Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7323

Search results for: water saturation

7323 Assessment of Petrophysical Parameters Using Well Log and Core Data

Authors: Khulud M. Rahuma, Ibrahim B. Younis

Abstract:

Assessment of petrophysical parameters are very essential for reservoir engineer. Three techniques can be used to predict reservoir properties: well logging, well testing, and core analysis. Cementation factor and saturation exponent are very required for calculation, and their values role a great effect on water saturation estimation. In this study a sensitive analysis was performed to investigate the influence of cementation factor and saturation exponent variation applying logs, and core analysis. Measurements of water saturation resulted in a maximum difference around fifteen percent.

Keywords: porosity, cementation factor, saturation exponent, formation factor, water saturation

Procedia PDF Downloads 604
7322 Parallel Self Organizing Neural Network Based Estimation of Archie’s Parameters and Water Saturation in Sandstone Reservoir

Authors: G. M. Hamada, A. A. Al-Gathe, A. M. Al-Khudafi

Abstract:

Determination of water saturation in sandstone is a vital question to determining initial oil or gas in place in reservoir rocks. Water saturation determination using electrical measurements is mainly based on Archie’s formula. Consequently accuracy of Archie’s formula parameters affects water saturation values rigorously. Determination of Archie’s parameters a, m, and n is proceeded by three conventional techniques, Core Archie-Parameter Estimation (CAPE) and 3-D. This work introduces the hybrid system of parallel self-organizing neural network (PSONN) targeting an accepted value of Archie’s parameters and consequently reliable water saturation values. This work focuses on Archie’s parameters determination techniques, conventional technique, CAPE technique, and 3-D technique, and then a calculation of water saturation using current. Using the same data, a hybrid PSONN algorithm is used to estimate Archie’s parameters and predict water saturation. Results have shown that estimated Arche’s parameters m, a, and n are highly accepted, with statistical analysis indicating that the PSONN model has a lower statistical error and higher correlation coefficient. This study was conducted using a high number of measurement points for 144 core plugs from a sandstone reservoir. PSONN algorithm can provide reliable water saturation values, and it can supplement or even replace the conventional techniques to determine Archie’s parameters and thereby calculate water saturation profiles.

Keywords: water saturation, Archie’s parameters, artificial intelligence, PSONN, sandstone reservoir

Procedia PDF Downloads 20
7321 Oil Displacement by Water in Hauterivian Sandstone Reservoir of Kashkari Oil Field

Authors: A. J. Nazari, S. Honma

Abstract:

This paper evaluates oil displacement by water in Hauterivian sandstone reservoir of Kashkari oil field in North of Afghanistan. The core samples of this oil field were taken out from well No-21st, and the relative permeability and fractional flow are analyzed. Steady state flow laboratory experiments are performed to empirically obtain the fractional flow curves and relative permeability in different water saturation ratio. The relative permeability represents the simultaneous flow behavior in the reservoir. The fractional flow approach describes the individual phases as fractional of the total flow. The fractional flow curve interprets oil displacement by water, and from the tangent of fractional flow curve can find out the average saturation behind the water front flow saturation. Therefore, relative permeability and fractional flow curves are suitable for describing the displacement of oil by water in a petroleum reservoir. The effects of irreducible water saturation, residual oil saturation on the displaceable amount of oil are investigated through Buckley-Leveret analysis.

Keywords: fractional flow, oil displacement, relative permeability, simultaneously flow

Procedia PDF Downloads 247
7320 Determination of Lithology, Porosity and Water Saturation for Mishrif Carbonate Formation

Authors: F. S. Kadhim, A. Samsuri, H. Alwan

Abstract:

Well logging records can help to answer many questions from a wide range of special interested information and basic petrophysical properties to formation evaluation of oil and gas reservoirs. The accurate calculations of porosity in carbonate reservoirs are the most challenging aspects of well log analysis. Many equations have been developed over the years based on known physical principles or on empirically derived relationships, which are used to calculate porosity, estimate lithology and water saturation; however these parameters are calculated from well logs by using modern technique in a current study. Nasiriya (NS) oilfield is one of giant oilfields in the Middle East, and the formation under study is the Mishrif carbonate formation which is the shallowest hydrocarbon bearing zone in the NS oilfield. Neurolog software (V5, 2008) was used to digitize the scanned copies of the available logs. Environmental corrections had been made as per Schlumberger charts 2005, which supplied in the Interactive Petrophysics software (IP, V3.5, 2008). Three saturation models have been used to calculate water saturation of carbonate formations, which are simple Archie equation, Dual water model, and Indonesia model. Results indicate that the Mishrif formation consists mainly of limestone, some dolomite and shale. The porosity interpretation shows that the logging tools have a good quality after making the environmental corrections. The average formation water saturation for Mishrif formation is around 0.4-0.6.This study is provided accurate behavior of petrophysical properties with depth for this formation by using modern software.

