Search results for: reaction atmosphere
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3244

Search results for: reaction atmosphere

1474 Participation of Titanium Influencing the Petrological Assemblage of Mafic Dyke: Salem, South India

Authors: Ayoti Banerjee, Meenakshi Banerjee

Abstract:

The study of metamorphic reaction textures is important in contributing to our understanding of the evolution of metamorphic terranes. Where preserved, they provide information on changes in the P-T conditions during the metamorphic history of the rock, and thus allow us to speculate on the P-T-t evolution of the terrane. Mafic dykes have attracted the attention of petrologists because they act as window to mantle. This rock represents a mafic dyke of doleritic composition. It is fine to medium grained in which clinopyroxene are enclosed by the lath shaped plagioclase grains to form spectacular ophitic texture. At places, sub ophitic texture was also observed. Grains of pyroxene and plagioclase show very less deformation typically plagioclase showing deformed lamella along with plagioclase-clinopyroxene-phyric granoblastic fabric within a groundmass of feldspar microphenocrysts and Fe–Ti oxides. Both normal and reverse zoning were noted in the plagioclase laths. The clinopyroxene grains contain exsolved phases such as orthopyroxene, plagioclase, magnetite, ilmenite along the cleavage traces and the orthopyroxene lamella form granules in the periphery of the clinopyroxene grains. Garnet corona also develops preferentially around plagioclase at the contact of clinopyroxene, ilmenite or magnetite. Tiny quartz and K-fs grains showed symplectic intergrowth with garnet at a few places. The product quartz formed along with garnet rims the coronal garnet and the reacting clinopyroxene. Thin amphibole corona formed along the periphery of deformed plagioclase and clinopyroxene occur as patches over the magmatic minerals. The amphibole coronas cannot be assigned to a late magmatic stage and are interpreted as reactive being restricted to the contact between clinopyroxene and plagioclase, thus postdating the crystallization of both. The amphibole and garnet do not share grain boundary in the entire rock and is thus pointing towards simultaneous crystallization. Olivine is absent. Spectacular myrmekitic growth of orthoclase and quartz rimming the plagioclase is consistent with the potash metasomatic effects that is also found in other rocks of this region. These textural features are consistent with a phase of fluid induced metamorphism (retrogression). But the appearance of coronal garnet and amphibole exclusive of each other reflects the participation if Ti as the prime reason. Presence of Ti as a reactant phase is a must for amphibole forming reactions whereas it is not so in case of garnet forming reactions although the reactants are the same plagioclase and clinopyroxene in both cases. These findings are well validated by petrographical and textural analysis. In order to obtain balanced chemical reactions that explain formation of amphibole and garnet in the mafic dyke rocks a matrix operation technique called Singular Value Decomposition (SVD) was adopted utilizing the measured chemical compositions of the minerals. The computer program C-Space was used for this purpose and the required compositional matrix. Data fed to C-Space was after doing cation-calculation of the oxide percentages obtained from EPMA analysis. The Garnet-Clinopyroxene geothermometer yielded a temperature of 650 degrees Celsius. The Garnet-Clinopyroxene-Plagioclase geobarometer and Al-in amphibole yielded roughly 7.5 kbar pressure.

Keywords: corona, dolerite, geothermometer, metasomatism, metamorphic reaction texture, retrogression

Procedia PDF Downloads 278
1473 Impact of Crime on Women and Their Families in Rural Areas of Haryana State in India

Authors: Rashmi Tyagi, Savita Vermani

Abstract:

Violence against women is the result of long-standing power imbalance between men and women and thus seriously compromises the well-being, productivity and contribution of one half the population. The costs incurred to the family especially children and society at large in terms of physical, psychological, social and financial losses are huge. The communities’ native to the state of Haryana in India is primarily patriarchal, burdened with age old regressive mindset under the socio-cultural and religious structures which discriminates against women. Therefore it was important to bring to light the issues affecting women in this region. Therefore this study focused on studying the consequences of crime on victim women and their families. Two hundred women were randomly selected and out of those one hundred twenty, who were affected with some kind of violence were interviewed. Data was collected and statistically analyzed for physical, psychological, inter-family and societal consequences of violence on these women. Women reported physical injuries, gynecological problems, unwanted pregnancies, frigidity, phobia and sexual dysfunction. 58.9% women felt decreased work efficiency. Psychological problems encountered were anxiety, isolation, depression, suicidal tendencies. 66.7% respondents suffered from anxiety followed by 65.0% faced depression symptoms. At family levels, 40.0% respondents felt the atmosphere was unsuitable for children while 39.2% reported lack of interaction. The societal consequences reported were breakdown of interaction with friends and family (44.2%) and resulting humiliation and demeaning remarks from others (38.3%). The impact of violence on women had an adverse effect on children. 36.7% children felt responsible for abuse and powerless to stop it, 29.2% reported living with fear. Concerted efforts are required to curb violence against women in Haryana.

Keywords: impact of violence against women on children, patriarchal society, physical psychological and societal consequences, violence against women

Procedia PDF Downloads 308
1472 On-Line Super Critical Fluid Extraction, Supercritical Fluid Chromatography, Mass Spectrometry, a Technique in Pharmaceutical Analysis

Authors: Narayana Murthy Akurathi, Vijaya Lakshmi Marella

Abstract:

The literature is reviewed with regard to online Super critical fluid extraction (SFE) coupled directly with supercritical fluid chromatography (SFC) -mass spectrometry that have typically more sensitive than conventional LC-MS/MS and GC-MS/MS. It is becoming increasingly interesting to use on-line techniques that combine sample preparation, separation and detection in one analytical set up. This provides less human intervention, uses small amount of sample and organic solvent and yields enhanced analyte enrichment in a shorter time. The sample extraction is performed under light shielding and anaerobic conditions, preventing the degradation of thermo labile analytes. It may be able to analyze compounds over a wide polarity range as SFC generally uses carbon dioxide which was collected as a by-product of other chemical reactions or is collected from the atmosphere as it contributes no new chemicals to the environment. The diffusion of solutes in supercritical fluids is about ten times greater than that in liquids and about three times less than in gases which results in a decrease in resistance to mass transfer in the column and allows for fast high resolution separations. The drawback of SFC when using carbon dioxide as mobile phase is that the direct introduction of water samples poses a series of problems, water must therefore be eliminated before it reaches the analytical column. Hundreds of compounds analysed simultaneously by simple enclosing in an extraction vessel. This is mainly applicable for pharmaceutical industry where it can analyse fatty acids and phospholipids that have many analogues as their UV spectrum is very similar, trace additives in polymers, cleaning validation can be conducted by putting swab sample in an extraction vessel, analysing hundreds of pesticides with good resolution.

