Search results for: fusion zone microstructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2765

Search results for: fusion zone microstructure

995 Dissipation of Tebuconazole in Cropland Soils as Affected by Soil Factors

Authors: Bipul Behari Saha, Sunil Kumar Singh, P. Padmaja, Kamlesh Vishwakarma

Abstract:

Dissipation study of tebuconazole in alluvial, black and deep-black clayey soils collected from paddy, mango and peanut cropland of tropical agro-climatic zone of India at three concentration levels were carried out for monitoring the water contamination through persisted residual toxicity. The soil-slurry samples were analyzed by capillary GC-NPD methods followed by ultrasound-assisted extraction (UAE) technique and cleanup process. An excellent linear relationship between peak area and concentration obtained in the range 1 to 50 μgkg-1. The detection (S/N, 3 ± 0.5) and quantification (S/N, 7.5 ± 2.5) limits were 3 and 10 μgkg-1 respectively. Well spiked recoveries were achieved from 96.28 to 99.33 % at levels 5 and 20 μgkg-1 and method precision (% RSD) was ≤ 5%. The soils dissipation of tebuconazole was fitted in first order kinetic-model with half-life between 34.48 to 48.13 days. The soil organic-carbon (SOC) content correlated well with the dissipation rate constants (DRC) of the fungicide Tebuconazole. An increase in the SOC content resulted in faster dissipation. The results indicate that the soil organic carbon and tebuconazole concentrations plays dominant role in dissipation processes. The initial concentration illustrated that the degradation rate of tebuconazole in soils was concentration dependent.

Keywords: cropland soil, dissipation, laboratory incubation, tebuconazole

Procedia PDF Downloads 248
994 Effect of Strains and Temperature on the Twinning Behavior of High Purity Titanium Compressed by Split Hopkinson Pressure Bar

Authors: Ping Zhou, Dawu Xiao, Chunli Jiang, Ge Sang

Abstract:

Deformation twinning plays an important role in the mechanical properties of Ti which has high specific strength and excellent corrosion resistance ability. To investigate the twinning behavior of Ti under high strain rate compression, the split Hopkinson pressure bar (SHPB) was adopted to deform samples to different strains at room temperature. In addition, twinning behaviors under varied temperatures of 373K, 573K and 873K were also investigated. The cylindrical-shaped samples with purity 99.995% were annealed at 1073K for 1 hour in vacuum before compression. All the deformation twins were identified by electron backscatter diffraction (EBSD) techniques. The mechanical behavior showed three-stage work hardening in stress-strain curves for samples deformed at temperature 573K and 873K, while only two stages were observed for those deformed at room temperature. For samples compressed at room temperature, the predominant twin types are {10-12}<10-11> (E1), {11-21}<11-26> (E2) and {11-21}<11-23> (C1). The secondary and tertiary twinning was observed inside some E1, E2 and C1 twins. Most of the twin boundaries of E2 acted as the nucleate sites of E1. The densities of twins increase remarkably with increment of strains. For samples compressed at relatively higher temperatures, the migration of twin boundaries of E1, E2 and C1 was observed. All the twin lamellas shorten with temperature, and nearly disappeared at 873K except some remaining E1 twins. Polygonizations of grain boundaries were observed above 573K. The microstructure intended to have a texture with c-axes parallel to compression direction with temperature increment. Factors affecting the dynamic recovery and re-crystallization were discussed.

Keywords: deformation twins, EBSD, mechanical behavior, high strain rate, titanium

Procedia PDF Downloads 258
993 Analysis Of Magnetic Anomaly Data For Identification Subsurface Structure Geothermal Manifestations Area Candi Umbul, Grabag, Magelang, Central Java Province, Indonesia

Authors: Ikawati Wulandari

Abstract:

Acquisition of geomagnetic field has been done at Geothermal manifestation Candi Umbul, Grabag, Magelang, Central Java Province on 10-12 May 2013. The purpose of this research to study sub-surface structure condition and the structure which control the hot springs manifestation. The research area have size of 1,5 km x 2 km and measurement spacing of 150 m. Total magnetic field data, the position, and the north pole direction have acquired by Proton Precession Magnetometer (PPM), Global Positioning System (GPS), and of geology compass, respectively. The raw data has been processed and performed using IGRF (International Geomagnetics Reference Field) correction to obtain total field magnetic anomaly. Upward continuation was performed at 100 meters height using software Magpick. Analysis conclude horizontal position of the body causing anomaly which is located at hot springs manifestation, and it stretch along Northeast - Southwest, which later interpreted as normal fault. This hotsprings manifestation was controlled by the downward fault which becomes a weak zone where hot water from underground the geothermal reservoir leakage

Keywords: PPM, Geothermal, Fault, Grabag

Procedia PDF Downloads 455
992 Paleobathymetry and Biostratigraphy of Sambipitu Formation and Its Relation with the Presence of Ichnofossil in Geoheritage Site Ngalang River Yogyakarta

Authors: Harman Dwi R., Alwin Mugiyantoro, Heppy Chintya P.

