Search results for: artificial market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5472

Search results for: artificial market

3792 An Application of Contingent Valuation Method in Valuing Protected Area: A Case Study of Pulau Kukup National Parks

Authors: A. Mukrimah, M. Mohd Parid, H. F. Lim

Abstract:

Wetland ecosystem has valuable resources that contribute to national income generation and public well-being, either directly by resources that have a market value or indirectly by resources that have no market value. Economic approach is used to evaluate the resources to determine the best use of wetland resources and should be emphasized in policy development planning. This approach is to prevent imbalance in the allocation of resources and welfare benefits. A case study was conducted in 2016 to assess the economic value of wetland ecosystem services at Pulau Kukup National Parks (PKNP). This study has applied dichotomous choice survey design Contingent Valuation Method (CVM) to investigate empirically the willingness-to-pay (WTP) by the public. The study interviewed 400 household respondents at Pontian, Johor. Analysis showed 81% of household interviewed were willing to contribute to the Wetland Conservation Trust Fund. The results also indicated that on average a household was willing to pay RM87 annually. By taking into account 21,664 households in Pontian district in 2016, public’s contribution to conserves wetland ecosystem at PKNP was calculated to be RM1, 884,334. From the public’s interest to contribute to the conservation of wetland ecosystem services at PKNP, it indicates that more concerted effort is needed by both the federal and state governments to conserve and rehabilitate the mangrove ecosystem in Malaysia.

Keywords: environmental economy, economic valuation, choice experiment, Pulau Kukup national parks

Procedia PDF Downloads 195
3791 Ikat: Undaunted Journey of a Traditional Textile Practice, a Sublime Connect of Traditionality with Modernity and Calibration for Eco-Sustainable Options

Authors: Purva Khurana

Abstract:

Traditional textile crafts are universally found to have been significantly impeded by the uprise of innovative technologies, but sustained human endeavor, in sync with dynamic market nuances, holds key to these otherwise getting fast-extinct marvels. The metamorphosis of such art-forms into niche markets pre-supposes sharp concentration on adaptability. The author has concentrated on the ancient handicraft of Ikat in Andhra Pradesh (India), a manifestation of their cultural heritage and esoteric cottage industry, so very intrinsic to the development and support of local economy and identity. Like any other traditional practice, ikat weaving has been subjected to the challenges of modernization. However, owing to its unique character, personalize production and adaptability, both of material and process, ikat weaving has stood the test of time by way of judiciously embellishing innovation with contemporary taste. To survive as a living craft as also to justify its role as a universal language of aesthetic sensibility, it is imperative that ikat tradition should lend itself continuous process of experiments, change and growth. Besides, the instant paper aims to examine the contours of ikat production process from its pure form, to more fashion and market oriented production, with upgraded process, material and tools. Over the time, it has adapted well to new style-paradigms, duly matching up with the latest fashion trends, in tandem with the market-sensitivities. Apart, it is an effort to investigate how this craft could respond constructively to the pressure of contemporary technical developments in order to be at cutting edge, while preserving its integrity. In order to approach these issues, the methodology adopted is, conceptual analysis of the craft practices, its unique strength and how they could be used to advance the craft in relation to the emergence of technical developments. The paper summarizes the result of the study carried out by the author on the peculiar advantages of suitably- calibrated vat dyes over natural dyes, in terms of its recycling ability and eco-friendly properties, thus holding definite edge, both in terms of socio-economic as well as environmental concerns.

Keywords: craft, eco-friendly dyes, ikat, metamorphosis

Procedia PDF Downloads 177
3790 Financial and Economic Crisis as a Challenge for Non-Derogatibility of Human Rights

Authors: Mirjana Dokmanovic

Abstract:

The paper will introduce main findings of the research of the responses of the Central European and South Eastern European (CEE/SEE) countries to the global economic and financial crisis in 2008 from human rights and gender perspectives. The research methodology included desk research and qualitative analysis of the available data, studies, statistics, and reports produced by the governments, the UN agencies, international financial institutions (IFIs) and international network of civil society organizations. The main conclusion of the study is that the governments in the region missed to assess the impacts of their anti-crisis policies both ex ante and ex post from the standpoint of human rights and gender equality. Majority of the countries have focused their efforts solely on prompting up the banking and financial sectors, and construction business sectors. The tremendous debt which the states have accumulated for the rescue of banks and industries lead to further cuts in social expenses and reduction of public services. Decreasing state support to health care and social protection and declining family incomes made social services unaffordable for many families. Thus, the economic and financial crisis stirred up the care crisis that was absorbed by women’s intensifying unpaid work within a family and household to manage household survival strategy. On the other hand, increased burden of the care work weakened the position of women in the labour market and their opportunities to find a job. The study indicates that the artificial separation of the real economy and the sphere of social reproduction still persist. This has created additional burden of unpaid work of women within a family. The aim of this paper is to introduce the lessons learnt for future: (a) human rights may not be derogated in the times of crisis; (b) the obligation of states to mitigate negative impacts of economic policies to population, particularly to vulnerable groups, must be prioritized; (c) IFIs and business sector must be liable as duty bearers with respect to human rights commitments.

Keywords: CEE/SEE region, global financial and economic crisis, international financial institutions, human rights commitments, principle of non-derogability of human rights

Procedia PDF Downloads 207
3789 A Comparative Study of Innovative Regions in the World Based on the Theory of Innovation Ecosystem: Cases of the Silicon Valley, Cambridge, Tsukuba and Zhongguancun

Authors: Xinlan Zhang, Dandong Ge, Bingying Liu, Haoyang Liang

Abstract:

With the rapid development of technology and urbanization, innovation has become an important driving force for urban development. Since the late 20th Century, a number of cities and regions have emerged in the world with innovation as the main driving force, and many of them are still the most important innovation centers in the world. Based on the perspective of innovation ecosystem theory, this paper compares Silicon Valley in the United States, Cambridge in the United Kingdom, Tsukuba in Japan and Zhongguancun in China to explore the reasons for the success of innovative regions and their respective characteristics, hoping to provide a reference for the development of other innovative cities. The main conclusions of this study are the following; firstly, different countries have different social backgrounds. The development model of innovative regions is closely related to the regional backgrounds. Secondly, the market force and the government power have important significance for the development of the innovation regions. The influence of the government power in the early stage of development is great, and in the latter stage, development is dominated by the market force. In addition, the self-organizing ability of the region has a great impact on the innovation ability of the region. Strong self-organizing ability is conducive to the development of innovation economy.