Keywords: super critical fluid extraction (SFE), super critical fluid chromatography (SFC), LCMS/MS, GCMS/MS

Procedia PDF Downloads 391
1471 Heterogeneous Photocatalytic Degradation of Methylene Blue by Montmorillonite/CuxCd1-xs Nanomaterials

Authors: Horiya Boukhatem, Lila Djouadi, Hussein Khalaf, Rufino Manuel Navarro Yerga, Fernando Vaquero Gonzalez

Abstract:

Heterogeneous photo catalysis is an alternative method for the removal of organic pollutants in water. The photo excitation of a semi-conductor under ultra violet (UV) irradiation entails the production of hydroxyl radicals, one of the most oxidative chemical species. The objective of this study is the synthesis of nano materials based on montmorillonite and CuxCd1-xS with different Cu concentration (0.3 < x < 0.7) and their application in photocatalysis of a cationic dye: methylene blue. The synthesized nano materials and montmorillonite were characterized by fourier transform infrared (FTIR). Test results of photo catalysis of methylene blue under UV-Visible irradiation show that the photoactivity of nano materials montmorillonite/ CuxCd1-xS increase with the increasing of Cu concentration and it is significantly higher compared to that of sodium montmorillonite alone. The application of the kinetic model of Langmuir-Hinshelwood (L-H) to the photocatalytic test results showed that the reaction rate obeys to the first-order kinetic model.

Keywords: heterogeneous photo catalysis, methylene blue, montmorillonite, nano material

Procedia PDF Downloads 339
1470 Clinical and Molecular Characterization of Mycoplasmosis in Sheep in Egypt

Authors: Walid Mousa, Mohamed Nayel, Ahmed Zaghawa, Akram Salama, Ahmed El-Sify, Hesham Rashad, Dina El-Shafey

Abstract:

Mycoplasmosis in small ruminants constitutes a serious contagious problem in smallholders causing severe economic losses worldwide. This study was conducted to determine the clinical, Minimum Inhibitory Concentration (MIC) and molecular characterization of Mycoplasma species associated in sheep breeding herds in Menoufiya governorate, Egypt. Out of the examination of 400 sheep, 104 (26%) showed respiratory manifestations, nasal discharges, cough and conjunctivitis with systemic body reaction. Meanwhile, out of these examined sheep, only 56 (14%) were positive for mycoplasma isolation onto PPLO(Pleuropneumonia-like organisms) specific medium. The MIC for evaluating the efficacy of sensitivity of Mycoplasma isolates against different antibiotics groups revealed that both the Linospectin and Tylosin with 2ug, 0.25ug/ml concentration were the most effective antibiotics for Mycoplasma isolates. The application of PCR was the rapid, specific and sensitive molecular approach for detection of M. ovipneumoniae, and M. arginine at 390 and 326 bp, respectively, in all tested isolates. In conclusion, the diagnosis of Mycoplsamosis in sheep is important to achieve effective control measures and minimizing the disease dissemination among sheep herds.

Keywords: MIC, mycoplasmosis, PCR, sheep

Procedia PDF Downloads 228
1469 Photocatalytic Packed‐Bed Flow Reactor for Continuous Room‐Temperature Hydrogen Release from Liquid Organic Carriers

Authors: Malek Y. S. Ibrahim, Jeffrey A. Bennett, Milad Abolhasani

Abstract:

Despite the potential of hydrogen (H2) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling has hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.

Keywords: hydrogen storage, flow chemistry, photocatalysis, solar hydrogen

Procedia PDF Downloads 98
1468 Evidence of Climate Change from Statistical Analysis of Temperature and Rainfall Data of Kaduna State, Nigeria

Authors: Iliya Bitrus Abaje

Abstract:

This study examines the evidence of climate change scenario in Kaduna State from the analysis of temperature and rainfall data (1976-2015) from three meteorological stations along a geographic transect from the southern part to the northern part of the State. Different statistical methods were used in determining the changes in both the temperature and rainfall series. The result of the linear trend lines revealed a mean increase in average temperature of 0.73oC for the 40 years period of study in the State. The plotted standard deviation for the temperature anomalies generally revealed that years of temperatures above the mean standard deviation (hotter than the normal conditions) in the last two decades (1996-2005 and 2006-2015) were more than those below (colder than the normal condition). The Cramer’s test and student’s t-test generally revealed an increasing temperature trend in the recent decades. The increased in temperature is an evidence that the earth’s atmosphere is getting warmer in recent years. The linear trend line equation of the annual rainfall for the period of study showed a mean increase of 316.25 mm for the State. Findings also revealed that the plotted standard deviation for the rainfall anomalies, and the 10-year non-overlapping and 30-year overlapping sub-periods analysis in all the three stations generally showed an increasing trend from the beginning of the data to the recent years. This is an evidence that the study area is now experiencing wetter conditions in recent years and hence climate change. The study recommends diversification of the economic base of the populace with emphasis on moving away from activities that are sensitive to temperature and rainfall extremes Also, appropriate strategies to ameliorate the scourge of climate change at all levels/sectors should always take into account the recent changes in temperature and rainfall amount in the area.

Keywords: anomalies, linear trend, rainfall, temperature

Procedia PDF Downloads 318
1467 Investigation of Flow Behavior inside the Single Channel Catalytic Combustor for Lean Mixture

Authors: Kumaresh Selvakumar, Man Young Kim

Abstract:

Catalytic combustor substantially reduces emission entailing fuel-air premixing at very low equivalence ratios. The catalytic combustion of natural gas has the potential to become sufficiently active at light off temperature by the convection of heat from the catalyst surface. Only one channel is selected to investigate both the gas and surface reactions in the catalyst bed because of the honeycomb structure of the catalytic combustor. The objective of the present study is to find the methane catalytic combustion behavior inside the catalytic combustor, where the gas phase kinetics is employed by homogeneous methane combustion and surface chemistry is described with the heterogeneous catalysis of the oxidation of methane on a platinum catalyst. The reaction of the premixed mixture in the catalytic regime improves flame stability with complete combustion for lower operating flame temperature. An overview of the flow behavior is presented inside the single channel catalytic combustor including the operation of catalytic combustion with various F/A ratios and premixed inlet temperature.