Abstract:

The location of this research is a part of Geoheritage that located in Nglipar, Gunung Kidul Regency, Yogyakarta Special Region. Whereas in this location, the carbonate sandstone of Sambipitu Formation (early-middle Miocene) is well exposed along Ngalang River, also there are ichnofossil presence which causes this formation to be interesting. The determination of paleobathymetry is particularly important in determining paleoenvironment and paleogeographic. Paleobathymetry can be determined by identifying the presence of Foraminifera bentonik fossil and parasequence emerge. The methods that used in this study are spatial method of field observation with systematic sampling, descriptive method of paleontology, biostratigraphy analysis, geometrical analysis of Ichnofossil, and study literature. The result obtained that paleobathymetry of this location is bathyal zone with maximum regression known by Bulliminoides williamsonianus showing depth 17 fathoms at the age of N3-N5 (Oligocenne-Early Miocene) and the maximum transgression is known by Cibicides pseudoungarianus showing depth 862 fathoms at the age of N8-N9 (Early-Middle Miocene). Where the obtained paleobathymetry supported of the presence and formed the pattern of ichnofossil that found in the study area.

Keywords: paleobathymetry, biostratigraphy, ichnofossil, Ngalang river

Procedia PDF Downloads 161
991 Controlled Size Synthesis of ZnO and PEG-ZnO NPs and Their Biological Evaluation

Authors: Mahnoor Khan, Bashir Ahmad, Khizar Hayat, Saad Ahmad Khan, Laiba Ahmad, Shumaila Bashir, Abid Ali Khan

Abstract:

The objective of this study was to synthesize the smallest possible size of ZnO NPs using a modified wet chemical synthesis method and to prepare core shell using polyethylene glycol (PEG) as shell material. Advanced and sophisticated techniques were used to confirm the synthesis, size, and shape of these NPs. Rounded, clustered NPs of size 5.343 nm were formed. Both the plain and core shell NPs were tested against MDR bacteria (E. cloacae, E. amnigenus, Shigella, S. odorifacae, Citrobacter, and E. coli). Both of the NPs showed excellent antibacterial properties, whereas E. cloacae showed maximum zone of inhibition of 16 mm, 27 mm, and 32 mm for 500 μg/ml, 1000 μg/ml, and 1500 μg/ml, respectively for plain ZnO NPs and 18 mm, 28 mm and 35 mm for 500 μg/ml, 1000 μg/ml and 1500 μg/ml for core shell NPs. These NPs were also biocompatible on human red blood cells showing little hemolysis of only 4% for 70 μg/ml for plain NPs and 1.5% for 70 μg/ml for core shell NPs. Core shell NPs were highly biocompatible because of the PEG. Their therapeutic effect as photosensitizers in photodynamic therapy (PDT) for cancer treatment was also monitored. The cytotoxicity of ZnO and PEG-ZnO was evaluated using MTT assay. Our results demonstrated that these NPs could generate ROS inside tumor cells after irradiation which in turn initiates an apoptotic pathway leading to cell death hence proving to be an effective candidate for PDT.

Keywords: ZnO, hemolysis, cytotoxiciy assay, photodynamic therapy, antibacterial

Procedia PDF Downloads 134
990 Shear Strengthening of RC T-Beams by Means of CFRP Sheets

Authors: Omar A. Farghal

Abstract:

This research aimed to experimentally and analytically investigate the contribution of bonded web carbon fiber reinforced polymer (CFRP) sheets to the shear strength of reinforced concrete (RC) T-beams. Two strengthening techniques using CFRP strips were applied along the shear-span zone: the first one is vertical U-jacket and the later is vertical strips bonded to the beam sides only. Fibers of both U-jacket and side sheets were vertically oriented (θ = 90°). Test results showed that the strengthening technique with U-jacket CFRP sheets improved the shear strength particularly. Three mechanisms of failure were recognized for the tested beams depending upon the end condition of the bonded CFRP sheet. Although the failure mode for the different beams was a brittle one, the strengthened beams provided with U-jacket CFRP sheets showed more or less a ductile behavior at a higher loading level up to a load level just before failure. As a consequence, these beams approved an acceptable enhancement in the structural ductility. Moreover, the obtained results concerning both the strains induced in the CFRP sheets and the maximum loads are used to study the applicability of the analytical models proposed in this study (ACI code) to predict: the nominal shear strength of the strengthened beams.

Keywords: carbon fiber reinforced polymer, wrapping, ductility, shear strengthening

Procedia PDF Downloads 253
989 Sensitivity Enhancement of Photonic Crystal Fiber Biosensor

Authors: Mohamed Farhat O. Hameed, Yasamin K. A. Alrayk, A. A Shaalan, S. S. A. Obayya

Abstract:

The surface plasmon resonance (SPR) sensors are widely used due to its high sensitivity with molecular labels free. The commercial SPR sensors depend on the conventional prism-coupled configuration. However, this type of configuration suffers from miniaturization and integration. Therefore, the search for compact, portable and highly sensitive SPR sensors becomes mandatory.In this paper, sensitivity enhancement of a novel photonic crystal fiber biosensoris introduced and studied. The suggested design has microstructure of air holes in the core region surrounded by two large semicircular metallized channels filled with the analyte. The inner surfaces of the two channels are coated by a silver layer followed by a gold layer.The simulation results are obtained using full vectorial finite element methodwith perfect matched layer (PML) boundary conditions. The proposed design depends on bimetallic configuration to enhance the biosensor sensitivity. Additionally, the suggested biosensor can be used for multi-channel/multi-analyte sensing. In this study, the sensor geometrical parameters are studied to maximize the sensitivity for the two polarized modes. The numerical results show that high refractive index sensitivity of 4750 nm/RIU (refractive index unit) and 4300 nm/RIU can be achieved for the quasi (transverse magnetic) TM and quasi (transverse electric) TE modes of the proposed biosensor, respectively. The reportedbiosensor has advantages of integration of microfluidics setup, waveguide and metallic layers into a single structure. As a result, compact biosensor with better integration compared to conventional optical fiber SPR biosensors can be obtained.

