Search results for: discriminate accuracy
3741 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4463740 Geographic Origin Determination of Greek Rice (Oryza Sativa L.) Using Stable Isotopic Ratio Analysis
Authors: Anna-Akrivi Thomatou, Anastasios Zotos, Eleni C. Mazarakioti, Efthimios Kokkotos, Achilleas Kontogeorgos, Athanasios Ladavos, Angelos Patakas
Abstract:
It is well known that accurate determination of geographic origin to confront mislabeling and adulteration of foods is considered as a critical issue worldwide not only for the consumers, but also for producers and industries. Among agricultural products, rice (Oryza sativa L.) is the world’s third largest crop, providing food for more than half of the world’s population. Consequently, the quality and safety of rice products play an important role in people’s life and health. Despite the fact that rice is predominantly produced in Asian countries, rice cultivation in Greece is of significant importance, contributing to national agricultural sector income. More than 25,000 acres are cultivated in Greece, while rice exports to other countries consist the 0,5% of the global rice trade. Although several techniques are available in order to provide information about the geographical origin of rice, little data exist regarding the ability of these methodologies to discriminate rice production from Greece. Thus, the aim of this study is the comparative evaluation of stable isotope ratio methodology regarding its discriminative ability for geographical origin determination of rice samples produced in Greece compared to those from three other Asian countries namely Korea, China and Philippines. In total eighty (80) samples were collected from selected fields of Central Macedonia (Greece), during October of 2021. The light element (C, N, S) isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS) and the results obtained were analyzed using chemometric techniques, including principal components analysis (PCA). Results indicated that the 𝜹 15N and 𝜹 34S values of rice produced in Greece were more markedly influenced by geographical origin compared to the 𝜹 13C. In particular, 𝜹 34S values in rice originating from Greece was -1.98 ± 1.71 compared to 2.10 ± 1.87, 4.41 ± 0.88 and 9.02 ± 0.75 for Korea, China and Philippines respectively. Among stable isotope ratios studied, values of 𝜹 34S seem to be the more appropriate isotope marker to discriminate rice geographic origin between the studied areas. These results imply the significant capability of stable isotope ratio methodology for effective geographical origin discrimination of rice, providing a valuable insight into the control of improper or fraudulent labeling. Acknowledgement: This research has been financed by the Public Investment Programme/General Secretariat for Research and Innovation, under the call “YPOERGO 3, code 2018SE01300000: project title: ‘Elaboration and implementation of methodology for authenticity and geographical origin assessment of agricultural products.Keywords: geographical origin, authenticity, rice, isotope ratio mass spectrometry
Procedia PDF Downloads 973739 High Accuracy Analytic Approximation for Special Functions Applied to Bessel Functions J₀(x) and Its Zeros
Authors: Fernando Maass, Pablo Martin, Jorge Olivares
Abstract:
The Bessel function J₀(x) is very important in Electrodynamics and Physics, as well as its zeros. In this work, a method to obtain high accuracy approximation is presented through an application to that function. In most of the applications of this function, the values of the zeros are very important. In this work, analytic approximations for this function have been obtained valid for all positive values of the variable x, which have high accuracy for the function as well as for the zeros. The approximation is determined by the simultaneous used of the power series and asymptotic expansion. The structure of the approximation is a combination of two rational functions with elementary functions as trigonometric and fractional powers. Here us in Pade method, rational functions are used, but now there combined with elementary functions us fractional powers hyperbolic or trigonometric functions, and others. The reason of this is that now power series of the exact function are used, but together with the asymptotic expansion, which usually includes fractional powers trigonometric functions and other type of elementary functions. The approximation must be a bridge between both expansions, and this can not be accomplished using only with rational functions. In the simplest approximation using 4 parameters the maximum absolute error is less than 0.006 at x ∼ 4.9. In this case also the maximum relative error for the zeros is less than 0.003 which is for the second zero, but that value decreases rapidly for the other zeros. The same kind of behaviour happens for the relative error of the maximum and minimum of the functions. Approximations with higher accuracy and more parameters will be also shown. All the approximations are valid for any positive value of x, and they can be calculated easily.Keywords: analytic approximations, asymptotic approximations, Bessel functions, quasirational approximations
Procedia PDF Downloads 2563738 Grain Size Statistics and Depositional Pattern of the Ecca Group Sandstones, Karoo Supergroup in the Eastern Cape Province, South Africa
Authors: Christopher Baiyegunhi, Kuiwu Liu, Oswald Gwavava
Abstract:
Grain size analysis is a vital sedimentological tool used to unravel the hydrodynamic conditions, mode of transportation and deposition of detrital sediments. In this study, detailed grain-size analysis was carried out on thirty-five sandstone samples from the Ecca Group in the Eastern Cape Province of South Africa. Grain-size statistical parameters, bivariate analysis, linear discriminate functions, Passega diagrams and log-probability curves were used to reveal the depositional processes, sedimentation mechanisms, hydrodynamic energy conditions and to discriminate different depositional environments. The grain-size parameters show that most of the sandstones are very fine to fine grained, moderately well sorted, mostly near-symmetrical and mesokurtic in nature. The abundance of very fine to fine grained sandstones indicates the dominance of low energy environment. The bivariate plots that the samples are mostly grouped, except for the Prince Albert samples that show scattered trend, which is due to the either mixture of two modes in equal proportion in bimodal sediments or good sorting in unimodal sediments. The linear discriminant function (LDF) analysis is dominantly indicative of turbidity current deposits under shallow marine environments for samples from the Prince Albert, Collingham and Ripon Formations, while those samples from the Fort Brown Formation are fluvial (deltaic) deposits. The graphic mean value shows the dominance of fine sand-size particles, which point to relatively low energy conditions of deposition. In addition, the LDF results point to low energy conditions during the deposition of the Prince Albert, Collingham and part of the Ripon Formation (Pluto Vale and Wonderfontein Shale Members), whereas the Trumpeters Member of the Ripon Formation and the overlying Fort Brown Formation accumulated under high energy conditions. The CM pattern shows a clustered distribution of sediments in the PQ and QR segments, indicating that the sediments were deposited mostly by suspension and rolling/saltation, and graded suspension. Furthermore, the plots also show that the sediments are mainly deposited by turbidity currents. Visher diagrams show the variability of hydraulic depositional conditions for the Permian Ecca Group sandstones. Saltation is the major process of transportation, although suspension and traction also played some role during deposition of the sediments. The sediments were mainly in saltation and suspension before being deposited.Keywords: grain size analysis, hydrodynamic condition, depositional environment, Ecca Group, South Africa
Procedia PDF Downloads 4843737 Electrodermal Activity Measurement Using Constant Current AC Source
Authors: Cristian Chacha, David Asiain, Jesús Ponce de León, José Ramón Beltrán
Abstract:
This work explores and characterizes the behavior of the AFE AD5941 in impedance measurement using an embedded algorithm with a constant current AC source. The main aim of this research is to improve the exact measurement of impedance values for their application in EDA-focused wearable devices. Through comprehensive study and characterization, it has been observed that employing a measurement sequence with a constant current source produces results with increased dispersion but higher accuracy. As a result, this approach leads to a more accurate system for impedance measurement.Keywords: EDA, constant current AC source, wearable, precision, accuracy, impedance
Procedia PDF Downloads 1113736 Trabecular Texture Analysis Using Fractal Metrics for Bone Fragility Assessment
Authors: Khaled Harrar, Rachid Jennane
Abstract:
The purpose of this study is the discrimination of 28 postmenopausal with osteoporotic femoral fractures from an age-matched control group of 28 women using texture analysis based on fractals. Two pre-processing approaches are applied on radiographic images; these techniques are compared to highlight the choice of the pre-processing method. Furthermore, the values of the fractal dimension are compared to those of the fractal signature in terms of the classification of the two populations. In a second analysis, the BMD measure at proximal femur was compared to the fractal analysis, the latter, which is a non-invasive technique, allowed a better discrimination; the results confirm that the fractal analysis of texture on calcaneus radiographs is able to discriminate osteoporotic patients with femoral fracture from controls. This discrimination was efficient compared to that obtained by BMD alone. It was also present in comparing subgroups with overlapping values of BMD.Keywords: osteoporosis, fractal dimension, fractal signature, bone mineral density
Procedia PDF Downloads 4283735 Hong Kong Artists Public Communication of Mental Health Disorders and Coping Techniques - Analysis
Authors: Patricia Portugal Marques de Carvalho Lourenco
Abstract:
Money, status, beauty, popularity, widespread public adulation, glitz and glamour portray a perfumed stress-free existence yet not every rock that glitters is a gold nugget and mental disorders are not an exclusivity of middle/low societal classes. Mental illnesses do not discriminate, and behind the superficial visual wealth of the upper-class, there are human beings who experience the ups and downs of life like any other person, except that publicly rather than privately and with an array of fingers pointing at them instead of a mere few. Sammi Cheung, Carina Lau, Fiona Sit, Kara Hui and Louis Cheung are a number of Hong Kong artists that have battled mental disorders, overcame them and used the process to openly discuss the still existing taboo.Keywords: mental disorders, mental health, public communication, depression, hong kong artists