Keywords: catalytic combustor, equivalence ratios, flame temperature, heterogeneous catalysis, homogeneous combustion

Procedia PDF Downloads 264
1466 Quantifying Rumen Enteric Methane Production in Extensive Production Systems

Authors: Washaya Soul, Mupangwa John, Mapfumo Lizwell, Muchenje Voster

Abstract:

Ruminant animals contribute a considerable amount of methane to the atmosphere, which is a cause of concern for global warming. Two studies were conducted in beef and goats where the studies aimed to determine the enteric CH₄ levels from a herd of beef cows raised on semi-arid rangelands and to evaluate the effect of supplementing goats with forage legumes: Vigna unguiculata and Lablab purpureus on enteric methane production. A total of 24 cows were selected from Boran and Nguni cows (n = 12 per breed) from two different farms; parity (P1 – P4) and season (dry vs. wet) were considered predictor variables in the first experiment. Eighteen goats (weaners, 9 males, 9 females) were used, in which sex and forage species were predictor variables in the second experiment. Three treatment diets were used in goats. Methane was measured using a Laser methane detector [LMD] for six consecutive days and repeated once after every three months in beef cows and once every week for 6 weeks in goats during the post-adaptation period. Parity and breed had no effects on CH₄ production in beef cows; however, season significantly influenced CH₄ outputs. Methane production was higher (P<0.05) in the dry compared to the wet season, 31.1CH₄/DMI(g/kg) and 28.8 CH₄/DMI(g/kg) for the dry and wet seasons, respectively. In goats, forage species and sex of the animal affected enteric methane production (P<0.05). Animals produce more gas when ruminating than feeding or just standing for all treatments. The control treatment exhibited higher (P<0.05) methane emissions per kg of DMI. Male goats produced more methane compared to females (17.40L/day; 12.46 g/kg DMI and 0.126g/day) versus (15.47L/day, 12.28 g/kg DMI, 0.0109g/day) respectively. It was concluded that cows produce more CH₄/DMI during the dry season, while forage legumes reduce enteric methane production in goats, and male goats produce more gas compared to females. It is recommended to introduce forage legumes, particularly during the dry season, to reduce the amount of gas produced.

Keywords: beef cows, extensive grazing system, forage legumes, greenhouse gases, goats Laser methane detector.

Procedia PDF Downloads 66
1465 Investigation of the Composition and Structure of Tar by Lignite Pyrolysis Using Thermogravimetry, Gas Chromatography and Mass Spectrum Coupled Instrument System

Authors: Li Feng, Cheng Zhang, Chuanzhou Yuang

Abstract:

Understanding the macromolecular structure of low-rank coal is very important for its gasification and liquefaction. The pyrolysis is one of the methods of analyzing the macromolecular structure of coal. The gaseous products decomposed directly by the raw lignite at 500 °C and indirectly by tar products from raw lignite pyrolysis at 500 °C were investigated and compared by thermogravimetry, gas chromatography and mass spectrum coupled instrument system (TG/GC/MS) in this paper. The results show that 52 kinds of products were found from the raw lignite and 70 kinds of products from the tar. The pyrolysis products directly from the lignite appear more monocyclic aromatic hydrocarbons and less substituent groups or branch chain, compared with the products from the tar. There is less linear chain and double bonds structure in the tar, which can be speculated that linear chain and double bonds structure took part in the generation of condensed rings and other reactions. There are more kinds of phenol and furan in the tar, which indicate that these products may be generated from the secondary reaction. The formation process of phenol, phenol naphthalene, naphthene and furan are discussed.

Keywords: composition and structure, lignite, pyrolysis of coal, tar, TG/GC/MS

Procedia PDF Downloads 141
1464 Islam and Globalization: Accommodation or Containment of One by the Other

Authors: Mohammed Isah Shehu

Abstract:

This paper examined the context of globalization and Islam and accommodation or containment of one by the other. The paper is born out of the misconception and misunderstanding among many people that globalization is purely Western, anti-Islam and that Islam, globalization and Islam are diametrically opposed as such have no places for accommodating each other. The study used secondary sources to gather data. The study found that from its origin, Islam is in the whole context, a globalized religion and the contemporary globalization is already contained by Islam; that while contemporary globalization is centered on Western world, values and preferences (Western civilization, information and communication technology, free markets, trade and investments); some of the major foundation works that are aiding globalization were originally handiworks of past great Muslims (Islamic civilizations, Order of Algebra, tools of Navigation, Calligraphy, Medicine, Astronomy et cetera) whose major values are not Islamic; with globalization the Muslims have greater opportunities of spreading of Islam and practicing it in a most conducive atmosphere, easy and fast linkage with their fellow Muslim brothers wherever they may be; easier and freer world of trade and have the best opportunities to most things. The study however observed that Western contemporary globalization poses threats to religions such as those of globalization of immorality, injustice, trade with anti-Islamic terms and conditions, internationalized crime et cetera. Muslims would have to avoid or be cautious of many things for Islam is a complete religion that has what is forbidden and allowed (halaal and haramm) based on principles of (Shariah, justice to all, humanity and compassion, obedience to and seeking Allah’s pleasure); to Muslims, Contemporary globalization has to be in conformity with original provisions of Islam. The study recommended that Muslims must rise up in seeking knowledge on Islam and all other fields, further intellectual explorations of works by Muslim scholars/thinkers so that any advancement in globalization would be properly domesticated within Islam for the Muslims to make optimum use of any advancement to the benefit of Islam.

Keywords: accommodation, containment, Islam, globalization

Procedia PDF Downloads 283
1463 Modeling Vegetation Phenological Characteristics of Terrestrial Ecosystems

Authors: Zongyao Sha

Abstract:

Green vegetation plays a vital role in energy flows and matter cycles in terrestrial ecosystems, and vegetation phenology may not only be influenced by but also impose active feedback on climate changes. The phenological events of vegetation, such as the start of the season (SOS), end of the season (EOS), and length of the season (LOS), can respond to climate changes and affect gross primary productivity (GPP). Here we coupled satellite remote sensing imagery with FLUXNET observations to systematically map the shift of SOS, EOS, and LOS in global vegetated areas and explored their response to climate fluctuations and feedback on GPP during the last two decades. Results indicated that SOS advanced significantly, at an average rate of 0.19 days/year at a global scale, particularly in the northern hemisphere above the middle latitude (≥30°N) and that EOS was slightly delayed during the past two decades, resulting in prolonged LOS in 72.5% of the vegetated area. The climate factors, including seasonal temperature and precipitation, are attributed to the shifts in vegetation phenology but with a high spatial and temporal difference. The study revealed interactions between vegetation phenology and climate changes. Both temperature and precipitation affect vegetation phenology. Higher temperature as a direct consequence of global warming advanced vegetation green-up date. On the other hand, 75.9% and 20.2% of the vegetated area showed a positive correlation and significant positive correlation between annual GPP and length of vegetation growing season (LOS), likely indicating an enhancing effect on vegetation productivity and thus increased carbon uptake from the shifted vegetation phenology. Our study highlights a comprehensive view of the vegetation phenology changes of the global terrestrial ecosystems during the last two decades. The interactions between the shifted vegetation phenology and climate changes may provide useful information for better understanding the future trajectory of global climate changes. The feedback on GPP from the shifted vegetation phenology may serve as an adaptation mechanism for terrestrial ecosystems to mitigate global warming through improved carbon uptake from the atmosphere.