Keywords: photonic crystal fibers, gold, silver, surface plasmon, biosensor

Procedia PDF Downloads 378
988 Characterization and Optimization of Antimicrobial Compound/S Produced by Asperigillus Fumigatus Isolated from Monuments

Authors: Mohammad A. M. Kewisha

Abstract:

Xerophilic fungi , which are responsible for many cases of biodeterioration monuments, have been known as an interesting source of antimicrobial compounds. Sixty nine fungal strains, isolated from different localities and species inside Egyptian museums, were screened for antimicrobial activity against some bacterial species and unicellular fungi. The most potent antimicrobial activity was obtained by Asperigillus fumigatus which was identified by ITS4 ……. and showed activity against Staphylococcus aureus with 20 mm and C. albicans with18 mm of inhibition zone. Different parameters were optimized to enhance this activity. The culture grown under stationary conditions for 8 days at 30°C and pH 8 gave the best antimicrobial activity. Moreover, both starch and yeast extract showed the most suitable carbon and nitrogen sources, respectively. The antimicrobial compound was purified and subjected to spectroscopic characterization, which revealed that the antimicrobial compound might be 5,7 ethoxy, 4\,5\ methoxy isorhamnetin -3- O- galactoside. This study suggests that Aspergillus fumagates as a potential candidate offering a better scope for the production, purification and isolation of broad-spectrum antimicrobial compounds. These findings will facilitate the scale-up and further purification to ascertain the compounds responsible for antimicrobial activity, which can be exploited for the treatment of biodeterioration monuments and pharmaceutical applications.

Keywords: antimicrobial activity, asperigillus fumigatus, Identification by ITS4, Staphylococcus aureus, C.albicans

Procedia PDF Downloads 51
987 Chromite Exploration Using Electrical Resistivity Tomography in Ingessana Hill, Blue Nile State, Sudan

Authors: Mohamed A. Mohamed-Ali, Jannis Simos, Khalid M. Kheiralla

Abstract:

The Ingessana hills in the southern Blue Nile of Sudan are part of the southern sector of the NE-SW trending ophiolithic belt of the Arab-Nubian Shield with mid-neoproterozoic age. The rocks are mainly serpentinized and in parts highly silicified dunites especially towards the contact with the intruding Bau granite. A promising chromite mineralization zones in the area tend to be generally associated with NE-SW trending shear-zones. A detailed geophysical survey employing electrical resistivity tomography (ERT) at 34 lines were carried out over a zone of a known chromite mineralization to test feasibility of detecting and delineating the ore (if exist) and accordingly facilitate the positioning of exploratory drill holes. ERT sections were inverted with smooth constraints inversion code where the contacts between the granite and the ultramafics are showing up clearly. The continuity of mineralization along the contact is not well confirmed. However, the low-resistivity anomalies are probably recognized as potential chromite mineralization zones. These anomalies represent prime targets for further exploration by drilling, trenching or shallow pits. If the results of the drilling or excavations are positive, small open pit exploitations may produce important tonnages of chromite.

Keywords: chromite exploration, ERT, Ingessana Hills, inversion

Procedia PDF Downloads 381
986 Location Uncertainty – A Probablistic Solution for Automatic Train Control

Authors: Monish Sengupta, Benjamin Heydecker, Daniel Woodland

Abstract:

New train control systems rely mainly on Automatic Train Protection (ATP) and Automatic Train Operation (ATO) dynamically to control the speed and hence performance. The ATP and the ATO form the vital element within the CBTC (Communication Based Train Control) and within the ERTMS (European Rail Traffic Management System) system architectures. Reliable and accurate measurement of train location, speed and acceleration are vital to the operation of train control systems. In the past, all CBTC and ERTMS system have deployed a balise or equivalent to correct the uncertainty element of the train location. Typically a CBTC train is allowed to miss only one balise on the track, after which the Automatic Train Protection (ATP) system applies emergency brake to halt the service. This is because the location uncertainty, which grows within the train control system, cannot tolerate missing more than one balise. Balises contribute a significant amount towards wayside maintenance and studies have shown that balises on the track also forms a constraint for future track layout change and change in speed profile.This paper investigates the causes of the location uncertainty that is currently experienced and considers whether it is possible to identify an effective filter to ascertain, in conjunction with appropriate sensors, more accurate speed, distance and location for a CBTC driven train without the need of any external balises. An appropriate sensor fusion algorithm and intelligent sensor selection methodology will be deployed to ascertain the railway location and speed measurement at its highest precision. Similar techniques are already in use in aviation, satellite, submarine and other navigation systems. Developing a model for the speed control and the use of Kalman filter is a key element in this research. This paper will summarize the research undertaken and its significant findings, highlighting the potential for introducing alternative approaches to train positioning that would enable removal of all trackside location correction balises, leading to huge reduction in maintenances and more flexibility in future track design.

Keywords: ERTMS, CBTC, ATP, ATO

Procedia PDF Downloads 408
985 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process

Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey

Abstract:

Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.