Procedia PDF Downloads 2223734 Real-Time Pedestrian Detection Method Based on Improved YOLOv3
Authors: Jingting Luo, Yong Wang, Ying Wang
Abstract:
Pedestrian detection in image or video data is a very important and challenging task in security surveillance. The difficulty of this task is to locate and detect pedestrians of different scales in complex scenes accurately. To solve these problems, a deep neural network (RT-YOLOv3) is proposed to realize real-time pedestrian detection at different scales in security monitoring. RT-YOLOv3 improves the traditional YOLOv3 algorithm. Firstly, the deep residual network is added to extract vehicle features. Then six convolutional neural networks with different scales are designed and fused with the corresponding scale feature maps in the residual network to form the final feature pyramid to perform pedestrian detection tasks. This method can better characterize pedestrians. In order to further improve the accuracy and generalization ability of the model, a hybrid pedestrian data set training method is used to extract pedestrian data from the VOC data set and train with the INRIA pedestrian data set. Experiments show that the proposed RT-YOLOv3 method achieves 93.57% accuracy of mAP (mean average precision) and 46.52f/s (number of frames per second). In terms of accuracy, RT-YOLOv3 performs better than Fast R-CNN, Faster R-CNN, YOLO, SSD, YOLOv2, and YOLOv3. This method reduces the missed detection rate and false detection rate, improves the positioning accuracy, and meets the requirements of real-time detection of pedestrian objects.Keywords: pedestrian detection, feature detection, convolutional neural network, real-time detection, YOLOv3
Procedia PDF Downloads 1463733 Comparative Evaluation of Accuracy of Selected Machine Learning Classification Techniques for Diagnosis of Cancer: A Data Mining Approach
Authors: Rajvir Kaur, Jeewani Anupama Ginige
Abstract:
With recent trends in Big Data and advancements in Information and Communication Technologies, the healthcare industry is at the stage of its transition from clinician oriented to technology oriented. Many people around the world die of cancer because the diagnosis of disease was not done at an early stage. Nowadays, the computational methods in the form of Machine Learning (ML) are used to develop automated decision support systems that can diagnose cancer with high confidence in a timely manner. This paper aims to carry out the comparative evaluation of a selected set of ML classifiers on two existing datasets: breast cancer and cervical cancer. The ML classifiers compared in this study are Decision Tree (DT), Support Vector Machine (SVM), k-Nearest Neighbor (k-NN), Logistic Regression, Ensemble (Bagged Tree) and Artificial Neural Networks (ANN). The evaluation is carried out based on standard evaluation metrics Precision (P), Recall (R), F1-score and Accuracy. The experimental results based on the evaluation metrics show that ANN showed the highest-level accuracy (99.4%) when tested with breast cancer dataset. On the other hand, when these ML classifiers are tested with the cervical cancer dataset, Ensemble (Bagged Tree) technique gave better accuracy (93.1%) in comparison to other classifiers.Keywords: artificial neural networks, breast cancer, classifiers, cervical cancer, f-score, machine learning, precision, recall
Procedia PDF Downloads 2823732 Comparative Analysis of Motor Insurance Claims using Machine Learning
Authors: Francis Kwame Bukari, Maclean Acheampong Yeboah
Abstract:
From collective hunting to contemporary financial markets, the concept of risk sharing in insurance has evolved significantly. In today's insurance landscape, statistical analysis plays a pivotal role in determining premiums and assessing the likelihood of insurance claims. Accurately estimating motor insurance claims remains a challenge, allowing insurance companies to pull much of their money to cover claims, which in the long run will affect their reserves and impact their profitability. Advanced machine learning algorithms can enhance accuracy and profitability. The primary objectives of this study encompassed the prediction of motor insurance claims through the utilization of Artificial Neural Networks (ANN) and Random Forest (RF). Additionally, a comparative analysis was conducted to assess the performance of these two models in the domain of claim prediction. The study drew upon secondary data derived from motor insurance claims, employing a range of techniques, including data preprocessing, model training, and model evaluation. To mitigate potential biases, a random over-sampler was used to balance the target variable within the preprocessed dataset. The Random Forest model outperformed the ANN model, achieving an accuracy rate of 90.33% compared to the ANN model's accuracy of 86.33%. This study highlights the importance of modern data-driven approaches in enhancing accuracy and profitability in the insurance industry.Keywords: risk, insurance claims, artificial neural network, random forest, over-sampler, profitability
Procedia PDF Downloads 43731 The Effect of Inclination on the Perceptual Usability of Washing Machine Interfaces
