Search results for: adaptive random testing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5989

Search results for: adaptive random testing

4189 Empirical Study From Final Exams of Graduate Courses in Computer Science to Demystify the Notion of an Average Software Engineer and Offer a Direction to Address Diversity of Professional Backgrounds of a Student Body

Authors: Alex Elentukh

Abstract:

The paper is based on data collected from final exams administered during five years of teaching the graduate course in software engineering. The visualization instrument with four distinct personas has been used to improve the effectiveness of each class. The study offers a plethora of clues toward students' behavioral preferences. Diversity among students (professional background, physical proximity) is too significant to assume a single face of a learner. This is particularly true for a body of online graduate students in computer science. Conclusions of the study (each learner is unique, and each class is unique) are extrapolated to demystify the notion of an 'average software engineer.' An immediate direction for an educator is to ensure a course applies to a wide audience of very different individuals. On the other hand, a student should be clear about his/her abilities and preferences - to follow the most effective learning path.

Keywords: K.3.2 computer and information science education, learner profiling, adaptive learning, software engineering

Procedia PDF Downloads 103
4188 Understanding the Nature of Student Conceptions of Mathematics: A Study of Mathematics Students in Higher Education

Authors: Priscilla Eng Lian Murphy

Abstract:

This study examines the nature of student conceptions of mathematics in higher education using quantitative research methods. This study validates the Short Form of Conception of Mathematics survey as well as reveals the epistemological nature of student conceptions of mathematics. Using a random sample of mathematics students in Australia and New Zealand (N=274), this paper highlighted three key findings, of relevance to lecturers in higher education. Firstly, descriptive data shows that mathematics students in Australia and New Zealand reported that mathematics is about numbers and components, models and life. Secondly, models conceptions of mathematics predicted strong examination performances using regression analyses; and thirdly, there is a positive correlation between high mathematics examination scores and cohesive conceptions of mathematics.

Keywords: higher education, learning mathematics, mathematics performances, student conceptions of mathematics

Procedia PDF Downloads 264
4187 Experimental Analysis of Composite Timber-Concrete Beam with CFRP Reinforcement

Authors: O. Vlcek

Abstract:

The paper deals with current issues in research of advanced methods to increase reliability of traditional timber structural elements. It analyses the issue of strengthening of bent timber beams, such as ceiling beams in old (historical) buildings with additional concrete slab in combination with externally bonded fibre - reinforced polymer. The paper describes experimental testing of composite timber-concrete beam with FRP reinforcement and compares results with FEM analysis.

Keywords: timber-concrete composite, strengthening, fibre-reinforced polymer, experimental analysis

Procedia PDF Downloads 472
4186 Perceived Family Functioning 12 Months after the COVID-19 Outbreak Has Been Declared a Global Pandemic

Authors: Snezana Svetozarevic

Abstract:

The aim of the research was to determine whether there were significant changes in perceptions of family functioning by families in Serbia 12 months after the coronavirus (COVID-19) outbreak has been declared a global pandemic. Above all, what has protected families in the face of the global crisis caused by COVID-19. The Self-Report Family Inventory, II version (SFI-II; Beavers and Hampson, 2013) and the Inventory of Family Protective Factors (IFPF; Gardner et al., 2008) were used to assess family functioning and protective factors. Currently, families perceive their functioning as more problematic regarding family emotional expressiveness, conflict, cohesion, and global family health/competence. Adaptive appraisal based on positive coping experiences significantly predicted values on emotional expressiveness, conflict, leadership, and global family health/competence dimensions -a higher prevalence of this factor was associated with more optimal family functioning and fewer problems. The growing problem in family functioning with the beginning of the pandemic is inevitable. However, our research confirmed that it is not enough to take into account what families do to survive. It is equally important to learn about what they do to thrive i.e., to study the family resilience.

Keywords: family, coping, resilience, pandemic, COVID-19

Procedia PDF Downloads 97
4185 Optimizing Telehealth Internet of Things Integration: A Sustainable Approach through Fog and Cloud Computing Platforms for Energy Efficiency

Authors: Yunyong Guo, Sudhakar Ganti, Bryan Guo

Abstract:

The swift proliferation of telehealth Internet of Things (IoT) devices has sparked concerns regarding energy consumption and the need for streamlined data processing. This paper presents an energy-efficient model that integrates telehealth IoT devices into a platform based on fog and cloud computing. This integrated system provides a sustainable and robust solution to address the challenges. Our model strategically utilizes fog computing as a localized data processing layer and leverages cloud computing for resource-intensive tasks, resulting in a significant reduction in overall energy consumption. The incorporation of adaptive energy-saving strategies further enhances the efficiency of our approach. Simulation analysis validates the effectiveness of our model in improving energy efficiency for telehealth IoT systems, particularly when integrated with localized fog nodes and both private and public cloud infrastructures. Subsequent research endeavors will concentrate on refining the energy-saving model, exploring additional functional enhancements, and assessing its broader applicability across various healthcare and industry sectors.