Keywords: apparent porosity, beneficiation, low-grade chromite, refractory, spinel compounds, slag resistance

Procedia PDF Downloads 382
984 Management of Recurrent Temporomandibular Joint True Bony Ankylosis : A Case Report

Authors: Mahmoud A. Amin, Essam Taman, Ahmed Omran, Mahmoud Shawky, Ahmed Mekawy, Abdallah M. Kotkat, Saber Younes, Nehad N. Ghonemy, Amin Saad, Ezz-Aleslam, Abdullah M. Elosh

Abstract:

Introduction: TMJ is a one-of-a-kind, complicated synovial joint that helps with masticatory function by allowing the mandible to open and close the mouth. True ankylosis is a situation in which condylar movement is limited by a mechanical defect in the joint, whereas false ankylosis is a condition in which there is a restriction in mandibular movement due to muscular spasm myositis ossificans, and coronoid process hyperplasia. Ankylosis is characterized by the inability to open the mouth due to fusion of the TMJ condyle to the base of the skull as a result of trauma, infection, or systemic diseases such as rheumatoid arthritis (the most common) and psoraisis. Ankylosis causes facial asymmetry and affects the patient psychologically as well as speech, difficult mastication, poor oral hygiene, malocclusion, and other factors. TMJ is a technically challenging joint; hence TMJ ankylosis management is complicated. Case presentation: this case is a male patient 25 years old reported to our maxillofacial clinic in Damietta faculty of medicine, Al-Azhar University with the inability to open the mouth at all, with a history of difficulty of mouth breathing and eating foods, there was a history of falling from height at 2006, and the patient underwent corrective surgery before with no improvement because the ankylosis was relapsed short period after the previous operations with that done out of our hospital inter-incisor distant ZERO so, this condition need mandatory management. Clinical examination and radiological investigations were done after complete approval from the patient and his brother; tracheostomy was done for our patient before the operation. The patient entered the operation in our hospital and drastic improvement in mouth opening was noticed, helping to restore the physical psychological health of the patient.

Keywords: temporomandibular joint, TMJ, Ankylosis, mouth opening, physiotherapy, condylar plate

Procedia PDF Downloads 148
983 Evaluation of the Quality of Groundwater in the Zone of the Irrigated Perimeter Guelma-Bouchegouf, Northeast of Algeria

Authors: M. Benhamza, M. Touati, M. Aissaoui

Abstract:

The Guelma-Bouchegouf irrigated area is located in the north-east of the country; it extends about 80 km. It was commissioned in 1996, with an irrigable area of 9250 ha, it spreads on both banks of the Seybouse Wadi and it is subdivided into five autonomous distribution sectors. In order to assess the state of groundwater quality, physico-chemical and organic analyzes were carried out during the low water period in November 2017, at the level of fourteen wells in the Guelma-Bouchegouf irrigation area. The interpretation of the results of the chemical analyzes shows that the waters of the study area belong to two dominant chemical facies: sulphated-chlorinated-calcium and Sulfated-chlorinated-sodium. The mineral quality of the groundwater in the study area shows that Ca²⁺, Cl⁻ and SO₄²⁻ indicate little to significant pollution, Na⁺ and Mg²⁺ show moderate to significant mineralization of water, closely correlated with very high conductivities. NO₃⁻ and NH⁴⁺ show little to significant pollution throughout the study area. Phosphate represents a significant pollution, with excessive values exceeding the allowable standard. Phosphate concentrations indicate pollution caused by agricultural practices in the irrigated area, following the use of phosphates in the form of chemical fertilizers or pesticides.

Keywords: Algeria, groundwater, irrigated perimeter, pollution

Procedia PDF Downloads 118
982 Nanostructure Formation and Characterization of Eco-Friendly Banana Peels Nanosorbent

Authors: Opeyemi Atiba-Oyewo, Maurice S. Onya, Christian Wolkersdorfer

Abstract:

Nanostructure formation and characterization of eco-friendly banana peels nanosorbent are thoroughly described in this paper. The transformation of material during mechanical milling to enhance certain properties such as changes in microstructure and surface area to solve the current problems involving water pollution and water quality were studied. The mechanical milling was employed using planetary continuous milling machine and ethanol as process control agent, the sample were taken at time interval between 10 h to 30 h to examine the structural changes. The samples were characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infra-red (FTIR), Transmission electron microscopy (TEM) and Brunauer Emmett and teller (BET). Results revealed that the three typical structures with different grain-size, lattice strain and shapes were observed, and the deformation mechanisms in these structures were found to be different, further particles fracturing results to surface area increment which was confirmed by Brunauer Emmett and teller (BET) analysis. X-ray diffraction (XRD) shows high densities of dislocations in large crystallites, implying that dislocation slip is the dominant deformation mechanism. Scanning electron microscopy revealed the morphological properties of the materials at different milling time, nanostructure of the particles and fibres were confirmed by Transmission electron microscopy and FT-IR identified the functional groups responsible for its capacity to coordinate and remove metal ions, such as the carboxylic and amine groups at absorption bands of 1730 and 889 cm-1, respectively. However, the choice of this sorbent material for the sorption of any contaminants will depend on the composition of the effluent to be treated.