Authors: Michele Sinico
Abstract:
Usability is significantly influenced by the perceptual characteristics of interfaces. This study investigates the effect of the inclination of elements in a physical interface on the evaluation of perceived usability. In the first experiment, a psychophysical methodology was employed to measure the perceived usability of 15 different washing machine interfaces. A model of perceived usability was adopted, which incorporating four factors: understandability, ease of use, safety, and attractiveness. The results indicate that participants were able to discriminate between the stimuli based on the factors considered. In the second experiment, the inclinations of the interface elements (buttons, LEDs, icons and text labels) were systematically modified. The findings reveal that inclination significantly affects three perceived usability subcomponents: understandability, ease of use, and attractiveness.Keywords: ergonomics, perceptual usability, interfaces, inclination, washing machine
Procedia PDF Downloads 143730 Rapid and Culture-Independent Detection of Staphylococcus Aureus by PCR Based Protocols
Authors: V. Verma, Syed Riyaz-ul-Hassan
Abstract:
Staphylococcus aureus is one of the most commonly found pathogenic bacteria and is hard to eliminate from the human environment. It is responsible for many nosocomial infections, besides being the main causative agent of food intoxication by virtue of its variety of enterotoxins. Routine detection of S. aureus in food is usually carried out by traditional methods based on morphological and biochemical characterization. These methods are time-consuming and tedious. In addition, misclassifications with automated susceptibility testing systems or commercially available latex agglutination kits have been reported by several workers. Consequently, there is a need for methods to specifically discriminate S. aureus from other staphylococci as quickly as possible. Data on protocols developed using molecular means like PCR technology will be presented for rapid and specific detection of this pathogen in food, clinical and environmental samples, especially milk.Keywords: food Pathogens, PCR technology, rapid and specific detection, staphylococcus aureus
Procedia PDF Downloads 5143729 Land Cover Mapping Using Sentinel-2, Landsat-8 Satellite Images, and Google Earth Engine: A Study Case of the Beterou Catchment
Authors: Ella Sèdé Maforikan
Abstract:
Accurate land cover mapping is essential for effective environmental monitoring and natural resources management. This study focuses on assessing the classification performance of two satellite datasets and evaluating the impact of different input feature combinations on classification accuracy in the Beterou catchment, situated in the northern part of Benin. Landsat-8 and Sentinel-2 images from June 1, 2020, to March 31, 2021, were utilized. Employing the Random Forest (RF) algorithm on Google Earth Engine (GEE), a supervised classification categorized the land into five classes: forest, savannas, cropland, settlement, and water bodies. GEE was chosen due to its high-performance computing capabilities, mitigating computational burdens associated with traditional land cover classification methods. By eliminating the need for individual satellite image downloads and providing access to an extensive archive of remote sensing data, GEE facilitated efficient model training on remote sensing data. The study achieved commendable overall accuracy (OA), ranging from 84% to 85%, even without incorporating spectral indices and terrain metrics into the model. Notably, the inclusion of additional input sources, specifically terrain features like slope and elevation, enhanced classification accuracy. The highest accuracy was achieved with Sentinel-2 (OA = 91%, Kappa = 0.88), slightly surpassing Landsat-8 (OA = 90%, Kappa = 0.87). This underscores the significance of combining diverse input sources for optimal accuracy in land cover mapping. The methodology presented herein not only enables the creation of precise, expeditious land cover maps but also demonstrates the prowess of cloud computing through GEE for large-scale land cover mapping with remarkable accuracy. The study emphasizes the synergy of different input sources to achieve superior accuracy. As a future recommendation, the application of Light Detection and Ranging (LiDAR) technology is proposed to enhance vegetation type differentiation in the Beterou catchment. Additionally, a cross-comparison between Sentinel-2 and Landsat-8 for assessing long-term land cover changes is suggested.Keywords: land cover mapping, Google Earth Engine, random forest, Beterou catchment
Procedia PDF Downloads 673728 Heritage 3D Digitalization Combining High Definition Photogrammetry with Metrologic Grade Laser Scans
Authors: Sebastian Oportus, Fabrizio Alvarez
Abstract:
3D digitalization of heritage objects is widely used nowadays. However, the most advanced 3D scanners in the market that capture topology and texture at the same time, and are specifically made for this purpose, don’t deliver the accuracy that is needed for scientific research. In the last three years, we have developed a method that combines the use of Metrologic grade laser scans, that allows us to work with a high accuracy topology up to 15 times more precise and combine this mesh with a texture obtained from high definition photogrammetry with up to 100 times more pixel concentrations. The result is an accurate digitalization that promotes heritage preservation, scientific study, high detail reproduction, and digital restoration, among others. In Chile, we have already performed 478 digitalizations of high-value heritage pieces and compared the results with up to five different digitalization methods; the results obtained show a considerable better dimensional accuracy and texture resolution. We know the importance of high precision and resolution for academics and museology; that’s why our proposal is to set a worldwide standard using this open source methodology.Keywords: 3D digitalization, digital heritage, heritage preservation, digital restauration, heritage reproduction
Procedia PDF Downloads 1933727 Classification of Echo Signals Based on Deep Learning
Authors: Aisulu Tileukulova, Zhexebay Dauren
Abstract:
Radar plays an important role because it is widely used in civil and military fields. Target detection is one of the most important radar applications. The accuracy of detecting inconspicuous aerial objects in radar facilities is lower against the background of noise. Convolutional neural networks can be used to improve the recognition of this type of aerial object. The purpose of this work is to develop an algorithm for recognizing aerial objects using convolutional neural networks, as well as training a neural network. In this paper, the structure of a convolutional neural network (CNN) consists of different types of layers: 8 convolutional layers and 3 layers of a fully connected perceptron. ReLU is used as an activation function in convolutional layers, while the last layer uses softmax. It is necessary to form a data set for training a neural network in order to detect a target. We built a Confusion Matrix of the CNN model to measure the effectiveness of our model. The results showed that the accuracy when testing the model was 95.7%. Classification of echo signals using CNN shows high accuracy and significantly speeds up the process of predicting the target.Keywords: radar, neural network, convolutional neural network, echo signals
Procedia PDF Downloads 3573726 High Accuracy Analytic Approximations for Modified Bessel Functions I₀(x)
Authors: Pablo Martin, Jorge Olivares, Fernando Maass
Abstract:
A method to obtain analytic approximations for special function of interest in engineering and physics is described here. Each approximate function will be valid for every positive value of the variable and accuracy will be high and increasing with the number of parameters to determine. The general technique will be shown through an application to the modified Bessel function of order zero, I₀(x). The form and the calculation of the parameters are performed with the simultaneous use of the power series and asymptotic expansion. As in Padé method rational functions are used, but now they are combined with other elementary functions as; fractional powers, hyperbolic, trigonometric and exponential functions, and others. The elementary function is determined, considering that the approximate function should be a bridge between the power series and the asymptotic expansion. In the case of the I₀(x) function two analytic approximations have been already determined. The simplest one is (1+x²/4)⁻¹/⁴(1+0.24273x²) cosh(x)/(1+0.43023x²). The parameters of I₀(x) were determined using the leading term of the asymptotic expansion and two coefficients of the power series, and the maximum relative error is 0.05. In a second case, two terms of the asymptotic expansion were used and 4 of the power series and the maximum relative error is 0.001 at x≈9.5. Approximations with much higher accuracy will be also shown. In conclusion a new technique is described to obtain analytic approximations to some functions of interest in sciences, such that they have a high accuracy, they are valid for every positive value of the variable, they can be integrated and differentiated as the usual, functions, and furthermore they can be calculated easily even with a regular pocket calculator.Keywords: analytic approximations, mathematical-physics applications, quasi-rational functions, special functions
Procedia PDF Downloads 2533725 Malaria Parasite Detection Using Deep Learning Methods
Authors: Kaustubh Chakradeo, Michael Delves, Sofya Titarenko
Abstract:
Malaria is a serious disease which affects hundreds of millions of people around the world, each year. If not treated in time, it can be fatal. Despite recent developments in malaria diagnostics, the microscopy method to detect malaria remains the most common. Unfortunately, the accuracy of microscopic diagnostics is dependent on the skill of the microscopist and limits the throughput of malaria diagnosis. With the development of Artificial Intelligence tools and Deep Learning techniques in particular, it is possible to lower the cost, while achieving an overall higher accuracy. In this paper, we present a VGG-based model and compare it with previously developed models for identifying infected cells. Our model surpasses most previously developed models in a range of the accuracy metrics. The model has an advantage of being constructed from a relatively small number of layers. This reduces the computer resources and computational time. Moreover, we test our model on two types of datasets and argue that the currently developed deep-learning-based methods cannot efficiently distinguish between infected and contaminated cells. A more precise study of suspicious regions is required.Keywords: convolution neural network, deep learning, malaria, thin blood smears