Keywords: vegetation phenology, growing season, NPP, correlation analysis

Procedia PDF Downloads 102
1462 High-Speed LIF-OH Imaging of H2-Air Turbulent Premixed Flames

Authors: Ahmed A. Al-Harbi

Abstract:

This paper presents a comparative study of effects of the repeated solid obstacles on the propagation of H2-Air premixed flames. Pressure, speed of the flame front as well as structure of reaction zones are studied for hydrogen. Two equivalence ratios are examined for different configurations of three baffle plates and two obstacles with a square cross-section having blockage ratios of either 0.24 or 0.5. Hydrogen fuel mixtures with two equivalence ratios of 0.7 and 0.8 are studied and this is limited by the excessive overpressures. The results show that the peak pressure and its rate of change can be increased by increasing the blockage ratio or by decreasing the space between successive baffles. As illustrated by the high speed images of LIF-OH, the degree of wrinkling and contortion in the flame front increase as the blockages increase. The images also show how the flame front relaminarises with increasing distances between obstacles, which accounts for the pressure decrease with increasing separation. It is also found that more than one obstacle is needed to achieve a turbulent flame structure with intense corrugations.

Keywords: premixed propagating flames, flame-obstacle interaction, turbulent premixed flames, overpressure, transient flames

Procedia PDF Downloads 377
1461 Measurement of Radon Exhalation Rate, Natural Radioactivity, and Radiation Hazard Assessment in Soil Samples from the Surrounding Area of Kasimpur Thermal Power Plant Kasimpur (U. P.), India

Authors: Anil Sharma, Ajay Kumar Mahur, R. G. Sonkawade, A. C. Sharma, R. Prasad

Abstract:

In coal fired thermal power stations, large amount of fly ash is produced after burning of coal. Fly ash is spread and distributed in the surrounding area by air and may be deposited on the soil of the region surrounding the power plant. Coal contains increased levels of these radionuclides and fly ash may increase the radioactivity in the soil around the power plant. Radon atoms entering into the pore space from the mineral grain are transported by diffusion and advection through this space until they in turn decay or are released into the atmosphere. In the present study, Soil samples were collected from the region around a Kasimpur Thermal Power Plant, Kasimpur, Aligarh (U.P.). Radon activity, radon surface exhalation and mass exhalation rates were measured using “sealed can technique” using LR 115-type II nuclear track detectors. Radon activities vary from 92.9 to 556.8 Bq m-3 with mean value of 279.8 Bq m-3. Surface exhalation rates (EX) in these samples are found to vary from 33.4 to 200.2 mBq m-2 h-1 with an average value of 100.5 mBq m-2 h-1 whereas, Mass exhalation rates (EM) vary from 1.2 to 7.7 mBq kg-1 h-1 with an average value of 3.8 mBq kg-1 h-1. Activity concentrations of radionuclides were measured in these samples by using a low level NaI (Tl) based gamma ray spectrometer. Activity concentrations of 226Ra 232Th and 40K vary from 12 to 49 Bq kg-1, 24 to 49 Bq kg-1 and 135 to 546 Bq kg-1 with overall mean values of 30.3 Bq kg-1, 38.5 Bq kg-1 and 317.8 Bq kg-1, respectively. Radium equivalent activity has been found to vary from 80.0 to 143.7 Bq kg-1 with an average value of 109.7 Bq kg-1. Absorbed dose rate varies from 36.1 to 66.4 nGy h-1 with an average value of 50.4 nGy h-1 and corresponding outdoor annual effective dose varies from 0.044 to 0.081 mSv with an average value of 0.061 mSv. Values of external and internal hazard index Hex, Hin in this study vary from 0.21 to 0.38 and 0.27 to 0.50 with an average value of 0.29 and 0.37, Respectively. The results will be discussed in light of various factors.

Keywords: natural radioactivity, radium equivalent activity, absorbed dose rate, gamma ray spectroscopy

Procedia PDF Downloads 362
1460 Engineering Design of a Chemical Launcher: An Interdisciplinary Design Activity

Authors: Mei Xuan Tan, Gim-Yang Maggie Pee, Mei Chee Tan

Abstract:

Academic performance, in the form of scoring high grades in enrolled subjects, is not the only significant trait in achieving success. Engineering graduates with experience in working on hands-on projects in a team setting are highly sought after in industry upon graduation. Such projects are typically real world problems that require the integration and application of knowledge and skills from several disciplines. In a traditional university setting, subjects are taught in a silo manner with no cross participation from other departments or disciplines. This may lead to knowledge compartmentalization and students are unable to understand and connect the relevance and applicability of the subject. University instructors thus see this integration across disciplines as a challenging task as they aim to better prepare students in understanding and solving problems for work or future studies. To improve students’ academic performance and to cultivate various skills such as critical thinking, there has been a gradual uptake in the use of an active learning approach in introductory science and engineering courses, where lecturing is traditionally the main mode of instruction. This study aims to discuss the implementation and experience of a hands-on, interdisciplinary project that involves all the four core subjects taught during the term at the Singapore University of Technology Design (SUTD). At SUTD, an interdisciplinary design activity, named 2D, is integrated into the curriculum to help students reinforce the concepts learnt. A student enrolled in SUTD experiences his or her first 2D in Term 1. This activity. which spans over one week in Week 10 of Term 1, highlights the application of chemistry, physics, mathematics, humanities, arts and social sciences (HASS) in designing an engineering product solution. The activity theme for Term 1 2D revolved around “work and play”. Students, in teams of 4 or 5, used a scaled-down model of a chemical launcher to launch a projectile across the room. It involved the use of a small chemical combustion reaction between ethanol (a highly volatile fuel) and oxygen. This reaction generated a sudden and large increase in gas pressure built up in a closed chamber, resulting in rapid gas expansion and ejection of the projectile out of the launcher. Students discussed and explored the meaning of play in their lives in HASS class while the engineering aspects of a combustion system to launch an object using underlying principles of energy conversion and projectile motion were revisited during the chemistry and physics classes, respectively. Numerical solutions on the distance travelled by the projectile launched by the chemical launcher, taking into account drag forces, was developed during the mathematics classes. At the end of the activity, students developed skills in report writing, data collection and analysis. Specific to this 2D activity, students gained an understanding and appreciation on the application and interdisciplinary nature of science, engineering and HASS. More importantly, students were exposed to design and problem solving, where human interaction and discussion are important yet challenging in a team setting.