Keywords: banana peels, eco-friendly, mechanical milling, nanosorbent, nanostructure water quality

Procedia PDF Downloads 252
981 Influence of Vegetable Oil-Based Controlled Cutting Fluid Impinging Supply System on Micro Hardness in Machining of Ti-6Al-4V

Authors: Salah Gariani, Islam Shyha, Fawad Inam, Dehong Huo

Abstract:

A controlled cutting fluid impinging supply system (CUT-LIST) was developed to deliver an accurate amount of cutting fluid into the machining zone via well-positioned coherent nozzles based on a calculation of the heat generated. The performance of the CUT-LIST was evaluated against a conventional flood cutting fluid supply system during step shoulder milling of Ti-6Al-4V using vegetable oil-based cutting fluid. In this paper, the micro-hardness of the machined surface was used as the main criterion to compare the two systems. CUT-LIST provided significant reductions in cutting fluid consumption (up to 42%). Both systems caused increased micro-hardness value at 100 µm from the machined surface, whereas a slight reduction in micro-hardness of 4.5% was measured when using CUL-LIST. It was noted that the first 50 µm is the soft sub-surface promoted by thermal softening, whereas down to 100 µm is the hard sub-surface caused by the cyclic internal work hardening and then gradually decreased until it reached the base material nominal hardness. It can be concluded that the CUT-LIST has always given lower micro-hardness values near the machined surfaces in all conditions investigated.

Keywords: impinging supply system, micro-hardness, shoulder milling, Ti-6Al-4V, vegetable oil-based cutting fluid

Procedia PDF Downloads 284
980 Using Biopolymer Materials to Enhance Sandy Soil Behavior

Authors: Mohamed Ayeldeen, Abdelazim Negm

Abstract:

Nowadays, strength characteristics of soils have more importance due to increasing building loads. In some projects, geotechnical properties of the soils are be improved using man-made materials varying from cement-based to chemical-based. These materials have proven successful in improving the engineering properties of the soil such as shear strength, compressibility, permeability, bearing capacity etc.. However, the use of these artificial injection formulas often modifies the pH level of soil, contaminates soil and groundwater. This is attributed to their toxic and hazardous characteristics. Recently, an environmentally friendly soil treatment method or Biological Treatment Method (BTM) was to bond particles of loose sandy soils. This research paper presents the preliminary results of using biopolymers for strengthening cohesionless soil. Xanthan gum was identified for further study over a range of concentrations varying from 0.25% to 2.00%. Xanthan gum is a polysaccharide secreted by the bacterium Xanthomonas campestris, used as a food additive and it is a nontoxic material. A series of direct shear, unconfined compressive strength, and permeability tests were carried out to investigate the behavior of sandy soil treated with Xanthan gum with different concentration ratios and at different curing times. Laser microscopy imaging was also conducted to study the microstructure of the treated sand. Experimental results demonstrated the compatibility of Xanthan gum to improve the geotechnical properties of sandy soil. Depending on the biopolymer concentration, it was observed that the biopolymers effectively increased the cohesion intercept and stiffness of the treated sand and reduced the permeability of sand. The microscopy imaging indicates that the cross-links of the biopolymers through and over the soil particles increase with the increase of the biopolymer concentration.

Keywords: biopolymer, direct shear, permeability, sand, shear strength, Xanthan gum

Procedia PDF Downloads 274
979 Strategies Used by the Saffron Producers of Taliouine (Morocco) to Adapt to Climate Change

Authors: Aziz Larbi, Widad Sadok

Abstract:

In Morocco, the mountainous regions extend over about 26% of the national territory where 30% of the total population live. They contain opportunities for agriculture, forestry, pastureland and mining. The production systems in these zones are characterised by crop diversification. However, these areas have become vulnerable to the effects of climate change. To understand these effects in relation to the population living in these areas, a study was carried out in the zone of Taliouine, in the Anti-Atlas. The vulnerability of crop productions to climate change was analysed and the different ways of adaptation adopted by farmers were identified. The work was done on saffron, the most profitable crop in the target area even though it requires much water. Our results show that the majority of the farmers surveyed had noticed variations in the climate of the region: irregularity of precipitation leading to a decrease in quantity and an uneven distribution throughout the year; rise in temperature; reduction in the cold period and less snow. These variations had impacts on the cropping system of saffron and its productivity. To cope with these effects, the farmers adopted various strategies: better management and use of water; diversification of agricultural activities; increase in the contribution of non-agricultural activities to their gross income; and seasonal migration.

Keywords: climate change, Taliouine, saffron, perceptions, adaptation strategies

Procedia PDF Downloads 56
978 Geophysical Contribution to Reveal the Subsurface Structural Setting Using Gravity, Seismic and Seismological Data in the Chott Belts, Southern Atlas of Tunisia

Authors: Nesrine Frifita, Mohamed Gharbi, Kevin Mickus

Abstract:

Physical methods based on gravity, seismic and seismological data were adopted to clarify the relationship between the distribution of seismicity and the crustal deformations under the chott belts and surrounding regions, in southern atlas of Tunisia. Gafsa and its surrounding were described as a moderate seismic zone, and the fault of Gafsa is one of most seismically active faults in Tunisia in general, and in the southern Atlas in particularly. The present work aims to prove a logical relationship between the distribution of seismicity and deformations which strongly related to thickness and density variations within the basement and sedimentary cover along the study area, through several physical methods; gravity, seismic and seismological data were interpreted to calculate physical propriety of the subsurface rocks, the depth and geometry of active faults and causatives bodies. Findings show that depths variation and mixed thin and thick skinned structural style characterizing the chott belts explain the moderate seismicity in the study area.