Keywords: contrastive study, development model, innovation ecosystem, innovative regions

Procedia PDF Downloads 162
3788 Foreign Exchange Volatilities and Stock Prices: Evidence from London Stock Exchange

Authors: Mahdi Karazmodeh, Pooyan Jafari

Abstract:

One of the most interesting topics in finance is the relation between stock prices and exchange rates. During the past decades different stock markets in different countries have been the subject of study for researches. The volatilities of exchange rates and its effect on stock prices during the past 10 years have continued to be an attractive research topic. The subject of this study is one of the most important indices, FTSE 100. 20 firms with the highest market capitalization in 5 different industries are chosen. Firms are included in oil and gas, mining, pharmaceuticals, banking and food related industries. 5 different criteria have been introduced to evaluate the relationship between stock markets and exchange rates. Return of market portfolio, returns on broad index of Sterling are also introduced. The results state that not all firms are sensitive to changes in exchange rates. Furthermore, a Granger Causality test has been run to observe the route of changes between stock prices and foreign exchange rates. The results are consistent, to some level, with the previous studies. However, since the number of firms is not large, it is suggested that a larger number of firms being used to achieve the best results. However results showed that not all firms are affected by foreign exchange rates changes. After testing Granger Causality, this study found out that in some industries (oil and gas, pharmaceuticals), changes in foreign exchange rate will not cause any changes in stock prices (or vice versa), however, in banking sector the situation was different. This industry showed more reaction to these changes. The results are similar to the ones with Richards and Noel, where a variety of firms in different industries were evaluated.

Keywords: stock prices, foreign exchange rate, exchange rate exposure, Granger Causality

Procedia PDF Downloads 449
3787 The Influence of Gender on Job-Competencies Requirements of Chemical-Based Industries and Undergraduate-Competencies Acquisition of Chemists in South West, Nigeria

Authors: Rachael Olatoun Okunuga

Abstract:

Developing young people’s employability is a key policy issue for ensuring their successful transition to the labour market and their access to career oriented employment. The youths of today irrespective of their gender need to acquire the knowledge, skills and attitudes that will enable them to create or find jobs as well as cope with unpredictable labour market changes throughout their working lives. In a study carried out to determine the influence of gender on job-competencies requirements of chemical-based industries and undergraduate-competencies acquisition by chemists working in the industries, all chemistry graduates working in twenty (20) chemical-based industries that were randomly selected from six sectors of chemical-based industries in Lagos and Ogun States of Nigeria were administered with Job-competencies required and undergraduate-competencies acquired assessment questionnaire. The data were analysed using means and independent sample t-test. The findings revealed that the population of female chemists working in chemical-based industries is low compared with the number of male chemists; furthermore, job-competencies requirements are found not to be gender sensitive while there is no significant difference in undergraduate-competencies acquisition of male and female chemists. This suggests that females should be given the same opportunity of employment in chemical-based industries as their male counterparts. The study also revealed the level of acquisition of undergraduate competencies as related to the needs of chemical-based industries.

Keywords: knowledge, skill, attitude, acquired, required, employability

Procedia PDF Downloads 383
3786 Revolutionizing Financial Forecasts: Enhancing Predictions with Graph Convolutional Networks (GCN) - Long Short-Term Memory (LSTM) Fusion

Authors: Ali Kazemi

Abstract:

Those within the volatile and interconnected international economic markets, appropriately predicting market trends, hold substantial fees for traders and financial establishments. Traditional device mastering strategies have made full-size strides in forecasting marketplace movements; however, monetary data's complicated and networked nature calls for extra sophisticated processes. This observation offers a groundbreaking method for monetary marketplace prediction that leverages the synergistic capability of Graph Convolutional Networks (GCNs) and Long Short-Term Memory (LSTM) networks. Our suggested algorithm is meticulously designed to forecast the traits of inventory market indices and cryptocurrency costs, utilizing a comprehensive dataset spanning from January 1, 2015, to December 31, 2023. This era, marked by sizable volatility and transformation in financial markets, affords a solid basis for schooling and checking out our predictive version. Our algorithm integrates diverse facts to construct a dynamic economic graph that correctly reflects market intricacies. We meticulously collect opening, closing, and high and low costs daily for key inventory marketplace indices (e.g., S&P 500, NASDAQ) and widespread cryptocurrencies (e.g., Bitcoin, Ethereum), ensuring a holistic view of marketplace traits. Daily trading volumes are also incorporated to seize marketplace pastime and liquidity, providing critical insights into the market's shopping for and selling dynamics. Furthermore, recognizing the profound influence of the monetary surroundings on financial markets, we integrate critical macroeconomic signs with hobby fees, inflation rates, GDP increase, and unemployment costs into our model. Our GCN algorithm is adept at learning the relational patterns amongst specific financial devices represented as nodes in a comprehensive market graph. Edges in this graph encapsulate the relationships based totally on co-movement styles and sentiment correlations, enabling our version to grasp the complicated community of influences governing marketplace moves. Complementing this, our LSTM algorithm is trained on sequences of the spatial-temporal illustration discovered through the GCN, enriched with historic fee and extent records. This lets the LSTM seize and expect temporal marketplace developments accurately. Inside the complete assessment of our GCN-LSTM algorithm across the inventory marketplace and cryptocurrency datasets, the version confirmed advanced predictive accuracy and profitability compared to conventional and opportunity machine learning to know benchmarks. Specifically, the model performed a Mean Absolute Error (MAE) of 0.85%, indicating high precision in predicting day-by-day charge movements. The RMSE was recorded at 1.2%, underscoring the model's effectiveness in minimizing tremendous prediction mistakes, which is vital in volatile markets. Furthermore, when assessing the model's predictive performance on directional market movements, it achieved an accuracy rate of 78%, significantly outperforming the benchmark models, averaging an accuracy of 65%. This high degree of accuracy is instrumental for techniques that predict the course of price moves. This study showcases the efficacy of mixing graph-based totally and sequential deep learning knowledge in economic marketplace prediction and highlights the fee of a comprehensive, records-pushed evaluation framework. Our findings promise to revolutionize investment techniques and hazard management practices, offering investors and economic analysts a powerful device to navigate the complexities of cutting-edge economic markets.