Keywords: active learning, collaborative learning, first year undergraduate, interdisciplinary, STEAM

Procedia PDF Downloads 122
1459 South African Breast Cancer Mutation Spectrum: Pitfalls to Copy Number Variation Detection Using Internationally Designed Multiplex Ligation-Dependent Probe Amplification and Next Generation Sequencing Panels

Authors: Jaco Oosthuizen, Nerina C. Van Der Merwe

Abstract:

The National Health Laboratory Services in Bloemfontien has been the diagnostic testing facility for 1830 patients for familial breast cancer since 1997. From the cohort, 540 were comprehensively screened using High-Resolution Melting Analysis or Next Generation Sequencing for the presence of point mutations and/or indels. Approximately 90% of these patients stil remain undiagnosed as they are BRCA1/2 negative. Multiplex ligation-dependent probe amplification was initially added to screen for copy number variation detection, but with the introduction of next generation sequencing in 2017, was substituted and is currently used as a confirmation assay. The aim was to investigate the viability of utilizing internationally designed copy number variation detection assays based on mostly European/Caucasian genomic data for use within a South African context. The multiplex ligation-dependent probe amplification technique is based on the hybridization and subsequent ligation of multiple probes to a targeted exon. The ligated probes are amplified using conventional polymerase chain reaction, followed by fragment analysis by means of capillary electrophoresis. The experimental design of the assay was performed according to the guidelines of MRC-Holland. For BRCA1 (P002-D1) and BRCA2 (P045-B3), both multiplex assays were validated, and results were confirmed using a secondary probe set for each gene. The next generation sequencing technique is based on target amplification via multiplex polymerase chain reaction, where after the amplicons are sequenced parallel on a semiconductor chip. Amplified read counts are visualized as relative copy numbers to determine the median of the absolute values of all pairwise differences. Various experimental parameters such as DNA quality, quantity, and signal intensity or read depth were verified using positive and negative patients previously tested internationally. DNA quality and quantity proved to be the critical factors during the verification of both assays. The quantity influenced the relative copy number frequency directly whereas the quality of the DNA and its salt concentration influenced denaturation consistency in both assays. Multiplex ligation-dependent probe amplification produced false positives due to ligation failure when ligation was inhibited due to a variant present within the ligation site. Next generation sequencing produced false positives due to read dropout when primer sequences did not meet optimal multiplex binding kinetics due to population variants in the primer binding site. The analytical sensitivity and specificity for the South African population have been proven. Verification resulted in repeatable reactions with regards to the detection of relative copy number differences. Both multiplex ligation-dependent probe amplification and next generation sequencing multiplex panels need to be optimized to accommodate South African polymorphisms present within the genetically diverse ethnic groups to reduce the false copy number variation positive rate and increase performance efficiency.

Keywords: familial breast cancer, multiplex ligation-dependent probe amplification, next generation sequencing, South Africa

Procedia PDF Downloads 231
1458 Theoretical Prediction on the Lifetime of Sessile Evaporating Droplet in Blade Cooling

Authors: Yang Shen, Yongpan Cheng, Jinliang Xu

Abstract:

The effective blade cooling is of great significance for improving the performance of turbine. The mist cooling emerges as the promising way compared with the transitional single-phase cooling. In the mist cooling, the injected droplet will evaporate rapidly, and cool down the blade surface due to the absorbed latent heat, hence the lifetime for evaporating droplet becomes critical for design of cooling passages for the blade. So far there have been extensive studies on the droplet evaporation, but usually the isothermal model is applied for most of the studies. Actually the surface cooling effect can affect the droplet evaporation greatly, it can prolong the droplet evaporation lifetime significantly. In our study, a new theoretical model for sessile droplet evaporation with surface cooling effect is built up in toroidal coordinate. Three evaporation modes are analyzed during the evaporation lifetime, include “Constant Contact Radius”(CCR) mode、“Constant Contact Angle”(CCA) mode and “stick-slip”(SS) mode. The dimensionless number E0 is introduced to indicate the strength of the evaporative cooling, it is defined based on the thermal properties of the liquid and the atmosphere. Our model can predict accurately the lifetime of evaporation by validating with available experimental data. Then the temporal variation of droplet volume, contact angle and contact radius are presented under CCR, CCA and SS mode, the following conclusions are obtained. 1) The larger the dimensionless number E0, the longer the lifetime of three evaporation cases is; 2) The droplet volume over time still follows “2/3 power law” in the CCA mode, as in the isothermal model without the cooling effect; 3) In the “SS” mode, the large transition contact angle can reduce the evaporation time in CCR mode, and increase the time in CCA mode, the overall lifetime will be increased; 4) The correction factor for predicting instantaneous volume of the droplet is derived to predict the droplet life time accurately. These findings may be of great significance to explore the dynamics and heat transfer of sessile droplet evaporation.

Keywords: blade cooling, droplet evaporation, lifetime, theoretical analysis

Procedia PDF Downloads 142
1457 Photoluminescence Study of Erbium-Mixed Alkylated Silicon Nanocrystals

Authors: Khamael M. Abualnaja, Lidija Šiller, Benjamin R. Horrocks

Abstract:

Alkylated silicon nanocrystals (C11-SiNCs) were prepared successfully by galvanostatic etching of p-Si(100) wafers followed by a thermal hydrosilation reaction of 1-undecene in refluxing toluene in order to extract C11-SiNCs from porous silicon. Erbium trichloride was added to alkylated SiNCs using a simple mixing chemical route. To the best of our knowledge, this is the first investigation on mixing SiNCs with erbium ions (III) by this chemical method. The chemical characterization of C11-SiNCs and their mixtures with Er3+ (Er/C11-SiNCs) were carried out using X-ray photoemission spectroscopy (XPS). The optical properties of C11-SiNCs and their mixtures with Er3+ were investigated using Raman spectroscopy and photoluminescence (PL). The erbium-mixed alkylated SiNCs shows an orange PL emission peak at around 595 nm that originates from radiative recombination of Si. Er/C11-SiNCs mixture also exhibits a weak PL emission peak at 1536 nm that originates from the intra-4f transition in erbium ions (Er3+). The PL peak of Si in Er/C11-SiNCs mixture is increased in the intensity up to three times as compared to pure C11-SiNCs. The collected data suggest that this chemical mixing route leads instead to a transfer of energy from erbium ions to alkylated SiNCs.