Keywords: potential fields, seismicity, Southern Atlas, Tunisia

Procedia PDF Downloads 109
977 Electron Beam Melting Process Parameter Optimization Using Multi Objective Reinforcement Learning

Authors: Michael A. Sprayberry, Vincent C. Paquit

Abstract:

Process parameter optimization in metal powder bed electron beam melting (MPBEBM) is crucial to ensure the technology's repeatability, control, and industry-continued adoption. Despite continued efforts to address the challenges via the traditional design of experiments and process mapping techniques, there needs to be more successful in an on-the-fly optimization framework that can be adapted to MPBEBM systems. Additionally, data-intensive physics-based modeling and simulation methods are difficult to support by a metal AM alloy or system due to cost restrictions. To mitigate the challenge of resource-intensive experiments and models, this paper introduces a Multi-Objective Reinforcement Learning (MORL) methodology defined as an optimization problem for MPBEBM. An off-policy MORL framework based on policy gradient is proposed to discover optimal sets of beam power (P) – beam velocity (v) combinations to maintain a steady-state melt pool depth and phase transformation. For this, an experimentally validated Eagar-Tsai melt pool model is used to simulate the MPBEBM environment, where the beam acts as the agent across the P – v space to maximize returns for the uncertain powder bed environment producing a melt pool and phase transformation closer to the optimum. The culmination of the training process yields a set of process parameters {power, speed, hatch spacing, layer depth, and preheat} where the state (P,v) with the highest returns corresponds to a refined process parameter mapping. The resultant objects and mapping of returns to the P-v space show convergence with experimental observations. The framework, therefore, provides a model-free multi-objective approach to discovery without the need for trial-and-error experiments.

Keywords: additive manufacturing, metal powder bed fusion, reinforcement learning, process parameter optimization

Procedia PDF Downloads 87
976 Characterization of Triterpenoids Antimicrobial Potential in Ethyl Acetate Extracts from Aerial Parts of Deinbollia Pinnata

Authors: Rufai Yakubu And Suleiman Kabiru

Abstract:

Triterpenoids are a diverse class of secondary metabolites with potential antimicrobial properties. In this study, the crude extracts from ethyl acetate was obtained with ultrasonic extraction method. Using a combined chromatographic separation method to isolate squalene (1) stigmasterol (2), stigmasta-5,22-diene-3-ol acetate (3), γ-sitosterol (4), lupeol (5), taraxasterol (6), and betulinic acid (7) from ethyl acetate extracts. Ethyl acetate crude extracts and isolated compounds were both screened for antimicrobial activity and minimum inhibitory concentration (MIC). For ethyl acetate crude extracts with concentrations of (1.5, 0.75, 0.35, & 0.168 mg/mL) indicated marginal antibacterial activity with a range of 17, 20 and 14 mm zone of inhibition for Staphylococcus aureus, Escherichia coli and Candida albicans and lower minimum inhibitory concentrations ranges from 18.75 µg/ml to 150 µg/mL. Butulinic acid showed the highest activity against E. coli and C. albicans at 15 mm and 15 mm followed by Lupeol against S. aureus, E. coli and C. albicans at 13, 12, 12 mm. Moreso, no antimicrobial activity for both S. aureus and C. albicans with squalene except for E. coli which showed activity at 11 mm with 300 µg/mL (MIC). Thus, abundant triterpenoids in Deinbollia pinnata will be another centered area for antimicrobial drug discovery.

Keywords: triterpenoid, antimicrobial potentials, deinbollia pinnata, aerial parts

Procedia PDF Downloads 67
975 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 242
974 Optimal Design of 3-Way Reversing Valve Considering Cavitation Effect

Authors: Myeong-Gon Lee, Yang-Gyun Kim, Tae-Young Kim, Seung-Ho Han

Abstract:

The high-pressure valve uses one set of 2-way valves for the purpose of reversing fluid direction. If there is no accurate control device for the 2-way valves, lots of surging can be generated. The surging is a kind of pressure ripple that occurs in rapid changes of fluid motions under inaccurate valve control. To reduce the surging effect, a 3-way reversing valve can be applied which provides a rapid and precise change of water flow directions without any accurate valve control system. However, a cavitation occurs due to a complicated internal trim shape of the 3-way reversing valve. The cavitation causes not only noise and vibration but also decreasing the efficiency of valve-operation, in which the bubbles generated below the saturated vapor pressure are collapsed rapidly at higher pressure zone. The shape optimization of the 3-way reversing valve to minimize the cavitation effect is necessary. In this study, the cavitation index according to the international standard ISA was introduced to estimate macroscopically the occurrence of the cavitation effect. Computational fluid dynamic analysis was carried out, and the cavitation effect was quantified by means of the percent of cavitation converted from calculated results of vapor volume fraction. In addition, the shape optimization of the 3-way reversing valve was performed by taking into account of the percent of cavitation.