Keywords: financial market prediction, graph convolutional networks (GCNs), long short-term memory (LSTM), cryptocurrency forecasting

Procedia PDF Downloads 71
3785 Youth NEET in Albania: Current Situation and Outreach Mechanisms

Authors: Emiljan Karma

Abstract:

One of the major problems of the present is young people who are not concerned with employment, education, or training (NEETs). Unfortunately, this group of people in Albania is a considerable part of working-age people, and despite the measures taken, they remain a major problem. NEETs in Albania are very heterogeneous. This is since youth unemployment and inactivity rate are at a very high level (Albania has the highest NEET rate among EU candidates/potential candidates’ countries and EU countries); the high level of NEET rate in Albania means that government agencies responsible for labour market regulation and other social actors interested in the phenomenon (representatives of employees, representatives of employers, non-governmental organizations, etc.) did not effectively materialize the policies in the field of youth employment promotion. The National Agency for Employment and Skills (NAES) delivers measures specifically designed to target unemployed youth, being the key stakeholder in the implementation of employment policies and skills development in Albania. In the context of identifying and assisting NEETs, this role becomes even stronger. The experience of different EU countries (e.g., Youth Guarantee) indicates that there are different policy-making structures and various outreach mechanisms for constraining the youth NEET phenomenon. The purpose of this research is to highlight: (1) The identification of NEETs feature in Albania; (2) The identification of tailored and efficient outreach mechanisms to assist vulnerable NEETs; (3) The fundamental importance of stakeholders’ partnership at central and regional level.

Keywords: labor market, NEETs, non-registered NEETs, unemployment

Procedia PDF Downloads 282
3784 From Ride-Hailing App to Diversified and Sustainable Platform Business Model

Authors: Ridwan Dewayanto Rusli

Abstract:

We show how prisoner's dilemma-type competition problems can be mitigated through rapid platform diversification and ecosystem expansion. We analyze a ride-hailing company in Southeast Asia, Gojek, whose network grew to more than 170 million users comprising consumers, partner drivers, merchants, and complementors within a few years and has already achieved higher contribution margins than ride-hailing peers Uber and Lyft. Its ecosystem integrates ride-hailing, food delivery and logistics, merchant solutions, e-commerce, marketplace and advertising, payments, and fintech offerings. The company continues growing its network of complementors and App developers, expanding content and gaining critical mass in consumer data analytics and advertising. We compare the company's growth and diversification trajectory with those of its main international rivals and peers. The company's rapid growth and future potential are analyzed using Cusumano's (2012) Staying Power and Six Principles, Hax and Wilde's (2003) and Hax's (2010) The Delta Model as well as Santos' (2016) home-market advantages frameworks. The recently announced multi-billion-dollar merger with one of Southeast Asia's largest e-commerce majors lends additional support to the above arguments.

Keywords: ride-hailing, prisoner's dilemma, platform and ecosystem strategy, digital applications, diversification, home market advantages, e-commerce

Procedia PDF Downloads 101
3783 Cement Bond Characteristics of Artificially Fabricated Sandstones

Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen

Abstract:

The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.

Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing

Procedia PDF Downloads 173
3782 The ‘Accompanying Spouse Dependent Visa Status’: Challenges and Constraints Faced by Zimbabwean Immigrant Women in Integration into South Africa’s Formal Labour Market

Authors: Rujeko Samanthia Chimukuche

Abstract:

Introduction: Transboundary migration at both regional and continental levels has become the defining feature of the 21st century. The recent global migration crisis due to economic strife and war brings back to the fore an old age problem, but with fresh challenges. Migration and forced displacement are issues that require long-term solutions. In South Africa, for example, whilst much attention has been placed on xenophobic attacks and other issues at the nexus of immigrant and indigenous communities, the limited focus has been placed on the integration, specifically formal labour integration of immigrant communities and the gender inequalities that are prevalent. Despite noble efforts by South Africa, hosting several immigrants, several challenges arise in integrating the migrants into society as it is often difficult to harmonize the interests of indigenous communities and those of foreign nationals. This research study has aimed to fill in the gaps by analyzing how stringent immigration and visa regulations prevent skilled migrant women spouses from employment, which often results in several societal vices, including domestic abuse, minimum or no access to important services such as healthcare, education, social welfare among others. Methods: Using a qualitative approach, the study analyzed South Africa migration and labour policies in terms of mainstreaming the gender needs of skilled migrant women. Secondly, the study highlighted the migratory experiences and constraints of skilled Zimbabwean women migrant spouses in South Africa labour integration. The experiences of these women have shown the gender inequalities of the migratory policies. Thirdly, Zimbabwean women's opportunities and/or challenges in integration into the South African formal labour market were explored. Lastly, practical interventions to support the integration of skilled migrant women spouses into South Africa’s formal labour market were suggested. Findings: Key findings show that gender dynamics are pivotal in migration patterns and the mainstreaming of gender in migration policies. This study, therefore, contributed to the fields of gender and migration by examining ways in which gender rights of skilled migrant women spouses can be incorporated in labour integration policy making.