Keywords: lithology, porosity, water saturation, carbonate formation, mishrif formation

Procedia PDF Downloads 292
7319 Recovery of Petroleum Reservoir by Waterflooding Technique

Authors: Zabihullah Mahdi, Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Through many types of research and practical studies, it has been identified that the average oil recovery factor of a petroleum reservoir is about 30 to 35 %. This study is focused on enhanced oil recovery by laboratory experiment and graphical investigation based on Buckley-Leverett theory. Horizontal oil displacement by water, in a petroleum reservoir is analyzed under the Buckley-Leverett frontal displacement theory. The extraction and prerequisite of this theory are based and pursued focusing on the key factors that control displacement. The theory is executable to the waterflooding method, which is generally employed in petroleum engineering reservoirs to sustain oil production recovery, and the techniques for evaluating the average water saturation behind the water front and the oil recovery factors in the reservoirs are presented. In this paper, the Buckley-Leverett theory handled to an experimental model and the amount of recoverable oil are investigated to be over 35%. The irreducible water saturation, viz. connate water saturation, in the reservoir is also a significant inspiration for the recovery.

Keywords: Buckley-Leverett theory, waterflooding technique, petroleum engineering, immiscible displacement

Procedia PDF Downloads 172
7318 Water Injection in One of the Southern Iranian Oil Field, a Case Study

Authors: Hooman Fallah

Abstract:

Seawater injection and produced water re-injection are presently the most commonly used approach to enhanced recovery. The dominant factors for total oil recovery are the reservoir temperature, reservoir pressure, crude oil and water composition. In this study, the production under water injection in Soroosh, one of the southern Iranian heavy oil field has been simulated (the fluid properties are focused). In order to reveal the dominant factors in this production process, the sensitivity analysis has been done for the following effective factors, fluid viscosity, initial water saturation, gravity force and injection well strategy. It is crystal clear that the study of the dominant factors in production processes will help the engineers to design the best production mechanisms in our numerous hydrocarbon reservoirs.

Keywords: water injection, initial water saturation, oil viscosity, gravity force, injection well strategy

Procedia PDF Downloads 288
7317 Two-Phase Flow Modelling and Numerical Simulation for Waterflooding in Enhanced Oil Recovery

Authors: Peña A. Roland R., Lozano P. Jean P.

Abstract:

The waterflooding process is an enhanced oil recovery (EOR) method that appears tremendously successful. This paper shows the importance of the role of the numerical modelling of waterflooding and how to provide a better description of the fluid flow during this process. The mathematical model is based on the mass conservation equations for the oil and water phases. Rock compressibility and capillary pressure equations are coupled to the mathematical model. For discretizing and linearizing the partial differential equations, we used the Finite Volume technique and the Newton-Raphson method, respectively. The results of three scenarios for waterflooding in porous media are shown. The first scenario was estimating the water saturation in the media without rock compressibility and without capillary pressure. The second scenario was estimating the front of the water considering the rock compressibility and capillary pressure. The third case is to compare different fronts of water saturation for three fluids viscosity ratios without and with rock compressibility and without and with capillary pressure. Results of the simulation indicate that the rock compressibility and the capillary pressure produce changes in the pressure profile and saturation profile during the displacement of the oil for the water.

Keywords: capillary pressure, numerical simulation, rock compressibility, two-phase flow

Procedia PDF Downloads 28
7316 Factors Affecting Special Core Analysis Resistivity Parameters

Authors: Hassan Sbiga

Abstract:

Laboratory measurements methods were undertaken on core samples selected from three different fields (A, B, and C) from the Nubian Sandstone Formation of the central graben reservoirs in Libya. These measurements were conducted in order to determine the factors which affect resistivity parameters, and to investigate the effect of rock heterogeneity and wettability on these parameters. This included determining the saturation exponent (n) in the laboratory at two stages. The first stage was before wettability measurements were conducted on the samples, and the second stage was after the wettability measurements in order to find any effect on the saturation exponent. Another objective of this work was to quantify experimentally pores and porosity types (macro- and micro-porosity), which have an affect on the electrical properties, by integrating capillary pressure curves with other routine and special core analysis. These experiments were made for the first time to obtain a relation between pore size distribution and saturation exponent n. Changes were observed in the formation resistivity factor and cementation exponent due to ambient conditions and changes of overburden pressure. The cementation exponent also decreased from GHE-5 to GHE-8. Changes were also observed in the saturation exponent (n) and water saturation (Sw) before and after wettability measurement. Samples with an oil-wet tendency have higher irreducible brine saturation and higher Archie saturation exponent values than samples with an uniform water-wet surface. The experimental results indicate that there is a good relation between resistivity and pore type depending on the pore size. When oil begins to penetrate micro-pore systems in measurements of resistivity index versus brine saturation (after wettability measurement), a significant change in slope of the resistivity index relationship occurs.