Keywords: 3-Way reversing valve, cavitation, shape optimization, vapor volume fraction

Procedia PDF Downloads 369
973 Site Specific Ground Response Estimations for the Vulnerability Assessment of the Buildings of the Third Biggest Mosque in the World, Algeria’s Mosque

Authors: S. Mohamadi, T. Boudina, A. Rouabeh, A. Seridi

Abstract:

Equivalent linear and non-linear ground response analyses are conducted at many representative sites at the mosque of Algeria, to compare the free field acceleration spectra with local code of practice. Spectral Analysis of Surface Waves (SASW) technique was adopted to measure the in-situ shear wave velocity profile at the representative sites. The seismic movement imposed on the rock is the NS component of Keddara station recorded during the earthquake in Boumerdes 21 May 2003. The site-specific elastic design spectra for each site are determined to further obtain site specific non-linear acceleration spectra. As a case study, the results of site-specific evaluations are presented for two building sites (site of minaret and site of the prayer hall) to demonstrate the influence of local geological conditions on ground response at Algerian sites. A comparison of computed response with the standard code of practice being used currently in Algeria for the seismic zone of Algiers indicated that the design spectra is not able to capture site amplification due to local geological conditions.

Keywords: equivalent linear, non-linear, ground response analysis, design response spectrum

Procedia PDF Downloads 446
972 Application of Adaptive Neuro Fuzzy Inference Systems Technique for Modeling of Postweld Heat Treatment Process of Pressure Vessel Steel AASTM A516 Grade 70

Authors: Omar Al Denali, Abdelaziz Badi

Abstract:

The ASTM A516 Grade 70 steel is a suitable material used for the fabrication of boiler pressure vessels working in moderate and lower temperature services, and it has good weldability and excellent notch toughness. The post-weld heat treatment (PWHT) or stress-relieving heat treatment has significant effects on avoiding the martensite transformation and resulting in high hardness, which can lead to cracking in the heat-affected zone (HAZ). An adaptive neuro-fuzzy inference system (ANFIS) was implemented to predict the material tensile strength of post-weld heat treatment (PWHT) experiments. The ANFIS models presented excellent predictions, and the comparison was carried out based on the mean absolute percentage error between the predicted values and the experimental values. The ANFIS model gave a Mean Absolute Percentage Error of 0.556 %, which confirms the high accuracy of the model.

Keywords: prediction, post-weld heat treatment, adaptive neuro-fuzzy inference system, mean absolute percentage error

Procedia PDF Downloads 149
971 Development and Evaluation of Gastro Retentive Floating Tablets of Ayurvedic Vati Formulation

Authors: Imran Khan Pathan, Anil Bhandari, Peeyush K. Sharma, Rakesh K. Patel, Suresh Purohit

Abstract:

Floating tablets of Marichyadi Vati were developed with an aim to prolong its gastric residence time and increase the bioavailability of drug. Rapid gastrointestinal transit could result in incomplete drug release from the drug delivery system above the absorption zone leading to diminished efficacy of the administered dose. The tablets were prepared by wet granulation technique, using HPMC E50 LV act as Matrixing agent, Carbopol as floating enhancer, microcrystalline cellulose as binder, sodium bi carbonate as effervescent agent with other excipients. The simplex lattice design was used for selection of variables for tablets formulation. Formulation was optimized on the basis of floating time and in vitro drug release. The results showed that the floating lag time for optimized formulation was found to be 61 second with about 97.32 % of total drug release within 3 hours. The in vitro release profiles of drug from the formulation could be best expressed zero order with highest linearity r2 = 0.9943. It was concluded that the gastroretentive drug delivery system can be developed for Marichyadi Vati containing piperine to increase the residence time of the drug in the stomach and thereby increasing bioavailability.

Keywords: piperine, Marichyadi Vati, gastroretentive drug delivery, floating tablet

Procedia PDF Downloads 454
970 Incorporating Spatial Selection Criteria with Decision-Maker Preferences of A Precast Manufacturing Plant

Authors: M. N. A. Azman, M. S. S. Ahamad

Abstract:

The Construction Industry Development Board of Malaysia has been actively promoting the use of precast manufacturing in the local construction industry over the last decade. In an era of rapid technological changes, precast manufacturing significantly contributes to improving construction activities and ensuring sustainable economic growth. Current studies on the location decision of precast manufacturing plants aimed to enhanced local economic development are scarce. To address this gap, the present research establishes a new set of spatial criteria, such as attribute maps and preference weights, derived from a survey of local industry decision makers. These data represent the input parameters for the MCE-GIS site selection model, for which the weighted linear combination method is used. Verification tests on the model were conducted to determine the potential precast manufacturing sites in the state of Penang, Malaysia. The tests yield a predicted area of 12.87 acres located within a designated industrial zone. Although, the model is developed specifically for precast manufacturing plant but nevertheless it can be employed to other types of industries by following the methodology and guidelines proposed in the present research.

Keywords: geographical information system, multi criteria evaluation, industrialised building system, civil engineering

Procedia PDF Downloads 281
969 Influence of Alccofine on Semi-Light Weight Concrete under Accelerated Curing and Conventional Curing Regimes

Authors: P. Parthiban, J. Karthikeyan

Abstract:

This paper deals with the performance of semi-light weight concrete, prepared by using wood ash pellets as coarse aggregates which were improved by partial replacement of cement with alccofine. Alccofine is a mineral admixture which contains high glass content obtained through the process of controlled granulation. This is finer than cement which carries its own pozzolanic property. Therefore, cement could be replaced by alccofine as 0%, 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, and 70% to enhance the strength and durability properties of concrete. High range water reducing admixtures (HRWA) were used in these mixes which were dosed up to 1.5% weight of the total cementitious content (alccofine & cement). It also develops the weaker transition zone into more impermeable layer. Specimens were subjected in both the accelerated curing method as well as conventional curing method. Experimental results were compared and reported, in that the maximum compressive strength of 32.6 MPa was achieved on 28th day with 30% replacement level in a density of 2200 kg/m3 to a conventional curing, while in the accelerated curing, maximum compressive strength was achieved at 40% replacement level. Rapid chloride penetration test (RCPT) output results for the conventional curing method at 0% and 70% give 3296.7 and 545.6 coulombs.