Keywords: accompanying spouse visa, gender-migration, labour-integration, Zimbabwean women

Procedia PDF Downloads 123
3781 Biogas as a Renewable Energy Fuel: A Review of Biogas Upgrading, Utilization and Storage

Authors: Imran Ullah Khana, Mohd Hafiz Dzarfan Othmanb, Haslenda Hashima, Takeshi Matsuurad, A. F. Ismailb, M. Rezaei-DashtArzhandib, I. Wan Azelee

Abstract:

Biogas upgrading is a widely studied and discussed topic, and its utilization as a natural gas substitute has gained significant attention in recent years. The production of biomethane provides a versatile application in both heat and power generation and as a vehicular fuel. This paper systematically reviews the state of the art of biogas upgrading technologies with upgrading efficiency, methane (CH4) loss, environmental effect, development and commercialization, and challenges in terms of energy consumption and economic assessment. The market situation for biogas upgrading has changed rapidly in recent years, giving membrane separation a significant market share with traditional biogas upgrading technologies. In addition, the potential utilization of biogas, efficient conversion into bio-compressed natural gas (bio-CNG), and storage systems are investigated in depth. Two storing systems for bio-CNG at filling stations, namely buffer and cascade storage systems are used. The best storage system should be selected on the basis of the advantages of both systems. Also, the fuel economy and mass emissions for bio-CNG and CNG-filled vehicles are studied. There is the same fuel economy and less carbon dioxide (CO2) emission for bio-CNG. Based on the results of comparisons between the technical features of upgrading technologies, various specific requirements for biogas utilization and the relevant investment, and operating and maintenance costs, future recommendations are made for biogas upgrading.

Keywords: biogas upgrading, cost, utilization, bio-CNG, storage, energy

Procedia PDF Downloads 55
3780 A-Score, Distress Prediction Model with Earning Response during the Financial Crisis: Evidence from Emerging Market

Authors: Sumaira Ashraf, Elisabete G.S. Félix, Zélia Serrasqueiro

Abstract:

Traditional financial distress prediction models performed well to predict bankrupt and insolvent firms of the developed markets. Previous studies particularly focused on the predictability of financial distress, financial failure, and bankruptcy of firms. This paper contributes to the literature by extending the definition of financial distress with the inclusion of early warning signs related to quotation of face value, dividend/bonus declaration, annual general meeting, and listing fee. The study used five well-known distress prediction models to see if they have the ability to predict early warning signs of financial distress. Results showed that the predictive ability of the models varies over time and decreases specifically for the sample with early warning signs of financial distress. Furthermore, the study checked the differences in the predictive ability of the models with respect to the financial crisis. The results conclude that the predictive ability of the traditional financial distress prediction models decreases for the firms with early warning signs of financial distress and during the time of financial crisis. The study developed a new model comprising significant variables from the five models and one new variable earning response. This new model outperforms the old distress prediction models before, during and after the financial crisis. Thus, it can be used by researchers, organizations and all other concerned parties to indicate early warning signs for the emerging markets.

Keywords: financial distress, emerging market, prediction models, Z-Score, logit analysis, probit model

Procedia PDF Downloads 247
3779 Integer Programming: Domain Transformation in Nurse Scheduling Problem.

Authors: Geetha Baskaran, Andrzej Barjiela, Rong Qu

Abstract:

Motivation: Nurse scheduling is a complex combinatorial optimization problem. It is also known as NP-hard. It needs an efficient re-scheduling to minimize some trade-off of the measures of violation by reducing selected constraints to soft constraints with measurements of their violations. Problem Statement: In this paper, we extend our novel approach to solve the nurse scheduling problem by transforming it through Information Granulation. Approach: This approach satisfies the rules of a typical hospital environment based on a standard benchmark problem. Generating good work schedules has a great influence on nurses' working conditions which are strongly related to the level of a quality health care. Domain transformation that combines the strengths of operation research and artificial intelligence was proposed for the solution of the problem. Compared to conventional methods, our approach involves judicious grouping (information granulation) of shifts types’ that transforms the original problem into a smaller solution domain. Later these schedules from the smaller problem domain are converted back into the original problem domain by taking into account the constraints that could not be represented in the smaller domain. An Integer Programming (IP) package is used to solve the transformed scheduling problem by expending the branch and bound algorithm. We have used the GNU Octave for Windows to solve this problem. Results: The scheduling problem has been solved in the proposed formalism resulting in a high quality schedule. Conclusion: Domain transformation represents departure from a conventional one-shift-at-a-time scheduling approach. It offers an advantage of efficient and easily understandable solutions as well as offering deterministic reproducibility of the results. We note, however, that it does not guarantee the global optimum.

Keywords: domain transformation, nurse scheduling, information granulation, artificial intelligence, simulation

Procedia PDF Downloads 399
3778 Artificial Intelligence Techniques for Enhancing Supply Chain Resilience: A Systematic Literature Review, Holistic Framework, and Future Research

Authors: Adane Kassa Shikur

Abstract:

Today’s supply chains (SC) have become vulnerable to unexpected and ever-intensifying disruptions from myriad sources. Consequently, the concept of supply chain resilience (SCRes) has become crucial to complement the conventional risk management paradigm, which has failed to cope with unexpected SC disruptions, resulting in severe consequences affecting SC performances and making business continuity questionable. Advancements in cutting-edge technologies like artificial intelligence (AI) and their potential to enhance SCRes by improving critical antecedents in the different phases have attracted the attention of scholars and practitioners. The research from academia and the practical interest of the industry have yielded significant publications at the nexus of AI and SCRes during the last two decades. However, the applications and examinations have been primarily conducted independently, and the extant literature is dispersed into research streams despite the complex nature of SCRes. To close this research gap, this study conducts a systematic literature review of 106 peer-reviewed articles by curating, synthesizing, and consolidating up-to-date literature and presents the state-of-the-art development from 2010 to 2022. Bayesian networks are the most topical ones among the 13 AI techniques evaluated. Concerning the critical antecedents, visibility is the first ranking to be realized by the techniques. The study revealed that AI techniques support only the first 3 phases of SCRes (readiness, response, and recovery), and readiness is the most popular one, while no evidence has been found for the growth phase. The study proposed an AI-SCRes framework to inform research and practice to approach SCRes holistically. It also provided implications for practice, policy, and theory as well as gaps for impactful future research.

