routers, with one or two service set identifiers (SSIDs), and a single shared passphrase. These access points provide no significant user management or monitoring, and no aggregation of monitoring and control for multiple routers. The other solution class is managed enterprise WiFi solutions, which involve expensive Access Points (APs), along with (also costly) local or cloud based management components. These solutions typically provide portal based login, per user virtual local area networks (VLANs), and sophisticated monitoring and control across a large group of APs. The cost for deploying and managing such managed enterprise solutions is typically about 10 fold that of inexpensive consumer APs. Low revenue organizations, such as schools, non-profits, non-government organizations (NGO's), small businesses, and even homes cannot easily afford quality enterprise WiFi solutions, though they may need to provide quality WiFi access to their population. Using available lower cost Wifi solutions can significantly reduce their ability to provide reliable, secure network access. This project explored and created a new approach for providing secured managed enterprise WiFi based on low cost hardware combined with both new and existing (but modified) open source software. The solution provides a cloud based management interface which allows organizations to aggregate the configuration and management of small, medium and large WiFi solutions. It utilizes a novel approach for user management, giving each user a unique passphrase. It provides unlimited SSID's across an unlimited number of WiFI zones, and the ability to place each user (and all their devices) on their own VLAN. With proper configuration it can even provide user local services. It also allows for users' usage and quality of service to be monitored, and for users to be added, enabled, and disabled at will. As inferred above, the ultimate goal is to free organizations with limited resources from the expense of a commercial enterprise WiFi, while providing them with most of the qualities of such a more expensive managed solution at a fraction of the cost.

Keywords: wifi, enterprise, cloud, managed

Procedia PDF Downloads 82
259 A Challenge to Conserve Moklen Ethnic House: Case Study in Tubpla Village, Phang Nga Province, Southern Thailand

Authors: M. Attavanich, H. Kobayashi

Abstract:

Moklen is a sub-group of ethnic minority in Thailand. In the past, they were vagabonds of the sea. Their livelihood relied on the sea but they built temporary shelters to avoid strong wind and waves during monsoon season. Recently, they have permanently settled on land along coastal area and mangrove forest in Phang Nga and Phuket Province, Southern Thailand. Moklen people have their own housing culture: the Moklen ethnic house was built from local natural materials, indicating a unique structure and design. Its wooden structure is joined by rattan ropes. The construction process is very unique because of using body-based unit of measurement for design and construction. However, there are several threats for those unique structures. One of the most important threats on Moklen ethnic house is tsunami. Especially the 2004 Indian Ocean Tsunami caused widely damage to Southern Thailand and Phang Nga province was the most affected area. In that time, Moklen villages which are located along the coastal area also affected calamitously. In order to recover the damage in affected villages, mostly new modern style houses were provided by aid agencies. This process has caused a significant impact on Moklen housing culture. Not only tsunami, but also modernization has an influence on the changing appearance of the Moklen houses and the effect of modernization has been started to experience before the tsunami. As a result, local construction knowledge is very limited nowadays because the number of elderly people in Moklen has been decreasing drastically. Last but not the least, restrictions of construction materials which are originally provided from accessible mangroves, create limitations in building a Moklen house. In particular, after the Reserved Forest Act, wood chopping without any permission has become illegal. These are some of the most important reasons for Moklen ethnic houses to disappear. Nevertheless, according to the results of field surveys done in 2013 in Phang Nga province, it is found out that some Moklen ethnic houses are still available in Tubpla Village, but only a few. Next survey in the same area in 2014 showed that number of Moklen houses in the village has been started to increase significantly. That proves that there is a high potential to conserve Moklen houses. Also the project of our research team in February 2014 contributed to continuation of Moklen ethnic house. With the cooperation of the village leader and our team, it was aimed to construct a Moklen house with the help of local participants. For the project, villagers revealed the building knowledge and techniques, and in the end, project helped community to understand the value of their houses. Also, it was a good opportunity for Moklen children to learn about their culture. In addition, NGOs recently have started to support ecotourism projects in the village. It not only helps to preserve a way of life, but also contributes to preserve indigenous knowledge and techniques of Moklen ethnic house. This kind of supporting activities are important for the conservation of Moklen ethnic houses.

Keywords: conservation, construction project, Moklen Ethnic House, 2004 Indian Ocean tsunami

Procedia PDF Downloads 298
258 Model Order Reduction of Complex Airframes Using Component Mode Synthesis for Dynamic Aeroelasticity Load Analysis

Authors: Paul V. Thomas, Mostafa S. A. Elsayed, Denis Walch

Abstract:

Airframe structural optimization at different design stages results in new mass and stiffness distributions which modify the critical design loads envelop. Determination of aircraft critical loads is an extensive analysis procedure which involves simulating the aircraft at thousands of load cases as defined in the certification requirements. It is computationally prohibitive to use a Global Finite Element Model (GFEM) for the load analysis, hence reduced order structural models are required which closely represent the dynamic characteristics of the GFEM. This paper presents the implementation of Component Mode Synthesis (CMS) method for the generation of high fidelity Reduced Order Model (ROM) of complex airframes. Here, sub-structuring technique is used to divide the complex higher order airframe dynamical system into a set of subsystems. Each subsystem is reduced to fewer degrees of freedom using matrix projection onto a carefully chosen reduced order basis subspace. The reduced structural matrices are assembled for all the subsystems through interface coupling and the dynamic response of the total system is solved. The CMS method is employed to develop the ROM of a Bombardier Aerospace business jet which is coupled with an aerodynamic model for dynamic aeroelasticity loads analysis under gust turbulence. Another set of dynamic aeroelastic loads is also generated employing a stick model of the same aircraft. Stick model is the reduced order modelling methodology commonly used in the aerospace industry based on stiffness generation by unitary loading application. The extracted aeroelastic loads from both models are compared against those generated employing the GFEM. Critical loads Modal participation factors and modal characteristics of the different ROMs are investigated and compared against those of the GFEM. Results obtained show that the ROM generated using Craig Bampton CMS reduction process has a superior dynamic characteristics compared to the stick model.

Keywords: component mode synthesis, craig bampton reduction method, dynamic aeroelasticity analysis, model order reduction

Procedia PDF Downloads 198