Keywords: Alccofine, compressive strength, RCPT, wood ash pellets

Procedia PDF Downloads 180
968 Viscoelastic Properties of Sn-15%Pb Measured in an Oscillation Test

Authors: Gerardo Sanjuan Sanjuan, Ángel Enrique Chavéz Castellanos

Abstract:

The knowledge of the rheological behavior of partially solidified metal alloy is an important issue when modeling and simulation of die filling in semisolid processes. Many experiments for like steady state, the step change in shear rate tests, shear stress ramps have been carried out leading that semi-solid alloys exhibit shear thinning, thixotropic behavior and yield stress. More advanced investigation gives evidence some viscoelastic features can be observed. The viscoelastic properties of materials are determinate by transient or dynamic methods; unfortunately, sparse information exists about oscillation experiments. The aim of this present work is to use small amplitude oscillatory tests for knowledge properties such as G´ and G´´. These properties allow providing information about materials structure. For this purpose, we investigated tin-lead alloy (Sn-15%Pb) which exhibits a similar microstructure to aluminum alloys and is the classic alloy for semisolid thixotropic studies. The experiments were performed with parallel plates rheometer AR-G2. Initially, the liquid alloy is cooled down to the semisolid range, a specific temperature to guarantee a constant fraction solid. Oscillation was performed within the linear viscoelastic regime with a strain sweep. So, the loss modulus G´´, the storage modulus G´ and the loss angle (δ) was monitored. In addition a frequency sweep at a strain below the critical strain for characterized its structure. This provides more information about the interactions among solid particles on a liquid matrix. After testing, the sample was removed then cooled, sectioned and examined metallographically. These experiments demonstrate that the viscoelasticity is sensitive to the solid fraction, and is strongly influenced by the shape and size of particles solid.

Keywords: rheology, semisolid alloys, thixotropic, viscoelasticity

Procedia PDF Downloads 373
967 Investigating Interlayer Bonding in 3D Printing Pressure Vessel Applications

Authors: Cam Minh Tri Tien, Richard Fenrich, Tristan Shelley, Nam Mai-Duy, Allan Malano, Xuesen Zeng

Abstract:

Since additive manufacturing is a layer-by-layer deposition approach, good bonding quality between adjacent layers is critically important to achieve optimal mechanical performance, including applications in pressure vessels. The need to enhance the strength of printed products, especially in the build direction where layup gaps and voids exist between the printed layers, has garnered significant attention. The proposed research will focus on improving the current Fused Deposition Modelling (FDM) process to produce polymers reinforced with chopped fibers, utilizing a controlled heat zone to enhance the adhesion between printed layers. Energy will be applied to both printed and printing layers to improve the bonding strength between adjacent layers. Through the enhanced FDM process, the mechanical performance of composite parts will experience a substantial improvement, particularly in the build direction, as compared to current FDM methods. A combination of experimental, numerical, and analytical methods will be employed to demonstrate the enhanced performance of heat-controlled 3D printed parts.

Keywords: 3D Printing, pressure vessels, interlayer bonding, controlled heat

Procedia PDF Downloads 48
966 The Effect of Carbon Nanotubes in Copolyamide Nonwovens on the Properties of CFRP Laminates

Authors: Kamil Dydek, Anna Boczkowska, Paulina Latko-Duralek, Rafal Kozera, Michal Salacinski

Abstract:

In recent years there has been increasing interest in many industries, such as the aviation, automotive, and military industries, in Carbon Fibre Reinforced Polymers (CFRP). This is because of the excellent properties of CFRP, which are characterized by very high strength and stiffness in relation to their mass, low density (almost twice as low as aluminum and more than five times as low as steel), and corrosion resistance. However, they do not have sufficient electrical conductivity, which is required in some applications. Therefore, work is underway to improve their electrical conductivity, for example, by incorporating carbon nanotubes (CNTs) into the CFRP structure. CNTs possess excellent properties, such as high electrical conductivity, high aspect ratio, high Young’s modulus, and high tensile strength. An idea developed by our team is a modification of CFRP by the use of thermoplastic nonwovens containing CNTs. Nanocomposite fibers were made from three different masterbatches differing in the content of multi-wall carbon nanotubes, and then nonwovens that differed in areal weight were produced using a thermo-press. The out of autoclave method was used to fabricate the laminates from commercial carbon-epoxy prepreg dedicated to aviation applications - one without the nonwovens (reference) and five containing nonwovens placed between each prepreg layer. The volume of electrical conductivity of the manufactured laminates was measured in three directions. In order to investigate the adhesion between carbon fibers and nonwovens, the microstructure of the produced laminates was observed. The mechanical properties of the CFRP composites were measured in a short-beam shear test. In addition, the influence of thermoplastic nonwovens on the thermos-mechanical properties of laminates was analyzed by Dynamic Mechanical Analysis. The studies were carried out within grant no. DOB-1-3/1/PS/2014 financed by the National Centre for Research and Development in Poland.

Keywords: CFRP, thermoplastic nonwovens, carbon nanotubes, electrical conductivity

Procedia PDF Downloads 131