Keywords: energy-efficient, fog computing, IoT, telehealth

Procedia PDF Downloads 76
4184 An Image Segmentation Algorithm for Gradient Target Based on Mean-Shift and Dictionary Learning

Authors: Yanwen Li, Shuguo Xie

Abstract:

In electromagnetic imaging, because of the diffraction limited system, the pixel values could change slowly near the edge of the image targets and they also change with the location in the same target. Using traditional digital image segmentation methods to segment electromagnetic gradient images could result in lots of errors because of this change in pixel values. To address this issue, this paper proposes a novel image segmentation and extraction algorithm based on Mean-Shift and dictionary learning. Firstly, the preliminary segmentation results from adaptive bandwidth Mean-Shift algorithm are expanded, merged and extracted. Then the overlap rate of the extracted image block is detected before determining a segmentation region with a single complete target. Last, the gradient edge of the extracted targets is recovered and reconstructed by using a dictionary-learning algorithm, while the final segmentation results are obtained which are very close to the gradient target in the original image. Both the experimental results and the simulated results show that the segmentation results are very accurate. The Dice coefficients are improved by 70% to 80% compared with the Mean-Shift only method.

Keywords: gradient image, segmentation and extract, mean-shift algorithm, dictionary iearning

Procedia PDF Downloads 266
4183 Backstepping Controller for a Variable Wind Speed Energy Conversion System Based on a DFIG

Authors: Sara Mensou, Ahmed Essadki, Issam Minka, Tamou Nasser, Badr Bououlid Idrissi

Abstract:

In this paper we present a contribution for the modeling and control of wind energy conversion system based on a Doubly Fed Induction Generator (DFIG). Since the wind speed is random the system has to produce an optimal electrical power to the Network and ensures important strength and stability. In this work, the Backstepping controller is used to control the generator via two converter witch placed a DC bus capacitor and connected to the grid by a Filter R-L, in order to optimize capture wind energy. All is simulated and presented under MATLAB/Simulink Software to show performance and robustness of the proposed controller.

Keywords: wind turbine, doubly fed induction generator, MPPT control, backstepping controller, power converter

Procedia PDF Downloads 189
4182 Ultraviolet Lasing from Vertically-Aligned ZnO Nanowall Array

Authors: Masahiro Takahashi, Kosuke Harada, Shihomi Nakao, Mitsuhiro Higashihata, Hiroshi Ikenoue, Daisuke Nakamura, Tatsuo Okada

Abstract:

Zinc oxide (ZnO) is one of the light emitting materials in ultraviolet (UV) region. In addition, ZnO nanostructures are also attracting increasing research interest as building blocks for UV optoelectronic applications. We have succeeded in synthesizing vertically-aligned ZnO nanostructures by laser interference patterning, which is catalyst-free and non-contact technique. In this study, vertically-aligned ZnO nanowall arrays were synthesized using two-beam interference. The maximum height and average thickness of the ZnO nanowalls were about 4.5 µm and 200 nm, respectively. UV lasing from a piece of the ZnO nanowall was obtained under the third harmonic of a Q-switched Nd:YAG laser excitation, and the estimated threshold power density for lasing was about 150 kW/cm2. Furthermore, UV lasing from the vertically-aligned ZnO nanowall was also achieved. The results indicate that ZnO nanowalls can be applied to random laser.

Keywords: zinc oxide, nanowall, interference laser, UV lasing

Procedia PDF Downloads 504
4181 VR/AR Applications in Personalized Learning

Authors: Andy Wang

Abstract:

Personalized learning refers to an educational approach that tailors instruction to meet the unique needs, interests, and abilities of each learner. This method of learning aims at providing students with a customized learning experience that is more engaging, interactive, and relevant to their personal lives. With generative AI technology, the author has developed a Personal Tutoring Bot (PTB) that supports personalized learning. The author is currently testing PTB in his EE 499 – Microelectronics Metrology course. Virtual Reality (VR) and Augmented Reality (AR) provide interactive and immersive learning environments that can engage student in online learning. This paper presents the rationale of integrating VR/AR tools in PTB and discusses challenges and solutions of incorporating VA/AR into the Personal Tutoring Bot (PTB).

Keywords: personalized learning, online education, hands-on practice, VR/AR tools

Procedia PDF Downloads 68
4180 Advancing Early Intervention Strategies for United States Adolescents and Young Adults with Schizophrenia in the Post-COVID-19 Era

Authors: Peggy M. Randon, Lisa Randon

Abstract:

Introduction: The post-COVID-19 era has presented unique challenges for addressing complex mental health issues, particularly due to exacerbated stress, increased social isolation, and disrupted continuity of care. This article outlines relevant health disparities and policy implications within the context of the United States while maintaining international relevance. Methods: A comprehensive literature review (including studies, reports, and policy documents) was conducted to examine concerns related to childhood-onset schizophrenia and the impact on patients and their families. Qualitative and quantitative data were synthesized to provide insights into the complex etiology of schizophrenia, the effects of the pandemic, and the challenges faced by socioeconomically disadvantaged populations. Case studies were employed to illustrate real-world examples and areas requiring policy reform. Results: Early intervention in childhood is crucial for preventing or mitigating the long-term impact of complex psychotic disorders, particularly schizophrenia. A comprehensive understanding of the genetic, environmental, and physiological factors contributing to the development of schizophrenia is essential. The COVID-19 pandemic worsened symptoms and disrupted treatment for many adolescent patients with schizophrenia, emphasizing the need for adaptive interventions and the utilization of virtual platforms. Health disparities, including stigma, financial constraints, and language or cultural barriers, further limit access to care, especially for socioeconomically disadvantaged populations. Policy implications: Current US health policies inadequately support patients with schizophrenia. The limited availability of longitudinal care, insufficient resources for families, and stigmatization represent ongoing policy challenges. Addressing these issues necessitates increased research funding, improved access to affordable treatment plans, and cultural competency training for healthcare providers. Public awareness campaigns are crucial to promote knowledge, awareness, and acceptance of mental health disorders. Conclusion: The unique challenges faced by children and families in the US affected by schizophrenia and other psychotic disorders have yet to be adequately addressed on institutional and systemic levels. The relevance of findings to an international audience is emphasized by examining the complex factors contributing to the onset of psychotic disorders and their global policy implications. The broad impact of the COVID-19 pandemic on mental health underscores the need for adaptive interventions and global responses. Addressing policy challenges, improving access to care, and reducing the stigma associated with mental health disorders are crucial steps toward enhancing the lives of adolescents and young adults with schizophrenia and their family members. The implementation of virtual platforms can help overcome barriers and ensure equitable access to support and resources for all patients, enabling them to lead healthy and fulfilling lives.

Keywords: childhood, schizophrenia, policy, United, States, health, disparities

Procedia PDF Downloads 76
4179 From Modelled Design to Reality through Material and Machinery Lab and Field Tests: Porous Concrete Carparks at the Wanda Metropolitano Stadium in Madrid

Authors: Manuel de Pazos-Liano, Manuel Cifuentes-Antonio, Juan Fisac-Gozalo, Sara Perales-Momparler, Carlos Martinez-Montero

Abstract:

The first-ever game in the Wanda Metropolitano Stadium, the new home of the Club Atletico de Madrid, was played on September 16, 2017, thanks to the work of a multidisciplinary team that made it possible to combine urban development with sustainability goals. The new football ground sits on a 1.2 km² land owned by the city of Madrid. Its construction has dramatically increased the sealed area of the site (transforming the runoff coefficient from 0.35 to 0.9), and the surrounding sewer network has no capacity for that extra flow. As an alternative to enlarge the existing 2.5 m diameter pipes, it was decided to detain runoff on site by means of an integrated and durable infrastructure that would not blow up the construction cost nor represent a burden on the municipality’s maintenance tasks. Instead of the more conventional option of building a large concrete detention tank, the decision was taken on the use of pervious pavement on the 3013 car parking spaces for sub-surface water storage, a solution aligned with the city water ordinance and the Madrid + Natural project. Making the idea a reality, in only five months and during the summer season (which forced to pour the porous concrete only overnight), was a challenge never faced before in Spain, that required of innovation both at the material as well as the machinery side. The process consisted on: a) defining the characteristics required for the porous concrete (compressive strength of 15 N/mm2 and 20% voids); b) testing of different porous concrete dosages at the construction company laboratory; c) stablishing the cross section in order to provide structural strength and sufficient water detention capacity (20 cm porous concrete over a 5 cm 5/10 gravel, that sits on a 50 cm coarse 40/50 aggregate sub-base separated by a virgin fiber polypropylene geotextile fabric); d) hydraulic computer modelling (using the Full Hydrograph Method based on the Wallingford Procedure) to estimate design peak flows decrease (an average of 69% at the three car parking lots); e) use of a variety of machinery for the application of the porous concrete to achieve both structural strength and permeable surface (including an inverse rotating rolling imported from USA, and the so-called CMI, a sliding concrete paver used in the construction of motorways with rigid pavements); f) full-scale pilots and final construction testing by an accredited laboratory (pavement compressive strength average value of 15 N/mm2 and 0,0032 m/s permeability). The continuous testing and innovating construction process explained in detail within this article, allowed for a growing performance with time, finally proving the use of the CMI valid also for large porous car park applications. All this process resulted in a successful story that converts the Wanda Metropolitano Stadium into a great demonstration site that will help the application of the Spanish Royal Decree 638/2016 (it also counts with rainwater harvesting for grass irrigation).

Keywords: construction machinery, permeable carpark, porous concrete, SUDS, sustainable develpoment

Procedia PDF Downloads 144
4178 Production and Characterization of Al-BN Composite Materials by Using Powder Metallurgy

Authors: Ahmet Yonetken, Ayhan Erol

Abstract:

Aluminum matrix composites containing 3, 6, 9, 12 and 15% BN has been fabricated by conventional microwave sintering at 550°C temperature. Compounds formation between Al and BN powders is observed after sintering under Ar shroud. XRD, SEM (Scanning Electron Microscope), mechanical testing and measurements were employed to characterize the properties of Al + BN composite. Experimental results suggest that the best properties as hardness 42,62 HV were obtained for Al+12% BN composite. In this study, the powder metallurgy method was used. It is aimed to produce a light composite with Al matrix BN powders. It has been increased in strength and hardness besides its lightness. Ceramic powders are added to improve mechanical properties.