Keywords: part of thesis, cementation, wettability, resistivity

Procedia PDF Downloads 168
7315 Field Saturation Flow Measurement Using Dynamic Passenger Car Unit under Mixed Traffic Condition

Authors: Ramesh Chandra Majhi

Abstract:

Saturation flow is a very important input variable for the design of signalized intersections. Saturation flow measurement is well established for homogeneous traffic. However, saturation flow measurement and modeling is a challenging task in heterogeneous characterized by multiple vehicle types and non-lane based movement. Present study focuses on proposing a field procedure for Saturation flow measurement and the effect of typical mixed traffic behavior at the signal as far as non-lane based traffic movement is concerned. Data collected during peak and off-peak hour from five intersections with varying approach width is used for validating the saturation flow model. The insights from the study can be used for modeling saturation flow and delay at signalized intersection in heterogeneous traffic conditions.

Keywords: optimization, passenger car unit, saturation flow, signalized intersection

Procedia PDF Downloads 248
7314 Modified Evaluation of the Hydro-Mechanical Dependency of the Water Coefficient of Permeability of a Clayey Sand with a Novel Permeameter for Unsaturated Soils

Authors: G. Adelian, A. Mirzaii, S. S. Yasrobi

Abstract:

This paper represents data of an extensive experimental laboratory testing program for the measurement of the water coefficient of permeability of clayey sand in different hydraulic and mechanical boundary conditions. A novel permeameter was designed and constructed for the experimental testing program, suitable for the study of flow in unsaturated soils in different hydraulic and mechanical loading conditions. In this work, the effect of hydraulic hysteresis, net isotropic confining stress, water flow condition, and sample dimensions are evaluated on the water coefficient of permeability of understudying soil. The experimental results showed a hysteretic variation for the water coefficient of permeability versus matrix suction and degree of saturation, with higher values in drying portions of the SWCC. The measurement of the water permeability in different applied net isotropic stress also signified that the water coefficient of permeability increased within the increment of net isotropic consolidation stress. The water coefficient of permeability also appeared to be independent of different applied flow heads, water flow condition, and sample dimensions.

Keywords: water permeability, unsaturated soils, hydraulic hysteresis, void ratio, matrix suction, degree of saturation

Procedia PDF Downloads 446
7313 Two-Dimensional Observation of Oil Displacement by Water in a Petroleum Reservoir through Numerical Simulation and Application to a Petroleum Reservoir

Authors: Ahmad Fahim Nasiry, Shigeo Honma

Abstract:

We examine two-dimensional oil displacement by water in a petroleum reservoir. The pore fluid is immiscible, and the porous media is homogenous and isotropic in the horizontal direction. Buckley-Leverett theory and a combination of Laplacian and Darcy’s law are used to study the fluid flow through porous media, and the Laplacian that defines the dispersion and diffusion of fluid in the sand using heavy oil is discussed. The reservoir is homogenous in the horizontal direction, as expressed by the partial differential equation. Two main factors which are observed are the water saturation and pressure distribution in the reservoir, and they are evaluated for predicting oil recovery in two dimensions by a physical and mathematical simulation model. We review the numerical simulation that solves difficult partial differential reservoir equations. Based on the numerical simulations, the saturation and pressure equations are calculated by the iterative alternating direction implicit method and the iterative alternating direction explicit method, respectively, according to the finite difference assumption. However, to understand the displacement of oil by water and the amount of water dispersion in the reservoir better, an interpolated contour line of the water distribution of the five-spot pattern, that provides an approximate solution which agrees well with the experimental results, is also presented. Finally, a computer program is developed to calculate the equation for pressure and water saturation and to draw the pressure contour line and water distribution contour line for the reservoir.

Keywords: numerical simulation, immiscible, finite difference, IADI, IDE, waterflooding

Procedia PDF Downloads 248
7312 Laboratory Measurement of Relative Permeability of Immiscible Fluids in Sand

Authors: Khwaja Naweed Seddiqi, Shigeo Honma

Abstract:

Relative permeability is the important parameter controlling the immiscible displacement of multiphase fluids flow in porous medium. The relative permeability for immiscible displacement of two-phase fluids flow (oil and water) in porous medium has been measured in this paper. As a result of the experiment, irreducible water saturation, Swi, residual oil saturation, Sor, and relative permeability curves for Kerosene, Heavy oil and Lubricant oil were determined successfully.