Procedia PDF Downloads 1333724 Influence of Scalable Energy-Related Sensor Parameters on Acoustic Localization Accuracy in Wireless Sensor Swarms
Authors: Joyraj Chakraborty, Geoffrey Ottoy, Jean-Pierre Goemaere, Lieven De Strycker
Abstract:
Sensor swarms can be a cost-effectieve and more user-friendly alternative for location based service systems in different application like health-care. To increase the lifetime of such swarm networks, the energy consumption should be scaled to the required localization accuracy. In this paper we have investigated some parameter for energy model that couples localization accuracy to energy-related sensor parameters such as signal length,Bandwidth and sample frequency. The goal is to use the model for the localization of undetermined environmental sounds, by means of wireless acoustic sensors. we first give an overview of TDOA-based localization together with the primary sources of TDOA error (including reverberation effects, Noise). Then we show that in localization, the signal sample rate can be under the Nyquist frequency, provided that enough frequency components remain present in the undersampled signal. The resulting localization error is comparable with that of similar localization systems.Keywords: sensor swarms, localization, wireless sensor swarms, scalable energy
Procedia PDF Downloads 4253723 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data
Authors: Muthukumarasamy Govindarajan
Abstract:
Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine
Procedia PDF Downloads 1463722 Epileptic Seizure Prediction by Exploiting Signal Transitions Phenomena
Authors: Mohammad Zavid Parvez, Manoranjan Paul
Abstract:
A seizure prediction method is proposed by extracting global features using phase correlation between adjacent epochs for detecting relative changes and local features using fluctuation/deviation within an epoch for determining fine changes of different EEG signals. A classifier and a regularization technique are applied for the reduction of false alarms and improvement of the overall prediction accuracy. The experiments show that the proposed method outperforms the state-of-the-art methods and provides high prediction accuracy (i.e., 97.70%) with low false alarm using EEG signals in different brain locations from a benchmark data set.Keywords: Epilepsy, seizure, phase correlation, fluctuation, deviation.
Procedia PDF Downloads 4673721 Accuracy Analysis of the American Society of Anesthesiologists Classification Using ChatGPT
Authors: Jae Ni Jang, Young Uk Kim
Abstract:
Background: Chat Generative Pre-training Transformer-3 (ChatGPT; San Francisco, California, Open Artificial Intelligence) is an artificial intelligence chatbot based on a large language model designed to generate human-like text. As the usage of ChatGPT is increasing among less knowledgeable patients, medical students, and anesthesia and pain medicine residents or trainees, we aimed to evaluate the accuracy of ChatGPT-3 responses to questions about the American Society of Anesthesiologists (ASA) classification based on patients’ underlying diseases and assess the quality of the generated responses. Methods: A total of 47 questions were submitted to ChatGPT using textual prompts. The questions were designed for ChatGPT-3 to provide answers regarding ASA classification in response to common underlying diseases frequently observed in adult patients. In addition, we created 18 questions regarding the ASA classification for pediatric patients and pregnant women. The accuracy of ChatGPT’s responses was evaluated by cross-referencing with Miller’s Anesthesia, Morgan & Mikhail’s Clinical Anesthesiology, and the American Society of Anesthesiologists’ ASA Physical Status Classification System (2020). Results: Out of the 47 questions pertaining to adults, ChatGPT -3 provided correct answers for only 23, resulting in an accuracy rate of 48.9%. Furthermore, the responses provided by ChatGPT-3 regarding children and pregnant women were mostly inaccurate, as indicated by a 28% accuracy rate (5 out of 18). Conclusions: ChatGPT provided correct responses to questions relevant to the daily clinical routine of anesthesiologists in approximately half of the cases, while the remaining responses contained errors. Therefore, caution is advised when using ChatGPT to retrieve anesthesia-related information. Although ChatGPT may not yet be suitable for clinical settings, we anticipate significant improvements in ChatGPT and other large language models in the near future. Regular assessments of ChatGPT's ASA classification accuracy are essential due to the evolving nature of ChatGPT as an artificial intelligence entity. This is especially important because ChatGPT has a clinically unacceptable rate of error and hallucination, particularly in pediatric patients and pregnant women. The methodology established in this study may be used to continue evaluating ChatGPT.Keywords: American Society of Anesthesiologists, artificial intelligence, Chat Generative Pre-training Transformer-3, ChatGPT
Procedia PDF Downloads 533720 Optimization of Ultrasound-Assisted Extraction and Microwave-Assisted Acid Digestion for the Determination of Heavy Metals in Tea Samples
Authors: Abu Harera Nadeem, Kingsley Donkor
Abstract:
Tea is a popular beverage due to its flavour, aroma and antioxidant properties—with the most consumed varieties being green and black tea. Antioxidants in tea can lower the risk of Alzheimer’s and heart disease and obesity. However, these teas contain heavy metals such as Hg, Cd, or Pb, which can cause autoimmune diseases like Graves disease. In this study, 11 heavy metals in various commercial green, black, and oolong tea samples were determined using inductively coupled plasma-mass spectrometry (ICP-MS). Two methods of sample preparation were compared for accuracy and precision, which were microwave-assisted digestion and ultrasonic-assisted extraction. The developed method was further validated by detection limit, precision, and accuracy. Results showed that the proposed method was highly sensitive with detection limits within parts-per-billion levels. Reasonable method accuracy was obtained by spiked experiments. The findings of this study can be used to delve into the link between tea consumption and disease and to provide information for future studies on metal determination in tea.Keywords: ICP-MS, green tea, black tea, microwave-assisted acid digestion, ultrasound-assisted extraction
Procedia PDF Downloads 1243719 Vehicle Detection and Tracking Using Deep Learning Techniques in Surveillance Image
Authors: Abe D. Desta
Abstract:
This study suggests a deep learning-based method for identifying and following moving objects in surveillance video. The proposed method uses a fast regional convolution neural network (F-RCNN) trained on a substantial dataset of vehicle images to first detect vehicles. A Kalman filter and a data association technique based on a Hungarian algorithm are then used to monitor the observed vehicles throughout time. However, in general, F-RCNN algorithms have been shown to be effective in achieving high detection accuracy and robustness in this research study. For example, in one study The study has shown that the vehicle detection and tracking, the system was able to achieve an accuracy of 97.4%. In this study, the F-RCNN algorithm was compared to other popular object detection algorithms and was found to outperform them in terms of both detection accuracy and speed. The presented system, which has application potential in actual surveillance systems, shows the usefulness of deep learning approaches in vehicle detection and tracking.Keywords: artificial intelligence, computer vision, deep learning, fast-regional convolutional neural networks, feature extraction, vehicle tracking
Procedia PDF Downloads 1303718 Preliminary Study of Hand Gesture Classification in Upper-Limb Prosthetics Using Machine Learning with EMG Signals
Authors: Linghui Meng, James Atlas, Deborah Munro
Abstract:
There is an increasing demand for prosthetics capable of mimicking natural limb movements and hand gestures, but precise movement control of prosthetics using only electrode signals continues to be challenging. This study considers the implementation of machine learning as a means of improving accuracy and presents an initial investigation into hand gesture recognition using models based on electromyographic (EMG) signals. EMG signals, which capture muscle activity, are used as inputs to machine learning algorithms to improve prosthetic control accuracy, functionality and adaptivity. Using logistic regression, a machine learning classifier, this study evaluates the accuracy of classifying two hand gestures from the publicly available Ninapro dataset using two-time series feature extraction algorithms: Time Series Feature Extraction (TSFE) and Convolutional Neural Networks (CNNs). Trials were conducted using varying numbers of EMG channels from one to eight to determine the impact of channel quantity on classification accuracy. The results suggest that although both algorithms can successfully distinguish between hand gesture EMG signals, CNNs outperform TSFE in extracting useful information for both accuracy and computational efficiency. In addition, although more channels of EMG signals provide more useful information, they also require more complex and computationally intensive feature extractors and consequently do not perform as well as lower numbers of channels. The findings also underscore the potential of machine learning techniques in developing more effective and adaptive prosthetic control systems.Keywords: EMG, machine learning, prosthetic control, electromyographic prosthetics, hand gesture classification, CNN, computational neural networks, TSFE, time series feature extraction, channel count, logistic regression, ninapro, classifiers
Procedia PDF Downloads 403717 The Impact of Corporate Social Responsibility Information Disclosure on the Accuracy of Analysts' Earnings Forecasts
Authors: Xin-Hua Zhao
Abstract:
In recent years, the growth rate of social responsibility reports disclosed by Chinese corporations has grown rapidly. The economic effects of the growing corporate social responsibility reports have become a hot topic. The article takes the chemical listed engineering corporations that disclose social responsibility reports in China as a sample, and based on the information asymmetry theory, examines the economic effect generated by corporate social responsibility disclosure with the method of ordinary least squares. The research is conducted from the perspective of analysts’ earnings forecasts and studies the impact of corporate social responsibility information disclosure on improving the accuracy of analysts' earnings forecasts. The results show that there is a statistically significant negative correlation between corporate social responsibility disclosure index and analysts’ earnings forecast error. The conclusions confirm that enterprises can reduce the asymmetry of social and environmental information by disclosing social responsibility reports, and thus improve the accuracy of analysts’ earnings forecasts. It can promote the effective allocation of resources in the market.Keywords: analysts' earnings forecasts, corporate social responsibility disclosure, economic effect, information asymmetry