Keywords: ANNs, risk, Bauesian networks, vulnerability, resilience

Procedia PDF Downloads 109
3777 Trend Analysis of Africa’s Entrepreneurial Framework Conditions

Authors: Sheng-Hung Chen, Grace Mmametena Mahlangu, Hui-Cheng Wang

Abstract:

This study aims to explore the trends of the Entrepreneurial Framework Conditions (EFCs) in the five African regions. The Global Entrepreneur Monitor (GEM) is the primary source of data. The data drawn were organized into a panel (2000-2021) and obtained from the National Expert Survey (NES) databases as harmonized by the (GEM). The Methodology used is descriptive and uses mainly charts and tables; this is in line with the approach used by the GEM. The GEM draws its data from the National Expert Survey (NES). The survey by the NES is administered to experts in each country. The GEM collects entrepreneurship data specific to each country. It provides information about entrepreneurial ecosystems and their impact on entrepreneurship. The secondary source is from the literature review. This study focuses on the following GEM indicators: Financing for Entrepreneurs, Government support and Policies, Taxes and Bureaucracy, Government programs, Basic School Entrepreneurial Education and Training, Post school Entrepreneurial Education and Training, R&D Transfer, Commercial And Professional Infrastructure, Internal Market Dynamics, Internal Market Openness, Physical and Service Infrastructure, and Cultural And Social Norms, based on GEM Report 2020/21. The limitation of the study is the lack of updated data from some countries. Countries have to fund their own regional studies; African countries do not regularly participate due to a lack of resources.

Keywords: trend analysis, entrepreneurial framework conditions (EFCs), African region, government programs

Procedia PDF Downloads 76
3776 The School-to-Work Transition: The Case of NEET Youths from Rural Areas

Authors: Anđelka Stojanović, Ivan Mihajlović, Ivica Nikolić

Abstract:

In the past years, due to the financial crisis and the tightening of conditions on the labor market, young people are facing great challenges in achieving financial independence and finding their place in society. Higher unemployment rates, poorer living conditions, separation from the labor market, and longer school-to-work transitions particularly affect rural youth and make significant differences between youth groups in rural and urban areas. Improving employability skills and development of instruments for further learning among young people “Not in Education, Employment, or Training” (NEET) should not be only the concerns of these people, already adequately be directed and supported by the institutions. According to the World Bank data, the share of youth not in education, employment or training (NEET), in the European Union in the past few years decreases but still shows a significant share in the total percentage of the youth population. In 2017 rate was 10.96% while in 2018 that value was 10.38%. When observing individual countries in Europe, especially those with lower incomes, this rate is much higher. It was concluded that this topic was not sufficiently elaborated and presented in the social and scientific environment. Therefore, the aim of this paper is to identify and systematize the problems of school-to-work transition among young NEETs living in rural areas as well as the initiatives for addressing their problems.

Keywords: NEET youth, risks and initiatives, rural youth, school-to-work transition

Procedia PDF Downloads 118
3775 Evaluation of Planned and Organically Transformed Public Spaces in Urban Indian Market Places: A Case of Bhopal City, India

Authors: Piyush Hajela

Abstract:

Public spaces within Indian markets are vibrant, colorful and contain dimensions that make them attractive and therefore act as popular gathering spaces. Most of these public spaces emerge as squares, plazas of varied shapes and sizes spread at different locations within the market. These public spaces grow organically and are discovered by the people themselves as they respond positively to the collective human senses. On the other hand, there are the planned and designed public spaces as well that are less active. This research evaluates both the planned and the organically transformed public spaces in Indian markets from an Urban Design point of view. The purpose of such research is to provide a basis for design solutions to ensure the success of designed public spaces. The evaluation is done for identified Attributes, namely Comfort, Protection, Familiarity, Activities, Form, Legibility, Engagement, Safety, Accessibility, Environment and Transformations by which a Public Space attains its recognition. The evaluation is based on a rating done for forty-four parameters falling under eleven attributes of public space. An opinion survey of professionals is conducted for their priorities of attributes while designing Public spaces. A comparison is made to rank these attributes between Planned and Organically transformed Public spaces and, opinion of the professionals. After dues analysis, the research suggests the learning from the organically transformed Public spaces for ensuring the success of designed public spaces. The suggestions may be in the form of Design decisions or administrative regulations, or both for achieving the desirables.

Keywords: assessment, attributes, engagement, interaction

Procedia PDF Downloads 215
3774 A Deep Learning Model with Greedy Layer-Wise Pretraining Approach for Optimal Syngas Production by Dry Reforming of Methane

Authors: Maryam Zarabian, Hector Guzman, Pedro Pereira-Almao, Abraham Fapojuwo

Abstract:

Dry reforming of methane (DRM) has sparked significant industrial and scientific interest not only as a viable alternative for addressing the environmental concerns of two main contributors of the greenhouse effect, i.e., carbon dioxide (CO₂) and methane (CH₄), but also produces syngas, i.e., a mixture of hydrogen (H₂) and carbon monoxide (CO) utilized by a wide range of downstream processes as a feedstock for other chemical productions. In this study, we develop an AI-enable syngas production model to tackle the problem of achieving an equivalent H₂/CO ratio [1:1] with respect to the most efficient conversion. Firstly, the unsupervised density-based spatial clustering of applications with noise (DBSAN) algorithm removes outlier data points from the original experimental dataset. Then, random forest (RF) and deep neural network (DNN) models employ the error-free dataset to predict the DRM results. DNN models inherently would not be able to obtain accurate predictions without a huge dataset. To cope with this limitation, we employ reusing pre-trained layers’ approaches such as transfer learning and greedy layer-wise pretraining. Compared to the other deep models (i.e., pure deep model and transferred deep model), the greedy layer-wise pre-trained deep model provides the most accurate prediction as well as similar accuracy to the RF model with R² values 1.00, 0.999, 0.999, 0.999, 0.999, and 0.999 for the total outlet flow, H₂/CO ratio, H₂ yield, CO yield, CH₄ conversion, and CO₂ conversion outputs, respectively.