Keywords: ceramic-metal composites, proporties, powder metallurgy, sintering

Procedia PDF Downloads 195
4177 The Study of Effect the Number of Cluster in the Branch on Vegetative Characteristics of Pistacia vera

Authors: Seyeh Hassan Eftekhar Afzali, Hamid Mohammadi

Abstract:

Pistachio is like almond but the second cycle of growth (third phase) has rather fast growth. This is caused to add final mass of product. When the germ grows, it and its cover are reached to the final size during six week period. As starting the second phase, the lignifications of pericarp is begun and continued for 4 or 6 weeks. Physiological maturity or easy separation of green from scutum is specified. This test was done according to random blocks of 6 orchards in the type of Ahmad Aghaie with 4 iterations. Vegetative properties of branch are investigated. The results of the bunch numbers on the growth of branch in current year are shown that the most growth of branch is happened by trimming of one and two bunches of the branch and the most diameter of the branch is happened by trimming of one to four bunches of branch. Trimming of a bunch is caused the most number of pistachio products in the bunch.

Keywords: pistachio, cluster, bud, fruit, branch

Procedia PDF Downloads 476
4176 Fault Diagnosis of Nonlinear Systems Using Dynamic Neural Networks

Authors: E. Sobhani-Tehrani, K. Khorasani, N. Meskin

Abstract:

This paper presents a novel integrated hybrid approach for fault diagnosis (FD) of nonlinear systems. Unlike most FD techniques, the proposed solution simultaneously accomplishes fault detection, isolation, and identification (FDII) within a unified diagnostic module. At the core of this solution is a bank of adaptive neural parameter estimators (NPE) associated with a set of single-parameter fault models. The NPEs continuously estimate unknown fault parameters (FP) that are indicators of faults in the system. Two NPE structures including series-parallel and parallel are developed with their exclusive set of desirable attributes. The parallel scheme is extremely robust to measurement noise and possesses a simpler, yet more solid, fault isolation logic. On the contrary, the series-parallel scheme displays short FD delays and is robust to closed-loop system transients due to changes in control commands. Finally, a fault tolerant observer (FTO) is designed to extend the capability of the NPEs to systems with partial-state measurement.

Keywords: hybrid fault diagnosis, dynamic neural networks, nonlinear systems, fault tolerant observer

Procedia PDF Downloads 401
4175 Secure Optimized Ingress Filtering in Future Internet Communication

Authors: Bander Alzahrani, Mohammed Alreshoodi

Abstract:

Information-centric networking (ICN) using architectures such as the Publish-Subscribe Internet Technology (PURSUIT) has been proposed as a new networking model that aims at replacing the current used end-centric networking model of the Internet. This emerged model focuses on what is being exchanged rather than which network entities are exchanging information, which gives the control plane functions such as routing and host location the ability to be specified according to the content items. The forwarding plane of the PURSUIT ICN architecture uses a simple and light mechanism based on Bloom filter technologies to forward the packets. Although this forwarding scheme solve many problems of the today’s Internet such as the growth of the routing table and the scalability issues, it is vulnerable to brute force attacks which are starting point to distributed- denial-of-service (DDoS) attacks. In this work, we design and analyze a novel source-routing and information delivery technique that keeps the simplicity of using Bloom filter-based forwarding while being able to deter different attacks such as denial of service attacks at the ingress of the network. To achieve this, special forwarding nodes called Edge-FW are directly attached to end user nodes and used to perform a security test for malicious injected random packets at the ingress of the path to prevent any possible attack brute force attacks at early stage. In this technique, a core entity of the PURSUIT ICN architecture called topology manager, that is responsible for finding shortest path and creating a forwarding identifiers (FId), uses a cryptographically secure hash function to create a 64-bit hash, h, over the formed FId for authentication purpose to be included in the packet. Our proposal restricts the attacker from injecting packets carrying random FIds with a high amount of filling factor ρ, by optimizing and reducing the maximum allowed filling factor ρm in the network. We optimize the FId to the minimum possible filling factor where ρ ≤ ρm, while it supports longer delivery trees, so the network scalability is not affected by the chosen ρm. With this scheme, the filling factor of any legitimate FId never exceeds the ρm while the filling factor of illegitimate FIds cannot exceed the chosen small value of ρm. Therefore, injecting a packet containing an FId with a large value of filling factor, to achieve higher attack probability, is not possible anymore. The preliminary analysis of this proposal indicates that with the designed scheme, the forwarding function can detect and prevent malicious activities such DDoS attacks at early stage and with very high probability.

Keywords: forwarding identifier, filling factor, information centric network, topology manager

Procedia PDF Downloads 154
4174 Evaluation of the exIWO Algorithm Based on the Traveling Salesman Problem

Authors: Daniel Kostrzewa, Henryk Josiński

Abstract:

The expanded Invasive Weed Optimization algorithm (exIWO) is an optimization metaheuristic modelled on the original IWO version created by the researchers from the University of Tehran. The authors of the present paper have extended the exIWO algorithm introducing a set of both deterministic and non-deterministic strategies of individuals’ selection. The goal of the project was to evaluate the exIWO by testing its usefulness for solving some test instances of the traveling salesman problem (TSP) taken from the TSPLIB collection which allows comparing the experimental results with optimal values.