Keywords: relative permeability, two-phase flow, immiscible displacement, porous medium

Procedia PDF Downloads 213
7311 Rock Property Calculation for Determine Hydrocarbon Zone Based on Petrophysical Principal and Sequence Stratigraphic Correlation in Blok M

Authors: Muhammad Tarmidzi, Reza M. G. Gani, Andri Luthfi

Abstract:

The purpose of this study is to identify rock zone containing hydrocarbons with calculating rock property includes volume shale, total porosity, effective porosity and water saturation. Identification method rock property based on GR log, resistivity log, neutron log and density rock. Zoning is based on sequence stratigraphic markers that are sequence boundary (SB), transgressive surface (TS) and flooding surface (FS) which correlating ten well log in blok “M”. The results of sequence stratigraphic correlation consist of eight zone that are two LST zone, three TST zone and three HST zone. The result of rock property calculation in each zone is showing two LST zone containing hydrocarbons. LST-1 zone has average volume shale (Vsh) 25%, average total porosity (PHIT) 14%, average effective porosity (PHIE) 11% and average water saturation 0,83. LST-2 zone has average volume shale (Vsh) 19%, average total porosity (PHIT) 21%, average effective porosity (PHIE) 17% and average water saturation 0,82.

Keywords: hydrocarbons zone, petrophysic, rock property, sequence stratigraphic

Procedia PDF Downloads 190
7310 Saturation Misbehavior and Field Activation of the Mobility in Polymer-Based OTFTs

Authors: L. Giraudet, O. Simonetti, G. de Tournadre, N. Dumelié, B. Clarenc, F. Reisdorffer

Abstract:

In this paper we intend to give a comprehensive view of the saturation misbehavior of thin film transistors (TFTs) based on disordered semiconductors, such as most organic TFTs, and its link to the field activation of the mobility. Experimental evidence of the field activation of the mobility is given for disordered semiconductor based TFTs, when reducing the gate length. Saturation misbehavior is observed simultaneously. Advanced transport models have been implemented in a quasi-2D numerical TFT simulation software. From the numerical simulations it is clearly established that field activation of the mobility alone cannot explain the saturation misbehavior. Evidence is given that high longitudinal field gradient at the drain end of the channel is responsible for an excess charge accumulation, preventing saturation. The two combined effects allow reproducing the experimental output characteristics of short channel TFTs, with S-shaped characteristics and saturation failure.

Keywords: mobility field activation, numerical simulation, OTFT, saturation failure

Procedia PDF Downloads 439
7309 Blood Oxygen Saturation Measurement System Using Broad-Band Light Source with LabVIEW Program

Authors: Myoung Ah Kim, Dong Ho Sin, Chul Gyu Song

Abstract:

Blood oxygen saturation system is a well-established, noninvasive photoplethysmographic method to monitor vital signs. Conventional blood oxygen saturation measurements for the two LED light source is the ambiguity of the oxygen saturation measurement principle and the measurement results greatly influenced and heat and motion artifact. A high accuracy in order to solve these problems blood oxygen saturation measuring method has been proposed using a broadband light source that can be easily understood by the algorithm. The measurement of blood oxygen saturation based on broad-band light source has advantage of simple testing facility and easy understanding. Broadband light source based on blood oxygen saturation measuring program proposed in this paper is a combination of LabVIEW and MATLAB. Using the wavelength range of 450 nm-750 nm using a floating light absorption of oxyhemoglobin and deoxyhemoglobin to measure the blood oxygen saturation. Hand movement is to fix the probe to the motor stage in order to prevent oxygen saturation measurement that affect the sample and probe kept constant interval. Experimental results show that the proposed method noticeably increases the accuracy and saves time compared with the conventional methods.

Keywords: oxygen saturation, broad-band light source, CCD, light reflectance theory

Procedia PDF Downloads 332
7308 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter

Abstract:

The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.

Keywords: initial water saturation, permeability, porosity, surfactant EOR

Procedia PDF Downloads 82
7307 Application of Waterflooding Technique in Petroleum Reservoir

Authors: Khwaja Naweed Seddiqi

Abstract:

Hydrocarbon resources are important for the redevelopment and sustainable progress of Afghanistan’s infrastructure. This paper aim is to increase the oil recovery of Hitervian reservoir of Angut oil field in north part of Afghanistan by an easy and available method, which is Buckley-Leveret frontal displacement theory. In this paper oil displacement by water that takes placed by injecting water into the under laying petroleum reservoir which called waterflooding technique is investigated. The theory is investigated in a laboratory experiment first then applied in Angut oil field which is now under the operation of a private petroleum company. Based on this study oil recovery of Angut oil field, residual oil saturation, Buckle-Leveret saturation and FBL is determined.