Keywords: artificial intelligence, dry reforming of methane, artificial neural network, deep learning, machine learning, transfer learning, greedy layer-wise pretraining

Procedia PDF Downloads 92
3773 Artificial Intelligence Based Online Monitoring System for Cardiac Patient

Authors: Syed Qasim Gilani, Muhammad Umair, Muhammad Noman, Syed Bilawal Shah, Aqib Abbasi, Muhammad Waheed

Abstract:

Cardiovascular Diseases(CVD's) are the major cause of death in the world. The main reason for these deaths is the unavailability of first aid for heart failure. In many cases, patients die before reaching the hospital. We in this paper are presenting innovative online health service for Cardiac Patients. The proposed online health system has two ends. Users through device developed by us can communicate with their doctor through a mobile application. This interface provides them with first aid.Also by using this service, they have an easy interface with their doctors for attaining medical advice. According to the proposed system, we developed a device called Cardiac Care. Cardiac Care is a portable device which a patient can use at their home for monitoring heart condition. When a patient checks his/her heart condition, Electrocardiogram (ECG), Blood Pressure(BP), Temperature are sent to the central database. The severity of patients condition is checked using Artificial Intelligence Algorithm at the database. If the patient is suffering from the minor problem, our algorithm will suggest a prescription for patients. But if patient's condition is severe, patients record is sent to doctor through the mobile Android application. Doctor after reviewing patients condition suggests next step. If a doctor identifies the patient condition as critical, then the message is sent to the central database for sending an ambulance for the patient. Ambulance starts moving towards patient for bringing him/her to hospital. We have implemented this model at prototype level. This model will be life-saving for millions of people around the globe. According to this proposed model patients will be in contact with their doctors all the time.

Keywords: cardiovascular disease, classification, electrocardiogram, blood pressure

Procedia PDF Downloads 188
3772 The Role of Multinational Enterprises' Investments in Emerging Country's Economic Development, Case of Georgia

Authors: V. Charaia

Abstract:

From the strategic point of view, not all Foreign Direct Investments (FDIs) are always positively benefiting the host economy, i.e. not all Multinational Enterprises (MNEs) are promoting local/host economies. FDI could have different impact on different sectors of the economy, based not only on annual investment amount, but MNE motivations and peculiarities of the host economy in particular. FDI analysis based only on its amount can lead to incorrect decisions, it is much more important to understand the essence of investment. Consequently, our research is oriented on MNE’s motivations, answering which sectors are most popular among international investors and why, what motivated them to invest into one or another business. Georgian economy for the last period of time is attracting more and more efficiency seeking investments, which could be translated as - concentrating production in a limited number of locations to supply various markets, while benefiting local economy with: new technologies, employment, exports diversification, increased income for the local economy and so on. Foreign investors and MNEs in particular are no longer and not so much interested in the resource seeking investments, which was the case for Georgia in the last decade of XX century. Despite the fact of huge progress for the Georgian economy, still there is a room for foreign investors to make a local market oriented investments. The local market is still rich in imported products, which should be replaced by local ones. And the last but not the least important issue is that approximately 30% of all FDIs in Georgia according to this research are “efficiency seeking” investments, which is an enormous progress and a hope for future Georgian success.

Keywords: investments, MNE, FDI motivations, Georgian economy

Procedia PDF Downloads 337
3771 Policy Evaluation of Republic Act 9502 “Universally Accessible Cheaper and Quality Medicines Act of 2008”

Authors: Trina Isabel D. Santiago, Juan Raphael M. Perez, Maria Angelica O. Soriano, Teresita B. Suing, Jumee F. Tayaban

Abstract:

To achieve universal healthcare for everyone, the World Health Organization has emphasized the importance of National Medicines Policies for increased accessibility and utilization of high-quality and affordable medications. In the Philippines, significant challenges have been identified surrounding the sustainability of essential medicines, resulting in limited access such as high cost and dominance and market dominance and monopoly of multinational companies (MNCs) in the Philippine pharmaceutical industry. These identified challenges have been addressed by several initiatives, such as the Philippine National Drug Policy and Generics Act of 1988 (Republic Act 6675), to attempt to reduce drug prices. Despite these efforts, the concerns with drug accessibility and affordability continue to persist; hence, Republic Act 9502 was enacted. This paper attempts to review RA 9502 in the pursuit of making medicines more affordable for Filipinos, analyze and critique the problems and challenges associated with the law, and provide recommendations to address identified problems and challenges. A literature search and review, as well as an analysis of the law, has been done to evaluate the policy. RA 9502 recognizes the importance of market competition in drug price reduction and quality medicine accessibility. Contentious issues prior to enactment of the law include 1) parallel importation, pointing out that the drug price will depend on the global market price, 2) contrasting approaches in the drafting of the law as the House version focused on medicine price control while the Senate version prioritized market competition, and 3) MNCs opposing the amendments with concerns on discrimination, constitutional violations, and noncompliance with international treaty obligations. There are also criticisms and challenges with the implementation of the law in terms of content or modeling, interpretation and implementation, and other external factors or hindrances. The law has been criticized for its narrow scope as it only covers specific essential medicines with no cooperation with the national health insurance program. Moreover, the law has sections taking advantage of the TRIPS flexibilities, which disallow smaller countries to reap the benefits of flexibilities. The sanctions and penalties have an insignificant role in implementation as they only ask for a small portion of the income of MNCs. Proposed recommendations for policy improvement include aligning existing legislation through strengthened price regulation and expanded law coverage, strengthening penalties to promote law adherence, and promoting research and development to encourage and support local initiatives. Through these comprehensive recommendations, the issues surrounding the policy can be addressed, and the goal of enhancing the affordability and accessibility of medicines in the country can be achieved.

Keywords: drug accessibility, drug affordability, price regulation, Republic Act 9502

Procedia PDF Downloads 51
3770 Impact of Transitioning to Renewable Energy Sources on Key Performance Indicators and Artificial Intelligence Modules of Data Center

Authors: Ahmed Hossam ElMolla, Mohamed Hatem Saleh, Hamza Mostafa, Lara Mamdouh, Yassin Wael

Abstract:

Artificial intelligence (AI) is reshaping industries, and its potential to revolutionize renewable energy and data center operations is immense. By harnessing AI's capabilities, we can optimize energy consumption, predict fluctuations in renewable energy generation, and improve the efficiency of data center infrastructure. This convergence of technologies promises a future where energy is managed more intelligently, sustainably, and cost-effectively. The integration of AI into renewable energy systems unlocks a wealth of opportunities. Machine learning algorithms can analyze vast amounts of data to forecast weather patterns, solar irradiance, and wind speeds, enabling more accurate energy production planning. AI-powered systems can optimize energy storage and grid management, ensuring a stable power supply even during intermittent renewable generation. Moreover, AI can identify maintenance needs for renewable energy infrastructure, preventing costly breakdowns and maximizing system lifespan. Data centers, which consume substantial amounts of energy, are prime candidates for AI-driven optimization. AI can analyze energy consumption patterns, identify inefficiencies, and recommend adjustments to cooling systems, server utilization, and power distribution. Predictive maintenance using AI can prevent equipment failures, reducing energy waste and downtime. Additionally, AI can optimize data placement and retrieval, minimizing energy consumption associated with data transfer. As AI transforms renewable energy and data center operations, modified Key Performance Indicators (KPIs) will emerge. Traditional metrics like energy efficiency and cost-per-megawatt-hour will continue to be relevant, but additional KPIs focused on AI's impact will be essential. These might include AI-driven cost savings, predictive accuracy of energy generation and consumption, and the reduction of carbon emissions attributed to AI-optimized operations. By tracking these KPIs, organizations can measure the success of their AI initiatives and identify areas for improvement. Ultimately, the synergy between AI, renewable energy, and data centers holds the potential to create a more sustainable and resilient future. By embracing these technologies, we can build smarter, greener, and more efficient systems that benefit both the environment and the economy.

Keywords: data center, artificial intelligence, renewable energy, energy efficiency, sustainability, optimization, predictive analytics, energy consumption, energy storage, grid management, data center optimization, key performance indicators, carbon emissions, resiliency

Procedia PDF Downloads 38
3769 An Artificially Intelligent Teaching-Agent to Enhance Learning Interactions in Virtual Settings

Authors: Abdulwakeel B. Raji

Abstract:

This paper introduces a concept of an intelligent virtual learning environment that involves communication between learners and an artificially intelligent teaching agent in an attempt to replicate classroom learning interactions. The benefits of this technology over current e-learning practices is that it creates a virtual classroom where real time adaptive learning interactions are made possible. This is a move away from the static learning practices currently being adopted by e-learning systems. Over the years, artificial intelligence has been applied to various fields, including and not limited to medicine, military applications, psychology, marketing etc. The purpose of e-learning applications is to ensure users are able to learn outside of the classroom, but a major limitation has been the inability to fully replicate classroom interactions between teacher and students. This study used comparative surveys to gain information and understanding of the current learning practices in Nigerian universities and how they compare to these practices compare to the use of a developed e-learning system. The study was conducted by attending several lectures and noting the interactions between lecturers and tutors and as an aftermath, a software has been developed that deploys the use of an artificial intelligent teaching-agent alongside an e-learning system to enhance user learning experience and attempt to create the similar learning interactions to those found in classroom and lecture hall settings. Dialogflow has been used to implement a teaching-agent, which has been developed using JSON, which serves as a virtual teacher. Course content has been created using HTML, CSS, PHP and JAVASCRIPT as a web-based application. This technology can run on handheld devices and Google based home technologies to give learners an access to the teaching agent at any time. This technology also implements the use of definite clause grammars and natural language processing to match user inputs and requests with defined rules to replicate learning interactions. This technology developed covers familiar classroom scenarios such as answering users’ questions, asking ‘do you understand’ at regular intervals and answering subsequent requests, taking advanced user queries to give feedbacks at other periods. This software technology uses deep learning techniques to learn user interactions and patterns to subsequently enhance user learning experience. A system testing has been undergone by undergraduate students in the UK and Nigeria on the course ‘Introduction to Database Development’. Test results and feedback from users shows that this study and developed software is a significant improvement on existing e-learning systems. Further experiments are to be run using the software with different students and more course contents.

Keywords: virtual learning, natural language processing, definite clause grammars, deep learning, artificial intelligence

Procedia PDF Downloads 137
3768 Overview of the CRM Market in Tunisia

Authors: Mohamed Amine Bouraoui

Abstract:

The aim of this paper is to realize the importance of a CRM approach, to detect the degree of awareness of Tunisian managers of this importance and analyse the degree of integration of CRM in the Tunisian companies. Initially, we focus on the definition and components of CRM, then we focus on the level of integration of CRM within Tunisian enterprises.

Keywords: CRM, operational tools, analytical tools, Tunisian company

Procedia PDF Downloads 425
3767 Bank Competition: On the Relationship with Revenue Diversification and Funding Strategy from Selected ASEAN Countries

Authors: Oktofa Y. Sudrajad, Didier V. Caillie

Abstract:

Association of Southeast Asian Countries Nations (ASEAN) is moving forward to the next level of regional integration by the initiation of ASEAN Economic Community (AEC) which is already started in 2015, 8 years after its declaration for the creation of AEC in 2007. This commitment imposes financial integration in the region is one of the main agenda which will be achieved until 2025. Therefore, the commitment to financial integration including banking integration will bring new landscape in the competition and business model in this region. This study investigates the effect of competition on bank business model using a sample of 324 banks from seven members of Association of Southeast Asian Nations (ASEAN) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam). We use market power approach and Boone indicator as competition measures, while income diversification and bank funding strategies are employed as bank business model representation. Moreover, we also evaluate bank business model based by grouping the banks based on the main banking characteristics. We use unbalanced bank-specific annual panel data over the period of 2003 – 2015. Our empirical analysis shows that the banking industries in ASEAN countries adapt their business model by increasing non-interest income proportion due to the level of competition increase in the sector.

Keywords: bank business model, banking competition, Boone indicator, market power

Procedia PDF Downloads 231
3766 Harnessing the Power of Large Language Models in Orthodontics: AI-Generated Insights on Class II and Class III Orthopedic Appliances: A Cross-Sectional Study

Authors: Laiba Amin, Rashna H. Sukhia, Mubassar Fida

Abstract:

Introduction: This study evaluates the accuracy of responses from ChatGPT, Google Bard, and Microsoft Copilot regarding dentofacial orthopedic appliances. As artificial intelligence (AI) increasingly enhances various fields, including healthcare, understanding its reliability in specialized domains like orthodontics becomes crucial. By comparing the accuracy of different AI models, this study aims to shed light on their effectiveness and potential limitations in providing technical insights. Materials and Methods: A total of 110 questions focused on dentofacial orthopedic appliances were posed to each AI model. The responses were then evaluated by five experienced orthodontists using a modified 5-point Likert scale to ensure a thorough assessment of accuracy. This structured approach allowed for consistent and objective rating, facilitating a meaningful comparison between the AI systems. Results: The results revealed that Google Bard demonstrated the highest accuracy at 74%, followed by Microsoft Copilot, with an accuracy of 72.2%. In contrast, ChatGPT was found to be the least accurate, achieving only 52.2%. These results highlight significant differences in the performance of the AI models when addressing orthodontic queries. Conclusions: Our study highlights the need for caution in relying on AI for orthodontic insights. The overall accuracy of the three chatbots was 66%, with Google Bard performing best for removable Class II appliances. Microsoft Copilot was more accurate than ChatGPT, which, despite its popularity, was the least accurate. This variability emphasizes the importance of human expertise in interpreting AI-generated information. Further research is necessary to improve the reliability of AI models in specialized healthcare settings.