Keywords: expanded invasive weed optimization algorithm (exIWO), traveling salesman problem (TSP), heuristic approach, inversion operator

Procedia PDF Downloads 836
4173 'CardioCare': A Cutting-Edge Fusion of IoT and Machine Learning to Bridge the Gap in Cardiovascular Risk Management

Authors: Arpit Patil, Atharav Bhagwat, Rajas Bhope, Pramod Bide

Abstract:

This research integrates IoT and ML to predict heart failure risks, utilizing the Framingham dataset. IoT devices gather real-time physiological data, focusing on heart rate dynamics, while ML, specifically Random Forest, predicts heart failure. Rigorous feature selection enhances accuracy, achieving over 90% prediction rate. This amalgamation marks a transformative step in proactive healthcare, highlighting early detection's critical role in cardiovascular risk mitigation. Challenges persist, necessitating continual refinement for improved predictive capabilities.

Keywords: cardiovascular diseases, internet of things, machine learning, cardiac risk assessment, heart failure prediction, early detection, cardio data analysis

Procedia PDF Downloads 11
4172 Using The Flight Heritage From >150 Electric Propulsion Systems To Design The Next Generation Field Emission Electric Propulsion Thrusters

Authors: David Krejci, Tony Schönherr, Quirin Koch, Valentin Hugonnaud, Lou Grimaud, Alexander Reissner, Bernhard Seifert

Abstract:

In 2018 the NANO thruster became the first Field Emission Electric Propulsion (FEEP) system ever to be verified in space in an In-Orbit Demonstration mission conducted together with Fotec. Since then, 160 additional ENPULSION NANO propulsion systems have been deployed in orbit on 73 different spacecraft across multiple customers and missions. These missions included a variety of different satellite bus sizes ranging from 3U Cubesats to >100kg buses, and different orbits in Low Earth Orbit and Geostationary Earth orbit, providing an abundance of on orbit data for statistical analysis. This large-scale industrialization and flight heritage allows for a holistic way of gathering data from testing, integration and operational phases, deriving lessons learnt over a variety of different mission types, operator approaches, use cases and environments. Based on these lessons learnt a new generation of propulsion systems is developed, addressing key findings from the large NANO heritage and adding new capabilities, including increased resilience, thrust vector steering and increased power and thrust level. Some of these successor products have already been validated in orbit, including the MICRO R3 and the NANO AR3. While the MICRO R3 features increased power and thrust level, the NANO AR3 is a successor of the heritage NANO thruster with added thrust vectoring capability. 5 NANO AR3 have been launched to date on two different spacecraft. This work presents flight telemetry data of ENPULSION NANO systems and onorbit statistical data of the ENPULSION NANO as well as lessons learnt during onorbit operations, customer assembly, integration and testing support and ground test campaigns conducted at different facilities. We discuss how transfer of lessons learnt and operational improvement across independent missions across customers has been accomplished. Building on these learnings and exhaustive heritage, we present the design of the new generation of propulsion systems that increase the power and thrust level of FEEP systems to address larger spacecraft buses.

Keywords: FEEP, field emission electric propulsion, electric propulsion, flight heritage

Procedia PDF Downloads 92
4171 Exploring the Benefits of Hiring Individuals with Disabilities in the Workplace

Authors: Rosilyn Sanders

Abstract:

This qualitative study examined the impact of hiring people with intellectual disabilities (ID). The research questions were: What defines a disability? What accommodations are needed to ensure the success of a person with a disability? As a leader, what benefits do people with intellectual disabilities bring to the organization? What are the benefits of hiring people with intellectual disabilities in retail organizations? Moreover, how might people with intellectual disabilities contribute to the organizational culture of retail organizations? A narrative strength approach was used as a theoretical framework to guide the discussion and uncover the benefits of hiring individuals with intellectual disabilities in various retail organizations. Using qualitative interviews, the following themes emerged: diversity and inclusion, accommodations, organizational culture, motivation, and customer service. These findings put to rest some negative stereotypes and perceptions of persons with ID as being unemployable or unable to perform tasks when employed, showing instead that persons with ID can work efficiently when given necessary work accommodations and support in an enabling organizational culture. All participants were recruited and selected through various forms of electronic communication via social media, email invitations, and phone; this was conducted through the methodology of snowball sampling with the following demographics: age, ethnicity, gender, number of years in retail, number of years in management, and number of direct reports. The sample population was employed in several retail organizations throughout Arkansas and Texas. The small sample size for qualitative research in this study helped the researcher develop, build, and maintain close relationships that encouraged participants to be forthcoming and honest with information (Clow & James, 2014 ). Participants were screened to ensure they met the researcher's study; and screened to ensure that they were over 18 years of age. Participants were asked if they recruit, interview, hire, and supervise individuals with intellectual disabilities. Individuals were given consent forms via email to indicate their interest in participating in this study. Due to COVID-19, all interviews were conducted via teleconferencing (Zoom or Microsoft Teams) that lasted approximately 1 hour, which were transcribed, coded for themes, and grouped based on similar responses. Further, the participants were not privy to the interview questions beforehand, and demographic questions were asked at the end, including questions concerning age, education level, and job status. Each participant was assigned random numbers using an app called ‘The Random Number Generator ‘to ensure that all personal or identifying information of participants were removed. Regarding data storage, all documentation was stored on a password-protected external drive, inclusive of consent forms, recordings, transcripts, and researcher notes.