Keywords: photoluminescence, silicon nanocrystals, erbium, Raman spectroscopy

Procedia PDF Downloads 366
1456 Synthesis and Study of Structural, Morphological, and Electrochemical Properties of Ceria co-doped for SOFC Applications

Authors: Fatima Melit, Nedjemeddine Bounar

Abstract:

Polycrystalline samples of Ce1-xMxO2-δ (x=0.1, 0.15, 0.2)(M=Gd, Y) were prepared by solid-state chemical reaction from mixtures of pre-dried oxides powders of CeO2, Gd2O3 and Y2O3 in the appropriate stoichiometric ratio to explore their use as solid electrolytes for intermediate temperature solid oxide fuel cells (IT-SOFCs). Their crystal structures and ionic conductivities were characterised by X-ray powder diffraction (XRD) and AC complex impedance spectroscopy (EIS). The XRD analyses confirm that all the resulting synthesised co-doped cerium oxide powders are single-phase and crystallise in the cubic structure system with the space group Fm3m. On the one hand, the lattice parameter (a ) of the phases increases with increasing Gd content; on the other hand, with increasing Y-substitution rate, the latter decreases. The results of complex impedance conductivity measurements have shown that doping has a remarkable effect on conductivity. The co-doped cerium phases showed significant ionic conductivity values, making these materials excellent candidates for solid oxide electrolytes at intermediate temperatures.

Keywords: electrolyte, Ceria, X-ray diffraction, EIS, SEM, SOFC

Procedia PDF Downloads 144
1455 Leaf Photosynthesis and Water-Use Efficiency of Diverse Legume Species Nodulated by Native Rhizobial Isolates in the Glasshouse

Authors: Lebogang Jane Msiza, Felix Dapare Dakora

Abstract:

Photosynthesis is a process by which plants convert light energy to chemical energy for metabolic processes. Plants are known for converting inorganic CO₂ in the atmosphere to organic C by photosynthesis. A decrease in stomatal conductance causes a decrease in the transpiration rate of leaves, thus increasing the water-use efficiency of plants. Water-use efficiency in plants is conditioned by soil moisture availability and is enhanced under conditions of water deficit. This study evaluated leaf photosynthesis and water-use efficiency in 12 legume species inoculated with 26 rhizobial isolates from soybean, 15 from common bean, 10 from cowpea, 15 from Bambara groundnut, 7 from lessertia and 10 from Kersting bean. Gas-exchange studies were used to measure photosynthesis and water-use efficiency. The results revealed a much higher photosynthetic rate (20.95µmol CO₂ m-2s-1) induced by isolated tutpres to a lower rate (7.06 µmol CO₂ m-2s-1) by isolate mgsa 88. Stomatal conductance ranged from to 0.01 mmol m-2.s-1 by mgsa 88 to 0.12 mmol m-2.s-1 by isolate da-pua 128. Transpiration rate also ranged from 0.09 mmol m-2.s-1 induced by da-pua B2 to 3.28 mmol m-2.s-1 by da-pua 3, while water-use efficiency ranged from 91.32 µmol CO₂ m-1 H₂O elicited by mgsa 106 to 4655.50 µmol CO₂ m-1 H₂O by isolate tutswz 13. The results revealed the highest photosynthetic rate in soybean and the lowest in common bean, and also with higher stomatal conductance and transpiration rates in jack bean and Bambara groundnut. Pigeonpea exhibited much higher water-use efficiency than all the tested legumes. The findings showed significant differences between and among the test legume/rhizobia combinations. Leaf photosynthetic rates are reported to be higher in legumes with high stomatal conductance, which suggests that legume productivity can be improved by manipulating leaf stomatal conductance.

Keywords: legumes, photosynthetic rate, stomatal conductance, water-use efficiency

Procedia PDF Downloads 228
1454 N-Heptane as Model Molecule for Cracking Catalyst Evaluation to Improve the Yield of Ethylene and Propylene

Authors: Tony K. Joseph, Balasubramanian Vathilingam, Stephane Morin

Abstract:

Currently, the refiners around the world are more focused on improving the yield of light olefins (propylene and ethylene) as both of them are very prominent raw materials to produce wide spectrum of polymeric materials such as polyethylene and polypropylene. Henceforth, it is desirable to increase the yield of light olefins via selective cracking of heavy oil fractions. In this study, zeolite grown on SiC was used as the catalyst to do model cracking reaction of n-heptane. The catalytic cracking of n-heptane was performed in a fixed bed reactor (12 mm i.d.) at three different temperatures (425, 450 and 475 °C) and at atmospheric pressure. A carrier gas (N₂) was mixed with n-heptane with ratio of 90:10 (N₂:n-heptane), and the gaseous mixture was introduced into the fixed bed reactor. Various flow rate of reactants was tested to increase the yield of ethylene and propylene. For the comparison purpose, commercial zeolite was also tested in addition to Zeolite on SiC. The products were analyzed using an Agilent gas chromatograph (GC-9860) equipped with flame ionization detector (FID). The GC is connected online with the reactor and all the cracking tests were successfully reproduced. The entire catalytic evaluation results will be presented during the conference.

Keywords: cracking, catalyst, evaluation, ethylene, heptane, propylene

Procedia PDF Downloads 136
1453 Improvement of Heat Dissipation Ability of Polyimide Composite Film

Authors: Jinyoung Kim, Jinuk Kwon, Haksoo Han

Abstract:

Polyimide is widely used in electronic industries, and heat dissipation of polyimide film is important for its application in electric devices for high-temperature resistance heat dissipation film. In this study, we demonstrated a new way to increase heat dissipating rate by adding carbon black as filler. This type of polyimide composite film was produced by pyromellitic dianhydride (PMDA) and 4,4’-oxydianiline (ODA). Carbon black (CB) is added in different loading, shows increasing heat dissipation rate for increase of Carbon black. The polyimide-carbon black composite film is synthesized with high dissipation rate to ~8W∙m−1K−1. Its high thermal decomposition temperature and glass transition temperature were maintained with carbon filler verified by thermogravimetric analysis (TGA) and differential scanning calorimetric (DSC), the polyimidization reaction of polyi(amide-mide) was confirmed by Fourier transform infrared spectroscopy (FT-IR). The polyimide composite film with carbon black with high heat dissipating rate could be used in various applications such as computers, mobile phone industries, integrated circuits, coating materials, semiconductor etc.

Keywords: polyimide, heat dissipation, electric device, filler

Procedia PDF Downloads 679
1452 Mechanical and Physical Properties of Aluminum Composite Reinforced with Carbon Nano Tube Dispersion via Ultrasonic and Ball Mill Attrition after Sever Plastic Deformation

Authors: Hassan Zare, Mohammad Jahedi, Mohammad Reza Toroghinejad, Mahmoud Meratian, Marko Knezevic

Abstract:

In this study, the carbon nanotube (CNT) reinforced Al matrix nanocomposites were fabricated by ECAP. Equal Channel Angular Pressing (ECAP) process is one of the most important methods for powder densification due to the presence of shear strain. This method samples with variety passes (one, two, four and eight passes) in C route were prepared at room temperature. A few study about metal matrix nanocomposite reinforced carbon nanotube done, the reaction intersection of interface and carbon nanotube cause to reduce the efficiency of nanocomposite. In this paper, we checked mechanical and physical properties of aluminum-CNT composite that manufactured by ECAP when the composite is deformed. The non-agglomerated CNTs were distributed homogeneously with 2% consolidation in the Aluminum matrix. The ECAP process was performed on the both monolithic and composite with distributed CNT samples for 8 passes.