Keywords: artificial intelligence, large language models, orthodontics, dentofacial orthopaedic appliances, accuracy assessment.

Procedia PDF Downloads 23
3765 The Characteristics of Transformation of Institutional Changes and Georgia

Authors: Nazira Kakulia

Abstract:

The analysis of transformation of institutional changes outlines two important characteristics. These are: the speed of the changes and their sequence. Successful transformation must be carried out in three different stages; On the first stage, macroeconomic stabilization must be achieved with the help of fiscal and monetary tools. Two-tier banking system should be established and the active functions of central bank should be replaced by the passive ones (reserve requirements and refinancing rate), together with the involvement growth of private sector. Fiscal policy by itself here means the creation of tax system which must replace previously existing direct state revenues; the share of subsidies in the state expenses must be reduced also. The second stage begins after reaching the macroeconomic stabilization at a time of change of formal institutes which must stimulate the private business. Corporate legislation creates a competitive environment at the market and the privatization of state companies takes place. Bankruptcy and contract law is created. he third stage is the most extended one, which means the formation of all state structures that is necessary for the further proper functioning of a market economy. These three stages about the cycle period of political and social transformation and the hierarchy of changes can also be grouped by the different methodology: on the first and the most short-term stage the transfer of power takes place. On the second stage institutions corresponding to new goal are created. The last phase of transformation is extended in time and it includes the infrastructural, socio-cultural and socio-structural changes. The main goal of this research is to explore and identify the features of such kind of models.

Keywords: competitive environment, fiscal policy, macroeconomic stabilization, tax system

Procedia PDF Downloads 268
3764 Business Strategy, Crisis and Digitalization

Authors: Flora Xu, Marta Fernandez Olmos

Abstract:

This article is mainly about critical assessment and comprehensive understanding of the business strategy in the post COVID-19 scenario. This study aims to elucidate how companies are responding to the unique challenges posed by the pandemic and how these measures are shaping the future of the business environment. The pandemic has exposed the fragility and flexibility of the global supply chain, and procurement and production strategies should be reconsidered. It should increase the diversity of suppliers and the flexibility of the supply chain, and some companies are considering transferring their survival to the local market. This can increase local employment and reduce international transportation disruptions and customs issues. By shortening the distance between production and market, companies can respond more quickly to changes in demand and unforeseen events. The demand for remote work and online solutions will increase the adoption of digital technology and accelerate the digital transformation of many organizations. Marketing and communication strategies need to adapt to a constantly changing environment. The business resilience strategy was emphasized as a key component of the response to the COVID-19. The company is seeking to strengthen its risk management capabilities and develop a business continuity plan to cope with future unexpected disruptions. The pandemic has reconfigured human resource practices and changed the way companies manage their employees. Remote work has become the norm, and companies focus on managing workers' health and well-being, as well as flexible work policies to ensure operations and support for employees during crises. This change in human resources practice has a lasting impact on how companies apply talent and labor management in the post COVID-19 world. The pandemic has prompted a significant review of business strategies as companies adapt to constantly changing environments and seek to ensure their sustainability and profitability in times of crisis. This strategic reassessment has led to product diversification, exploring international markets and adapting to the changing market. Companies have responded to the unprecedented challenges brought by the COVID-19. The COVID-19 has promoted innovation effort in key areas and focused on the responsibility in today's business strategy for sustainability and the importance of corporate society. The important challenge of formulating and implementing business strategies in uncertain times. These challenges include making quick and agile decisions in turbulent environments, risk management, and adaptability to constantly changing market conditions. The COVID-19 highlights the importance of strategic planning and informed decision-making - making in a business environment characterized by uncertainty and complexity. In short, the pandemic has reconfigured the way companies handle business strategies and emphasized the necessity of preparing for future challenges in a business world marked by uncertainty and complexity.

Keywords: business strategy, crisis, digitalization, uncertainty

Procedia PDF Downloads 24
3763 Improving Pneumatic Artificial Muscle Performance Using Surrogate Model: Roles of Operating Pressure and Tube Diameter

Authors: Van-Thanh Ho, Jaiyoung Ryu

Abstract:

In soft robotics, the optimization of fluid dynamics through pneumatic methods plays a pivotal role in enhancing operational efficiency and reducing energy loss. This is particularly crucial when replacing conventional techniques such as cable-driven electromechanical systems. The pneumatic model employed in this study represents a sophisticated framework designed to efficiently channel pressure from a high-pressure reservoir to various muscle locations on the robot's body. This intricate network involves a branching system of tubes. The study introduces a comprehensive pneumatic model, encompassing the components of a reservoir, tubes, and Pneumatically Actuated Muscles (PAM). The development of this model is rooted in the principles of shock tube theory. Notably, the study leverages experimental data to enhance the understanding of the interplay between the PAM structure and the surrounding fluid. This improved interactive approach involves the use of morphing motion, guided by a contraction function. The study's findings demonstrate a high degree of accuracy in predicting pressure distribution within the PAM. The model's predictive capabilities ensure that the error in comparison to experimental data remains below a threshold of 10%. Additionally, the research employs a machine learning model, specifically a surrogate model based on the Kriging method, to assess and quantify uncertainty factors related to the initial reservoir pressure and tube diameter. This comprehensive approach enhances our understanding of pneumatic soft robotics and its potential for improved operational efficiency.

Keywords: pneumatic artificial muscles, pressure drop, morhing motion, branched network, surrogate model

Procedia PDF Downloads 104