Keywords: diversity, positive psychology, organizational development, leadership

Procedia PDF Downloads 67
4170 Preparation of Silver and Silver-Gold, Universal and Repeatable, Surface Enhanced Raman Spectroscopy Platforms from SERSitive

Authors: Pawel Albrycht, Monika Ksiezopolska-Gocalska, Robert Holyst

Abstract:

Surface Enhanced Raman Spectroscopy (SERS) is a technique of growing importance not only in purely scientific research related to analytical chemistry. It finds more and more applications in broadly understood testing - medical, forensic, pharmaceutical, food - and everywhere works perfectly, on one condition that SERS substrates used for testing give adequate enhancement, repeatability, and homogeneity of SERS signal. This is a problem that has existed since the invention of this technique. Some laboratories use as SERS amplifiers colloids with silver or gold nanoparticles, others form rough silver or gold surfaces, but results are generally either weak or unrepeatable. Furthermore, these structures are very often highly specific - they amplify the signal only of a small group of compounds. It means that they work with some kinds of analytes but only with those which were used at a developer’s laboratory. When it comes to research on different compounds, completely new SERS 'substrates' are required. That underlay our decision to develop universal substrates for the SERS spectroscopy. Generally, each compound has different affinity for both silver and gold, which have the best SERS properties, and that's what depends on what signal we get in the SERS spectrum. Our task was to create the platform that gives a characteristic 'fingerprint' of the largest number of compounds with very high repeatability - even at the expense of the intensity of the enhancement factor (EF) (possibility to repeat research results is of the uttermost importance). As specified above SERS substrates are offered by SERSitive company. Applied method is based on cyclic potentiodynamic electrodeposition of silver or silver-gold nanoparticles on the conductive surface of ITO-coated glass at controlled temperature of the reaction solution. Silver nanoparticles are supplied in the form of silver nitrate (AgNO₃, 10 mM), gold nanoparticles are derived from tetrachloroauric acid (10 mM) while sodium sulfite (Na₂O₃, 5 mM) is used as a reductor. To limit and standardize the size of the SERS surface on which nanoparticles are deposited, photolithography is used. We secure the desired ITO-coated glass surface, and then etch the unprotected ITO layer which prevents nanoparticles from settling at these sites. On the prepared surface, we carry out the process described above, obtaining SERS surface with nanoparticles of sizes 50-400 nm. The SERSitive platforms present highly sensitivity (EF = 10⁵-10⁶), homogeneity and repeatability (70-80%).

Keywords: electrodeposition, nanoparticles, Raman spectroscopy, SERS, SERSitive, SERS platforms, SERS substrates

Procedia PDF Downloads 155
4169 Study of Residents' Perception of Tourism: The Case Study of Chabahar City, Iran

Authors: Majid Omidikhankahdani, Maryam Omidikhankahdani

Abstract:

Chabahar city located southeast of Iran and is one of strategic regional port in Oman sea aim of this study was measuring Chabahar city resident perceptions about tourism positive and negative effect. 322 participants selected via random sampling and fill questionnaire about their attitude toward tourism economic, social cultural and environment positive and negative impact. the result showed perspective of resident tourism have more positive effect than negative effect, also pair sample t test showed significant difference between positive and negative effect of tourism in favor positive effect.

Keywords: tourism economic effect, tourism environment, residents attitude, tourism social-cultural

Procedia PDF Downloads 496
4168 Hotel Customers’ Attitudes towards Service Marketing Mix, Service Behavior, and Perceived Brand Value

Authors: Trikhun Rotkasem

Abstract:

This research paper aimed to investigate hotel customers’ attitudes towards the service marketing, service behavior and perceived brand value. The focus of the study was on the Suan Sunandha Rajabhat University’s hotel. It is a small hotel which aims to provide service to mainly university’s guests. A simple random sampling technique was conducted to obtain a sample group that included 200 respondents. The research question was established as follows: What are customers’ attitudes towards the service marketing mix of hotel customers? The findings revealed the respondents’ attitudes towards the service marketing mix indicated high level in the area of product, place or distribution channel, people, and physical evidence, whereas, the respondents’ attitude towards the service marketing mix indicated medium level in the area of price, promotion, and process.

Keywords: marketing mix, perceived brand value, service behavior, hotel customers

Procedia PDF Downloads 442
4167 Improved Network Construction Methods Based on Virtual Rails for Mobile Sensor Network

Authors: Noritaka Shigei, Kazuto Matsumoto, Yoshiki Nakashima, Hiromi Miyajima

Abstract:

Although Mobile Wireless Sensor Networks (MWSNs), which consist of mobile sensor nodes (MSNs), can cover a wide range of observation region by using a small number of sensor nodes, they need to construct a network to collect the sensing data on the base station by moving the MSNs. As an effective method, the network construction method based on Virtual Rails (VRs), which is referred to as VR method, has been proposed. In this paper, we propose two types of effective techniques for the VR method. They can prolong the operation time of the network, which is limited by the battery capabilities of MSNs and the energy consumption of MSNs. The first technique, an effective arrangement of VRs, almost equalizes the number of MSNs belonging to each VR. The second technique, an adaptive movement method of MSNs, takes into account the residual energy of battery. In the simulation, we demonstrate that each technique can improve the network lifetime and the combination of both techniques is the most effective.