Keywords: waterflooding technique, two phase fluid flow, Buckley-Leveret, petroleum engineering

Procedia PDF Downloads 140
7306 Behavior of Clay effect on Electrical Parameter of Reservoir Rock Using Global Hydraulic Elements (GHEs) Approach

Authors: Noreddin Mousa

Abstract:

The main objective of this study is to estimate which type of clay minerals that more effect on saturation exponent using Global Hydraulic Elements (GHEs) approach to estimating the distribution of saturation exponent factor. Two wells and seven core samples have been selected from various (GHEs) for detailed study. There are many factors affecting saturation exponent such as wettability, grain pattern pressure of certain authigenic clays, which may promote oil wet characteristics of history of fluid displacement. The saturation exponent is related to the texture and affected by wettability and clay minerals. Capillary pressure (mercury injection) has been used to confirm GHEs which are selected to define rock types; the porous plate method is used to derive the saturation exponent in the laboratory. The petrography is very important in order to study the mineralogy and texture. In this study the results showing excellent relation between saturation exponent and the type of clay minerals which was observed that the Global Hydraulic Elements GHE-2 and GHE-5 which are containing Chlorite is more affect on saturation exponent comparing with the other GHE’s.

Keywords: GHEs, wettability, global hydraulic elements, petrography

Procedia PDF Downloads 218
7305 Effect of Traffic Composition on Delay and Saturation Flow at Signal Controlled Intersections

Authors: Arpita Saha, Apoorv Jain, Satish Chandra, Indrajit Ghosh

Abstract:

Level of service at a signal controlled intersection is directly measured from the delay. Similarly, saturation flow rate is a fundamental parameter to measure the intersection capacity. The present study calculates vehicle arrival rate, departure rate, and queue length for every five seconds interval in each cycle. Based on the queue lengths, the total delay of the cycle has been calculated using Simpson’s 1/3rd rule. Saturation flow has been estimated in terms of veh/hr of green/lane for every five seconds interval of the green period until at least three vehicles are left to cross the stop line. Vehicle composition shows an immense effect on total delay and saturation flow rate. The increase in two-wheeler proportion increases the saturation flow rate and reduces the total delay per vehicle significantly. Additionally, an increase in the heavy vehicle proportion reduces the saturation flow rate and increases the total delay for each vehicle.

Keywords: delay, saturation flow, signalised intersection, vehicle composition

Procedia PDF Downloads 280
7304 Industrial Rock Characterization using Nuclear Magnetic Resonance (NMR): A Case Study of Ewekoro Quarry

Authors: Olawale Babatunde Olatinsu, Deborah Oluwaseun Olorode

Abstract:

Industrial rocks were collected from a quarry site at Ewekoro in south-western Nigeria and analysed using Nuclear Magnetic Resonance (NMR) technique. NMR measurement was conducted on the samples in partial water-saturated and full brine-saturated conditions. Raw NMR data were analysed with the aid of T2 curves and T2 spectra generated by inversion of raw NMR data using conventional regularized least-squares inversion routine. Results show that NMR transverse relaxation (T2) signatures fairly adequately distinguish between the rock types. Similar T2 curve trend and rates at partial saturation suggests that the relaxation is mainly due to adsorption of water on micropores of similar sizes while T2 curves at full saturation depict relaxation decay rate as: 1/T2(shale)>1/ T2(glauconite)>1/ T2(limestone) and 1/T2(sandstone). NMR T2 distributions at full brine-saturation show: unimodal distribution in shale; bimodal distribution in sandstone and glauconite; and trimodal distribution in limestone. Full saturation T2 distributions revealed the presence of well-developed and more abundant micropores in all the samples with T2 in the range, 402-504 μs. Mesopores with amplitudes much lower than those of micropores are present in limestone, sandstone and glauconite with T2 range: 8.45-26.10 ms, 6.02-10.55 ms, and 9.45-13.26 ms respectively. Very low amplitude macropores of T2 values, 90.26-312.16 ms, are only recognizable in limestone samples. Samples with multiple peaks showed well-connected pore systems with sandstone having the highest degree of connectivity. The difference in T2 curves and distributions for the rocks at full saturation can be utilised as a potent diagnostic tool for discrimination of these rock types found at Ewekoro.