Procedia PDF Downloads 1613716 Predication Model for Leukemia Diseases Based on Data Mining Classification Algorithms with Best Accuracy
Authors: Fahd Sabry Esmail, M. Badr Senousy, Mohamed Ragaie
Abstract:
In recent years, there has been an explosion in the rate of using technology that help discovering the diseases. For example, DNA microarrays allow us for the first time to obtain a "global" view of the cell. It has great potential to provide accurate medical diagnosis, to help in finding the right treatment and cure for many diseases. Various classification algorithms can be applied on such micro-array datasets to devise methods that can predict the occurrence of Leukemia disease. In this study, we compared the classification accuracy and response time among eleven decision tree methods and six rule classifier methods using five performance criteria. The experiment results show that the performance of Random Tree is producing better result. Also it takes lowest time to build model in tree classifier. The classification rules algorithms such as nearest- neighbor-like algorithm (NNge) is the best algorithm due to the high accuracy and it takes lowest time to build model in classification.Keywords: data mining, classification techniques, decision tree, classification rule, leukemia diseases, microarray data
Procedia PDF Downloads 3273715 Clustering the Wheat Seeds Using SOM Artificial Neural Networks
Authors: Salah Ghamari
Abstract:
In this study, the ability of self organizing map artificial (SOM) neural networks in clustering the wheat seeds varieties according to morphological properties of them was considered. The SOM is one type of unsupervised competitive learning. Experimentally, five morphological features of 300 seeds (including three varieties: gaskozhen, Md and sardari) were obtained using image processing technique. The results show that the artificial neural network has a good performance (90.33% accuracy) in classification of the wheat varieties despite of high similarity in them. The highest classification accuracy (100%) was achieved for sardari.Keywords: artificial neural networks, clustering, self organizing map, wheat variety
Procedia PDF Downloads 6613714 SEM Image Classification Using CNN Architectures
Authors: Güzi̇n Ti̇rkeş, Özge Teki̇n, Kerem Kurtuluş, Y. Yekta Yurtseven, Murat Baran
Abstract:
A scanning electron microscope (SEM) is a type of electron microscope mainly used in nanoscience and nanotechnology areas. Automatic image recognition and classification are among the general areas of application concerning SEM. In line with these usages, the present paper proposes a deep learning algorithm that classifies SEM images into nine categories by means of an online application to simplify the process. The NFFA-EUROPE - 100% SEM data set, containing approximately 21,000 images, was used to train and test the algorithm at 80% and 20%, respectively. Validation was carried out using a separate data set obtained from the Middle East Technical University (METU) in Turkey. To increase the accuracy in the results, the Inception ResNet-V2 model was used in view of the Fine-Tuning approach. By using a confusion matrix, it was observed that the coated-surface category has a negative effect on the accuracy of the results since it contains other categories in the data set, thereby confusing the model when detecting category-specific patterns. For this reason, the coated-surface category was removed from the train data set, hence increasing accuracy by up to 96.5%.Keywords: convolutional neural networks, deep learning, image classification, scanning electron microscope
Procedia PDF Downloads 1293713 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 983712 Employer Learning, Statistical Discrimination and University Prestige
Authors: Paola Bordon, Breno Braga
Abstract:
This paper investigates whether firms use university prestige to statistically discriminate among college graduates. The test is based on the employer learning literature which suggests that if firms use a characteristic for statistical discrimination, this variable should become less important for earnings as a worker gains labor market experience. In this framework, we use a regression discontinuity design to estimate a 19% wage premium for recent graduates of two of the most selective universities in Chile. However, we find that this premium decreases by 3 percentage points per year of labor market experience. These results suggest that employers use college selectivity as a signal of workers' quality when they leave school. However, as workers reveal their productivity throughout their careers, they become rewarded based on their true quality rather than the prestige of their college.Keywords: employer learning, statistical discrimination, college returns, college selectivity
Procedia PDF Downloads 581