Keywords: powder metallurgy, ball mill attrition, ultrasonic, consolidation

Procedia PDF Downloads 495
1451 Adaptive Control of Magnetorheological Damper Using Duffing-Like Model

Authors: Hung-Jiun Chi, Cheng-En Tsai, Jia-Ying Tu

Abstract:

Semi-active control of Magnetorheological (MR) dampers for vibration reduction of structural systems has received considerable attention in civil and earthquake engineering, because the effective stiffness and damping properties of MR fluid can change in a very short time in reaction to external loading, requiring only a low level of power. However, the inherent nonlinear dynamics of hysteresis raise challenges in the modeling and control processes. In order to control the MR damper, an innovative Duffing-like equation is proposed to approximate the hysteresis dynamics in a deterministic and systematic manner than previously has been possible. Then, the model-reference adaptive control technique based on the Duffing-like model and the Lyapunov method is discussed. Parameter identification work with experimental data is presented to show the effectiveness of the Duffing-like model. In addition, simulation results show that the resulting adaptive gains enable the MR damper force to track the desired response of the reference model satisfactorily, verifying the effectiveness of the proposed modeling and control techniques.

Keywords: magnetorheological damper, duffing equation, model-reference adaptive control, Lyapunov function, hysteresis

Procedia PDF Downloads 370
1450 Growth Performance Of fresh Water Microalgae Chlorella sp. Exposed to Carbon Dioxide

Authors: Titin Handayani, Adi Mulyanto, Fajar Eko Priyanto

Abstract:

It is generally recognized, that algae could be an interesting option for reducing CO₂ emissions. Based on light and CO₂, algae can be used for the production various economically interesting products. Current algae cultivation techniques, however, still present a number of limitations. Efficient feeding of CO₂, especially on a large scale, is one of them. Current methods for CO₂ feeding to algae cultures rely on the sparging pure CO₂ or directly from flue gas. The limiting factor in this system is the solubility of CO₂ in water, which demands a considerable amount of energy for an effective gas to liquid transfer and leads to losses to the atmosphere. Due to the current ineffective methods for CO₂ introduction into algae ponds very large surface areas would be required for enough ponds to capture a considerable amount of the CO₂. The purpose of this study is to assess technology to capture carbon dioxide (CO₂) emissions generated by industry by utilizing of microalgae Chlorella sp. The microalgae were cultivated in a bioreactor culture pond raceway type. The result is expected to be useful in mitigating the effects of greenhouse gases in reducing the CO₂ emissions. The research activities include: (1) Characterization of boiler flue gas, (2) Operation of culture pond, (3) Sampling and sample analysis. The results of this study showed that the initial assessment absorption of the flue gas by microalgae using 1000 L raceway pond completed by heat exchanger were quite promising. The transfer of CO₂ into the pond culture system was run well. This identified from the success of cooling the boiler flue gas from the temperature of about 200 °C to below ambient temperature. Except for the temperature, the gas bubbles into the culture media were quite fine. Therefore, the contact between the gas and the media was well performed. The efficiency of CO₂ absorption by Chlorella sp reached 6.68 % with an average CO₂ loading of 0.29 g/L/day.

Keywords: Chlorella sp., CO2 emission, heat exchange, microalgae, milk industry, raceway pond

Procedia PDF Downloads 217
1449 Calculating Asphaltenes Precipitation Onset Pressure by Using Cardanol as Precipitation Inhibitor: A Strategy to Increment the Oil Well Production

Authors: Camilo A. Guerrero-Martin, Erik Montes Paez, Marcia C. K. Oliveira, Jonathan Campos, Elizabete F. Lucas

Abstract:

Asphaltenes precipitation is considered as a formation damage problem, which can reduce the oil recovery factor. It fouls piping and surface installations, as well as cause serious flow assurance complications and decline oil well production. Therefore, researchers have shown an interest in chemical treatments to control this phenomenon. The aim of this paper is to assess the asphaltenes precipitation onset of crude oils in the presence of cardanol, by titrating the crude with n-heptane. Moreover, based on this results obtained at atmosphere pressure, the asphaltenes precipitation onset pressure were calculated to predict asphaltenes precipitation in the reservoir, by using differential liberation and refractive index data of the oils. The influence of cardanol concentrations in the asphaltenes stabilization of three Brazilian crude oils samples (with similar API densities) was studied. Therefore, four formulations of cardanol in toluene were prepared: 0, 3, 5, 10 and 15 m/m%. The formulations were added to the crude at 2:98 ratio. The petroleum samples were characterized by API density, elemental analysis and differential liberation test. The asphaltenes precipitation onset (APO) was determined by titrating with n-heptane and monitoring with near-infrared (NIR). UV-Vis spectroscopy experiments were also done to assess the precipitate asphaltenes content. The asphaltenes precipitation envelopes (APE) were also determined by numerical simulation (Multiflash). In addition, the adequate artificial lift systems (ALS) for the oils were selected. It was based on the downhole well profile and a screening methodology. Finally, the oil flowrates were modelling by NODAL analysis production system in the PIPESIM software. The results of this study show that the asphaltenes precipitation onset of the crude oils were 2.2, 2.3 and 6.0 mL of n-heptane/g of oil. The cardanol was an effective inhibitor of asphaltenes precipitation for the crude oils used in this study, since it displaces the precipitation pressure of the oil to lower values. This indicates that cardanol can increase the oil wells productivity.

Keywords: asphaltenes, NODAL analysis production system, precipitation pressure onset, inhibitory molecule

Procedia PDF Downloads 175
1448 Characteristics of Handgrip (Kumi-Kata) Profile of Georgian Elite Judo Athletes

Authors: Belkadi Adel, Beboucha Wahib, Cherara lalia

Abstract:

Objective: The aim of this study was to investigate the characteristics of Kumi-kata in elite judokas and characterize the kinematic and temporal parameters of different types of handgrip (HG). Method: fourteen participated in this study male athlete (23.5±2.61 years; 1.81±0.37 0 m; 87.25±22.75 kg), members of the Georgian Judo team. To characterize the dominance and types of kumi-kata used, videos of international competitions from each athlete were analyzed, and to characterize kinematic and temporal parameters and handgrip, and the volunteers pressed a digital dynamometer with each hand for 30 seconds(s) after a visual signal. Results: The values of 0.26±0.69s and 0.31±0.03s for reaction time were obtained, respectively, in the full grip and pinch grip; 19.62±18.83N/cm/s and 6.17±3.48N/cm/s for the rate of force development; 475,21 ± 101,322N and 494,65±112,73 for the FDR; 1,37 ± 0,521s and 1,45 ± 0,824s for the time between the force onset to the TFP; and 41,27±4,54N/cm/s and 45,16 ± 5,64N/cm/s for the fall index, in the dominant hand. There was no significant difference between hands for any variable, except for the dominance of Kumi-kata (p<0.05) used in combat. Conclusion: The dominance of application of the Kumi-kata is a technical option, as it does not depend on the kinetic-temporal parameters of the handgrip.