Keywords: Ewekoro, NMR techniques, industrial rocks, characterization, relaxation

Procedia PDF Downloads 208
7303 Laboratory Study on Behavior of Compacted Soils

Authors: M. M. Mekkakia, M. P Luong, A. Arab

Abstract:

These controlling the water content of compaction are a major concern of fundamental civil engineers. Also, the knowledge of the fundamentals of the behaviour of compacted clay soils is essential to predict and quantify the effects of a change in water content. The study of unsaturated soils is a very complex area which several studies are directed to in recent years. Our job work is to perform tests of Proctor, Oedometer and shear, on samples of unsaturated clay in order to see the influence of water content on the compressibility and the shear strength. The samples were prepared at different amounts of water from water content to optimum water contents close to saturation. This study thus allowed us to measure and monitor the parameters of compressibility and shear strength as a function of water content.

Keywords: laboratory tests, clay, unsaturated soil, atterberg limits, compaction, compressibility, shear

Procedia PDF Downloads 343
7302 Typology of the Physic-Chemical Quality of the Water of the Area of Touggourt Case: Aquifers of the Intercalary Continental and the Terminal Complex, S-E of Algeria

Authors: Habes Sameh, Bettahar Asma, Nezli Imad Eddine

Abstract:

The region of Touggourt is situated in the southern part is Algeria, it receives important quantities of waters, the latter are extracted from the fossil groundwater (the Intercalary Continental and the Terminal Complex). The mineralization of these waters of the Terminal Complex is between 3 and 6,5 g/l and for waters of Intercalary Continental is 1,8 and 8,7 g/l, thus it constitutes an obstacle as for its use. To highlight the origins of this mineralization, we used the hydrochemical tool. So the chemical analyses in our ownership, were treated by means of the software "Statistica", what allowed us to realize an analysis in main components (ACP), the latter showed a competition between sodic or magnesian chlorinated water and calcic bicarbonate water, rich in potassium for the TC, while for the IC, we have a competition between sodic or calcic chlorinated and magnesian water treated with copper sulphate waters. The simulation realized thermodynamics showed a variation of the index of saturation which do not exceed zero, for waters of two aquifer TC and IC, so indicating one under saturation of waters towards minerals, highlighting the influence of the geologic formation in the outcrop on the quality of waters. However, we notice that these waters remain acceptable for the irrigation of plants but must be treated before what are consumed by the human being.

Keywords: ACP, intercalary, continental, mineralization, SI, Terminal Complex

Procedia PDF Downloads 435
7301 Effect of Saturation and Deformation Rate on Split Tensile Strength for Various Sedimentary Rocks

Authors: D. K. Soni

Abstract:

A study of engineering properties of stones, i.e. compressive strength, tensile strength, modulus of elasticity, density, hardness were carried out to explore the possibility of optimum utilization of stone. The laboratory test results on equally dimensioned discs of the stone show a considerable variation in computed split tensile strength with varied rates of deformation. Hence, the effect of strain rate on the tensile strength of a sand stone and lime stone under wet and dry conditions has been studied experimentally using the split tensile strength test technique. It has been observed that the tensile strength of these stone is very much dependent on the rate of deformation particularly in a dry state. On saturation the value of split tensile strength reduced considerably depending upon the structure of rock and amount of water absorption.

Keywords: sedimentary rocks, split tensile test, deformation rate, saturation rate, sand stone, lime stone

Procedia PDF Downloads 310
7300 Effect of Compaction and Degree of Saturation on the Unconsolidated Undrained Shear Strength of Sandy Clay

Authors: Fatima Mehmood, Khalid Farooq, Rabeea Bakhtawer

Abstract:

For geotechnical engineers, one of the most important properties of soil to consider in various stability analyses is its shear strength which is governed by a number of factors. The objective of this research is to ascertain the effect of compaction and degree of saturation on the shear strength of fine-grained soil. For this purpose, three different dry densities such as in-situ, maximum standard proctor, and maximum modified proctor, were determined for the sandy clay soil. The soil samples were then prepared to keep dry density constant and varying degrees of saturation. These samples were tested for (UU) unconsolidated undrained shear strength in triaxial compression tests. The decrease in shear strength was observed with the decrease in density and increase in the saturation. The values of the angle of internal friction followed the same trend. However, the change in cohesion with the increase in saturation showed a different behavior, analogous to the compaction curve.