Keywords: mobile sensor node, relay of sensing data, residual energy, virtual rail, wireless sensor network

Procedia PDF Downloads 330
4166 Cogeneration Unit for Small Stove

Authors: Michal Spilacek, Marian Brazdil, Otakar Stelcl, Jiri Pospisil

Abstract:

This paper shows an experimental testing of a small unit for combustion of solid fuels, such as charcoal and wood logs, that can provide electricity. One of the concepts is that the unit does not require a qualified personnel for its operation. The unit itself is composed of two main parts. The design requires a heat producing stove and an electricity producing thermoelectric generator. After the construction the unit was tested and the results shows that the emission release is within the legislative requirements for emission production and environmental protection. That qualifies such unit for indoor application.

Keywords: micro-cogeneration, thermoelectric generator, biomass combustion, wood stove

Procedia PDF Downloads 617
4165 Emergence of Fluoroquinolone Resistance in Pigs, Nigeria

Authors: Igbakura I. Luga, Alex A. Adikwu

Abstract:

A comparison of resistance to quinolones was carried out on isolates of Shiga toxin-producing Escherichia coliO157:H7 from cattle and mecA and nuc genes harbouring Staphylococcus aureus from pigs. The isolates were separately tested in the first and current decades of the 21st century. The objective was to demonstrate the dissemination of resistance to this frontline class of antibiotic by bacteria from food animals and bring to the limelight the spread of antibiotic resistance in Nigeria. A total of 10 isolates of the E. coli O157:H7 and 9 of mecA and nuc genes harbouring S. aureus were obtained following isolation, biochemical testing, and serological identification using the Remel Wellcolex E. coli O157:H7 test. Shiga toxin-production screening in the E. coli O157:H7 using the verotoxin E. coli reverse passive latex agglutination (VTEC-RPLA) test; and molecular identification of the mecA and nuc genes in S. aureus. Detection of the mecA and nuc genes were carried out using the protocol by the Danish Technical University (DTU) using the following primers mecA-1:5'-GGGATCATAGCGTCATTATTC-3', mecA-2: 5'-AACGATTGTGACACGATAGCC-3', nuc-1: 5'-TCAGCAAATGCATCACAAACAG-3', nuc-2: 5'-CGTAAATGCACTTGCTTCAGG-3' for the mecA and nuc genes, respectively. The nuc genes confirm the S. aureus isolates and the mecA genes as being methicillin-resistant and so pathogenic to man. The fluoroquinolones used in the antibiotic resistance testing were norfloxacin (10 µg) and ciprofloxacin (5 µg) in the E. coli O157:H7 isolates and ciprofloxacin (5 µg) in the S. aureus isolates. Susceptibility was tested using the disk diffusion method on Muller-Hinton agar. Fluoroquinolone resistance was not detected from isolates of E. coli O157:H7 from cattle. However, 44% (4/9) of the S. aureus were resistant to ciprofloxacin. Resistance of up to 44% in isolates of mecA and nuc genes harbouring S. aureus is a compelling evidence for the rapid spread of antibiotic resistance from bacteria in food animals from Nigeria. Ciprofloxacin is the drug of choice for the treatment of Typhoid fever, therefore widespread resistance to it in pathogenic bacteria is of great public health significance. The study concludes that antibiotic resistance in bacteria from food animals is on the increase in Nigeria. The National Food and Drug Administration and Control (NAFDAC) agency in Nigeria should implement the World Health Organization (WHO) global action plan on antimicrobial resistance. A good starting point can be coordinating the WHO, Office of International Epizootics (OIE), Food and Agricultural Organization (FAO) tripartite draft antimicrobial resistance monitoring and evaluation (M&E) framework in Nigeria.

Keywords: Fluoroquinolone, Nigeria, resistance, Staphylococcus aureus

Procedia PDF Downloads 458
4164 General Purpose Graphic Processing Units Based Real Time Video Tracking System

Authors: Mallikarjuna Rao Gundavarapu, Ch. Mallikarjuna Rao, K. Anuradha Bai

Abstract:

Real Time Video Tracking is a challenging task for computing professionals. The performance of video tracking techniques is greatly affected by background detection and elimination process. Local regions of the image frame contain vital information of background and foreground. However, pixel-level processing of local regions consumes a good amount of computational time and memory space by traditional approaches. In our approach we have explored the concurrent computational ability of General Purpose Graphic Processing Units (GPGPU) to address this problem. The Gaussian Mixture Model (GMM) with adaptive weighted kernels is used for detecting the background. The weights of the kernel are influenced by local regions and are updated by inter-frame variations of these corresponding regions. The proposed system has been tested with GPU devices such as GeForce GTX 280, GeForce GTX 280 and Quadro K2000. The results are encouraging with maximum speed up 10X compared to sequential approach.