Keywords: hand grip, judo, athletes, Kumi-Kata

Procedia PDF Downloads 190
1447 Simultaneous Determination of p-Phenylenediamine, N-Acetyl-p-phenylenediamine and N,N-Diacetyl-p-phenylenediamine in Human Urine by LC-MS/MS

Authors: Khaled M. Mohamed

Abstract:

Background: P-Phenylenediamine (PPD) is used in the manufacture of hair dyes and skin decoration. In some developing countries, suicidal, homicidal and accidental cases by PPD were recorded. In this work, a sensitive LC-MS/MS method for determination of PPD and its metabolites N-acetyl-p-phenylenediamine (MAPPD) and N,N-diacetyl-p-phenylenediamine (DAPPD) in human urine has been developed and validated. Methods: PPD, MAPPD and DAPPD were extracted from urine by methylene chloride at alkaline pH. Acetanilide was used as internal standard (IS). The analytes and IS were separated on an Eclipse XDB- C18 column (150 X 4.6 mm, 5 µm) using a mobile phase of acetonitrile-1% formic acid in gradient elution. Detection was performed by LC-MS/MS using electrospray positive ionization under multiple reaction-monitoring mode. The transition ions m/z 109 → 92, m/z 151 → 92, m/z 193 → 92, and m/z 136 → 77 were selected for the quantification of PPD, MAPPD, DAPPD, and IS, respectively. Results: Calibration curves were linear in the range 10–2000 ng/mL for all analytes. The mean recoveries for PPD, MAPPD and DAPPD were 57.62, 74.19 and 50.99%, respectively. Intra-assay and inter-assay imprecisions were within 1.58–9.52% and 5.43–9.45% respectively for PPD, MAPPD and DAPPD. Inter-assay accuracies were within -7.43 and 7.36 for all compounds. PPD, MAPPD and DAPPD were stable in urine at –20 degrees for 24 hours. Conclusions: The method was successfully applied to the analysis of PPD, MAPPD and DAPPD in urine samples collected from suicidal cases.

Keywords: p-Phenylenediamine, metabolites, urine, LC-MS/MS, validation

Procedia PDF Downloads 355
1446 Experimental Investigations on Setting Behavior and Compreesive Strength of Flyash Based Geopolymer

Authors: Ishan Tank, Ashmita Rupal, Sanjay Kumar Sharma

Abstract:

Concrete, a widely used building material, has cement as its main constituent. An excessive amount of emissions are released into the atmosphere during the manufacture of cement, which is detrimental to the environment. To minimize this problem, innovative materials like geopolymer mortar (GPM) seem to be a better alternative. By using fly ash-based geopolymer instead of standard cement mortar as a binding ingredient, this concept has been successfully applied to the building sector. The advancement of this technology significantly reduces greenhouse gas emissions and helps in source reduction, thereby minimizing pollution of the environment. In order to produce mortar and use this geopolymer mortar in the development of building materials, the current investigation is properly introducing this geopolymeric material, namely fly ash, as a binder in place of standard cement. In the domain of the building material industry, fly ash based geopolymer is a new and optimistic replacement for traditional binding materials because it is both environmentally sustainable and has good durability. The setting behaviour and strength characteristics of fly ash, when mixed with alkaline activator solution with varied concentration of sodium hydroxide solution, alkaline liquids mix ratio, and curing temperature, must be investigated, though, in order to determine its suitability and application in comparison with the traditional binding material, by activating the raw materials, which include various elements of silica and alumina, finer material known as geopolymer mortar is created. The concentration of the activator solution has an impact on the compressive strength of the geopolymer concrete formed. An experimental examination of compressive strength after 7, 14, and 28 days of fly ash-based geopolymer concrete is presented in this paper. Furthermore, the process of geopolymerization largely relies on the curing temperature. So, the setting time of Geopolymer mortar due to different curing temperatures has been studied and discussed in this paper.

Keywords: geopolymer mortar, setting time, flyash, compressive strength, binder material

Procedia PDF Downloads 71
1445 Training Student Teachers to Work in Partnership with Parents of Students with Special Needs

Authors: Alicia Greenbank, Efrat Bengio

Abstract:

The aim of this research was to examine the efficacy of the first course in Israel, whose objective is to train student teachers in the special education department to work cooperatively with parents of children with special needs. Studies often highlight the importance of cooperation between teachers and parents of students with special needs. Israel’s Special Education Law defines parents as complete partners, and the Ministry of Education encourages and even requires that partnership be present. Yet this partnership is difficult to achieve many kindergarten teachers, and teachers have a lot of difficulties establishing and managing a pattern of cooperation with their students’ parents. Often we see different perspectives on the child's development and needs, distrust, lack of appreciation, and communication difficulties on both sides – parents & teachers. The course describes a method of instilling the need for cooperation at an early stage of teacher training-in the teacher training program. 22 students in the special education program for early childhood education in the fourth year of learning took part in the course. The fourth-year is the experiential training year and the first time that students have worked in a school. The course consisted of 14 sessions. Seven parents of students with different disabilities participated at 6 of the sessions. The changes in the students' attitudes towards partnership and their ability to manage this partnership were carried out by examining the reports written by the students before the meetings with the parents and the reflections they wrote after each meeting with the parents and at the end of the course. Three themes emerged from the narrative analysis, corresponding to the three preconditions for joint activities with parents — Approach, Attitude, Appropriate Atmosphere, according to the Four A’s Model. The findings showed that a course combining meetings with parents of children with special needs offers many benefits for teacher training. The course raised student awareness of the question partnership, changed students’ approaches and attitudes towards the parents, stressed the importance of partnership, and provided students with tools for working with parents through the school. Based on the findings of this study, courses in this format can be applied in order to cooperate between teachers and parents, for example, parents of gifted children with special needs.

Keywords: Partnership with parents in special education, parents of children with disabilities, parents of children with special needs, parents’ involvement in special education

Procedia PDF Downloads 188