Keywords: compaction, degree of saturation, dry density, geotechnical investigation, laboratory testing, shear strength

Procedia PDF Downloads 57
7299 Variability in Saturation Flow and Traffic Performance at Urban Signalized Intersection

Authors: P. N. Salini, B. Anish Kini, R. Ashalatha

Abstract:

At signalized intersections with heterogeneous traffic, the percentage share of different vehicle categories have a bearing on the inter-vehicle space utilization, which eventually impacts the saturation flow. This paper analyzed the impact of the percentage share of various vehicle categories in the traffic stream on the saturation flow at signalized intersections by video graphing major intersections with varying geometry in Kerala, India. It was found that as the percentage share of two-wheelers increases, the saturation flow at signalized intersections increases and vice-versa for the percentage share of cars. The effect of bus blockage and parking maneuvers on the saturation flow were also studied. As the distance of bus blockage increases from the stop line, the effect on the saturation flow decreases, while with more buses stopping at the same bus stop, the saturation flow reduces further. The study revealed that with higher kerbside parking maneuvers on the upstream, the saturation flow reduces, and with an increase in the distance of the parking maneuver from the stop line, the effect on the saturation flow decreases. The adjustment factors for bus blockage due to bus stops within 75m downstream and parking maneuvers within 75m upstream of the intersection have been established for mixed traffic conditions. These adjustment factors could empower the urban planners, enforcement personnel and decision-makers to estimate the reduction in the capacity of signalized intersections for suggesting improvements in the form of parking restrictions/ bus stop relocation for existing intersections or make design changes for planned intersections.

Keywords: signalized intersection, saturation flow, adjustment factors, capacity

Procedia PDF Downloads 45
7298 Characteristics of Pore Pressure and Effective Stress Changes in Sandstone Reservoir Due to Hydrocarbon Production

Authors: Kurniawan Adha, Wan Ismail Wan Yusoff, Luluan Almanna Lubis

Abstract:

Preventing hazardous events during oil and gas operation is an important contribution of accurate pore pressure data. The availability of pore pressure data also contribute in reducing the operation cost. Suggested methods in pore pressure estimation were mostly complex by the many assumptions and hypothesis used. Basic properties which may have significant impact on estimation model are somehow being neglected. To date, most of pore pressure determinations are estimated by data model analysis and rarely include laboratory analysis, stratigraphy study or core check measurement. Basically, this study developed a model that might be applied to investigate the changes of pore pressure and effective stress due to hydrocarbon production. In general, this paper focused velocity model effect of pore pressure and effective stress changes due to hydrocarbon production with illustrated by changes in saturation. The core samples from Miri field from Sarawak Malaysia ware used in this study, where the formation consists of sandstone reservoir. The study area is divided into sixteen (16) layers and encompassed six facies (A-F) from the outcrop that is used for stratigraphy sequence model. The experimental work was firstly involving data collection through field study and developing stratigraphy sequence model based on outcrop study. Porosity and permeability measurements were then performed after samples were cut into 1.5 inch diameter core samples. Next, velocity was analyzed using SONIC OYO and AutoLab 500. Three (3) scenarios of saturation were also conducted to exhibit the production history of the samples used. Results from this study show the alterations of velocity for different saturation with different actions of effective stress and pore pressure. It was observed that sample with water saturation has the highest velocity while dry sample has the lowest value. In comparison with oil to samples with oil saturation, water saturated sample still leads with the highest value since water has higher fluid density than oil. Furthermore, water saturated sample exhibits velocity derived parameters, such as poisson’s ratio and P-wave velocity over S-wave velocity (Vp/Vs) The result shows that pore pressure value ware reduced due to the decreasing of fluid content. The decreasing of pore pressure result may soften the elastic mineral frame and have tendency to possess high velocity. The alteration of pore pressure by the changes in fluid content or saturation resulted in alteration of velocity value that has proportionate trend with the effective stress.

Keywords: pore pressure, effective stress, production, miri formation

Procedia PDF Downloads 218
7297 Application of Waterflooding to the Kashkari Oil Field in Northern Afghanistan

Authors: Zabihullah Mahdi, Mahdi Nayab, Sadaf Jalal, Navid Seddiqi

Abstract:

Hydrocarbons represent an important natural resource for the rehabilitation and sustainable development of Afghanistan. In this paper, the use of waterflooding is demonstrated for the petroleum reservoirs of the Kashkari oil field in northern Afghanistan. The technique is based on the Buckley–Leverett frontal-displacement theory, which enables computation of the progress of the waterfront in the reservoir. The relative permeabilities of oil and water, the residual oil saturation, and the irreducible water saturation are obtained from a laboratory experiment. The technique is applied to the laboratory plane-reservoir model to investigate the displacement mechanism and is then compared with the theoretical calculation. Lastly, the technique is applied to the Kashkari oil field to predict the feasible amount of oil that could be produced from this reservoir.