Keywords: connected components, embrace threads, local weighted kernel, structuring elements

Procedia PDF Downloads 440
4163 Assessment of Petrophysical Parameters Using Well Log and Core Data

Authors: Khulud M. Rahuma, Ibrahim B. Younis

Abstract:

Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.

Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation

Procedia PDF Downloads 693
4162 Enhancement of X-Rays Images Intensity Using Pixel Values Adjustments Technique

Authors: Yousif Mohamed Y. Abdallah, Razan Manofely, Rajab M. Ben Yousef

Abstract:

X-Ray images are very popular as a first tool for diagnosis. Automating the process of analysis of such images is important in order to help physician procedures. In this practice, teeth segmentation from the radiographic images and feature extraction are essential steps. The main objective of this study was to study correction preprocessing of x-rays images using local adaptive filters in order to evaluate contrast enhancement pattern in different x-rays images such as grey color and to evaluate the usage of new nonlinear approach for contrast enhancement of soft tissues in x-rays images. The data analyzed by using MatLab program to enhance the contrast within the soft tissues, the gray levels in both enhanced and unenhanced images and noise variance. The main techniques of enhancement used in this study were contrast enhancement filtering and deblurring images using the blind deconvolution algorithm. In this paper, prominent constraints are firstly preservation of image's overall look; secondly, preservation of the diagnostic content in the image and thirdly detection of small low contrast details in diagnostic content of the image.

Keywords: enhancement, x-rays, pixel intensity values, MatLab

Procedia PDF Downloads 485
4161 Machine Learning for Disease Prediction Using Symptoms and X-Ray Images

Authors: Ravija Gunawardana, Banuka Athuraliya

Abstract:

Machine learning has emerged as a powerful tool for disease diagnosis and prediction. The use of machine learning algorithms has the potential to improve the accuracy of disease prediction, thereby enabling medical professionals to provide more effective and personalized treatments. This study focuses on developing a machine-learning model for disease prediction using symptoms and X-ray images. The importance of this study lies in its potential to assist medical professionals in accurately diagnosing diseases, thereby improving patient outcomes. Respiratory diseases are a significant cause of morbidity and mortality worldwide, and chest X-rays are commonly used in the diagnosis of these diseases. However, accurately interpreting X-ray images requires significant expertise and can be time-consuming, making it difficult to diagnose respiratory diseases in a timely manner. By incorporating machine learning algorithms, we can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The study utilized the Mask R-CNN algorithm, which is a state-of-the-art method for object detection and segmentation in images, to process chest X-ray images. The model was trained and tested on a large dataset of patient information, which included both symptom data and X-ray images. The performance of the model was evaluated using a range of metrics, including accuracy, precision, recall, and F1-score. The results showed that the model achieved an accuracy rate of over 90%, indicating that it was able to accurately detect and segment regions of interest in the X-ray images. In addition to X-ray images, the study also incorporated symptoms as input data for disease prediction. The study used three different classifiers, namely Random Forest, K-Nearest Neighbor and Support Vector Machine, to predict diseases based on symptoms. These classifiers were trained and tested using the same dataset of patient information as the X-ray model. The results showed promising accuracy rates for predicting diseases using symptoms, with the ensemble learning techniques significantly improving the accuracy of disease prediction. The study's findings indicate that the use of machine learning algorithms can significantly enhance disease prediction accuracy, ultimately leading to better patient care. The model developed in this study has the potential to assist medical professionals in diagnosing respiratory diseases more accurately and efficiently. However, it is important to note that the accuracy of the model can be affected by several factors, including the quality of the X-ray images, the size of the dataset used for training, and the complexity of the disease being diagnosed. In conclusion, the study demonstrated the potential of machine learning algorithms for disease prediction using symptoms and X-ray images. The use of these algorithms can improve the accuracy of disease diagnosis, ultimately leading to better patient care. Further research is needed to validate the model's accuracy and effectiveness in a clinical setting and to expand its application to other diseases.

Keywords: K-nearest neighbor, mask R-CNN, random forest, support vector machine

Procedia PDF Downloads 154
4160 A Combined Error Control with Forward Euler Method for Dynamical Systems

Authors: R. Vigneswaran, S. Thilakanathan

Abstract:

Variable time-stepping algorithms for solving dynamical systems performed poorly for long time computations which pass close to a fixed point. To overcome this difficulty, several authors considered phase space error controls for numerical simulation of dynamical systems. In one generalized phase space error control, a step-size selection scheme was proposed, which allows this error control to be incorporated into the standard adaptive algorithm as an extra constraint at negligible extra computational cost. For this generalized error control, it was already analyzed the forward Euler method applied to the linear system whose coefficient matrix has real and negative eigenvalues. In this paper, this result was extended to the linear system whose coefficient matrix has complex eigenvalues with negative real parts. Some theoretical results were obtained and numerical experiments were carried out to support the theoretical results.

Keywords: adaptivity, fixed point, long time simulations, stability, linear system

Procedia PDF Downloads 312