Keywords: Buckley–Leverett, waterflooding, petroleum reservoir engineering, two-phase flow, immiscible displacement, porous media, relative permeability

Procedia PDF Downloads 75
7296 Validation of Existing Index Properties-Based Correlations for Estimating the Soil–Water Characteristic Curve of Fine-Grained Soils

Authors: Karim Kootahi, Seyed Abolhasan Naeini

Abstract:

The soil-water characteristic curve (SWCC), which represents the relationship between suction and water content (or degree of saturation), is an important property of unsaturated soils. The conventional method for determining SWCC is through specialized testing procedures. Since these procedures require specialized unsaturated soil testing apparatus and lengthy testing programs, several index properties-based correlations have been developed for estimating the SWCC of fine-grained soils. There are, however, considerable inconsistencies among the published correlations and there is no validation study on the predictive ability of existing correlations. In the present study, all existing index properties-based correlations are evaluated using a high quality worldwide database. The performances of existing correlations are assessed both graphically and quantitatively using statistical measures. The results of the validation indicate that most of the existing correlations provide unacceptable estimates of degree of saturation but the most recent model appears to be promising.

Keywords: SWCC, correlations, index properties, validation

Procedia PDF Downloads 74
7295 Reservoir Characterization using Comparative Petrophysical Testing Approach Acquired with Facies Architecture Properties Analysis

Authors: Axel Priambodo, Dwiharso Nugroho

Abstract:

Studies conducted to map the reservoir properties based on facies architecture in which to determine the distribution of the petrophysical properties and calculate hydrocarbon reserves in study interval. Facies Architecture analysis begins with stratigraphic correlation that indicates the area is divided into different system tracts. The analysis of distribution patterns and compiling core analysis with facies architecture model show that there are three estuarine facies appear. Formation evaluation begins with shale volume calculation using Asquith-Krygowski and Volan Triangle Method. Proceed to the calculation of the total and effective porosity using the Bateman-Konen and Volan Triangle Method. After getting the value of the porosity calculation was continued to determine the effective water saturation and non-effective by including parameters of water resistivity and resistivity clay. The results of the research show that the Facies Architecture on the field in divided into three main facies which are Estuarine Channel, Estuarine Sand Bar, and Tidal Flat. The petrophysics analysis are done by comparing different methods also shows that the Volan Triangle Method does not give a better result of the Volume Shale than the Gamma Ray Method, but on the other hand, the Volan Triangle Methode is better on calculating porosity compared to the Bateman-Konen Method. The effective porosity distributions are affected by the distribution of the facies. Estuarine Sand Bar has a low porosity number and Estuarine Channel has a higher number of the porosity. The effective water saturation is controlled by structure where on the closure zone the water saturation is lower than the area beneath it. It caused by the hydrocarbon accumulation on the closure zone.

Keywords: petrophysics, geology, petroleum, reservoir

Procedia PDF Downloads 182
7294 Investigation of Effective Parameters on Water Quality of Iranian Rivers Using Hydrochemical and Statistical Methods

Authors: Maryam Sayadi, Rana Sedighpour, Hossein Rezaie

Abstract:

In this study, in order to evaluate water quality of Gamasiab and Gharehsoo rivers located in Kermanshah province, the information of a 5-year statistical period during the years 2014-2018 was used. To evaluate the hydrochemistry of water, first the type and hydrogeochemical facies of river water were determined using Stiff and Piper diagrams. Then, based on Gibbs diagram and combination diagrams, the factors controlling the chemical parameters of the two rivers were identified. Saturation indices were used to predict the possibility of dissolution and deposition of some minerals. Then, in order to classify water in different sections, fourteen water quality indicators for different uses along with WHO standard were used. Finally, factor analysis was used to determine the processes affecting the hydrochemistry of the two rivers. The results of this study showed that in both rivers, the predominant type and facies are bicarbonate of calcite. Also, the main factor in changing the chemical quality of water in both Gamasiab and Gharehsoo rivers is the water-rock reaction. According to the results of factor analysis in both rivers, two factors have the greatest impact on water quality in the region. Among the parameters of Gamasiab river in the first factor, HCO3-, Na+ and Cl-, respectively, had the highest factor loads, and in the second factor, SO42- and Mg2+ were selected as the main parameters. The parameters Ca2+, Cl- and Na have the highest factor loads in the first factor and in the second factor Mg2+ and SO42- have the highest factor loads in Gharehsoo river. The dissolution of carbonate formations due to their abundance and expansion in the two basins has a more significant effect on changing water chemistry. It has saturated the water of rivers with aragonite, calcite and dolomite. Due to the low contribution of the second factor in changing the chemical parameters, the water of both rivers is saturated with respect to evaporative minerals such as gypsum, halite and anhydrite in all stations. Based on Schoeller diagrams, Wilcox and other quality indicators in these two sections, the amount of main physicochemical parameters are in the desired range for drinking and agriculture. The results of Langelier, Ryznar, Larson-Skold and Puckorius indices showed that water is corrosive in industry.

Keywords: factor analysis, hydrochemical, saturation index, surface water quality

Procedia PDF Downloads 45