Search results for: materials design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17926

Search results for: materials design

1246 Inflation and Deflation of Aircraft's Tire with Intelligent Tire Pressure Regulation System

Authors: Masoud Mirzaee, Ghobad Behzadi Pour

Abstract:

An aircraft tire is designed to tolerate extremely heavy loads for a short duration. The number of tires increases with the weight of the aircraft, as it is needed to be distributed more evenly. Generally, aircraft tires work at high pressure, up to 200 psi (14 bar; 1,400 kPa) for airliners and higher for business jets. Tire assemblies for most aircraft categories provide a recommendation of compressed nitrogen that supports the aircraft’s weight on the ground, including a mechanism for controlling the aircraft during taxi, takeoff; landing; and traction for braking. Accurate tire pressure is a key factor that enables tire assemblies to perform reliably under high static and dynamic loads. Concerning ambient temperature change, considering the condition in which the temperature between the origin and destination airport was different, tire pressure should be adjusted and inflated to the specified operating pressure at the colder airport. This adjustment superseding the normal tire over an inflation limit of 5 percent at constant ambient temperature is required because the inflation pressure remains constant to support the load of a specified aircraft configuration. On the other hand, without this adjustment, a tire assembly would be significantly under/over-inflated at the destination. Due to an increase of human errors in the aviation industry, exorbitant costs are imposed on the airlines for providing consumable parts such as aircraft tires. The existence of an intelligent system to adjust the aircraft tire pressure based on weight, load, temperature, and weather conditions of origin and destination airports, could have a significant effect on reducing the aircraft maintenance costs, aircraft fuel and further improving the environmental issues related to the air pollution. An intelligent tire pressure regulation system (ITPRS) contains a processing computer, a nitrogen bottle with 1800 psi, and distribution lines. Nitrogen bottle’s inlet and outlet valves are installed in the main wheel landing gear’s area and are connected through nitrogen lines to main wheels and nose wheels assy. Controlling and monitoring of nitrogen will be performed by a computer, which is adjusted according to the calculations of received parameters, including the temperature of origin and destination airport, the weight of cargo loads and passengers, fuel quantity, and wind direction. Correct tire inflation and deflation are essential in assuring that tires can withstand the centrifugal forces and heat of normal operations, with an adequate margin of safety for unusual operating conditions such as rejected takeoff and hard landings. ITPRS will increase the performance of the aircraft in all phases of takeoff, landing, and taxi. Moreover, this system will reduce human errors, consumption materials, and stresses imposed on the aircraft body.

Keywords: avionic system, improve efficiency, ITPRS, human error, reduced cost, tire pressure

Procedia PDF Downloads 242
1245 Hydraulic Performance of Curtain Wall Breakwaters Based on Improved Moving Particle Semi-Implicit Method

Authors: Iddy Iddy, Qin Jiang, Changkuan Zhang

Abstract:

This paper addresses the hydraulic performance of curtain wall breakwaters as a coastal structure protection based on the particles method modelling. The hydraulic functions of curtain wall as wave barriers by reflecting large parts of incident waves through the vertical wall, a part transmitted and a particular part was dissipating the wave energies through the eddy flows formed beneath the lower end of the plate. As a Lagrangian particle, the Moving Particle Semi-implicit (MPS) method which has a robust capability for numerical representation has proven useful for design of structures application that concern free-surface hydrodynamic flow, such as wave breaking and overtopping. In this study, a vertical two-dimensional numerical model for the simulation of violent flow associated with the interaction between the curtain-wall breakwaters and progressive water waves is developed by MPS method in which a higher precision pressure gradient model and free surface particle recognition model were proposed. The wave transmission, reflection, and energy dissipation of the vertical wall were experimentally and theoretically examined. With the numerical wave flume by particle method, very detailed velocity and pressure fields around the curtain-walls under the action of waves can be computed in each calculation steps, and the effect of different wave and structural parameters on the hydrodynamic characteristics was investigated. Also, the simulated results of temporal profiles and distributions of velocity and pressure in the vicinity of curtain-wall breakwaters are compared with the experimental data. Herein, the numerical investigation of hydraulic performance of curtain wall breakwaters indicated that the incident wave is largely reflected from the structure, while the large eddies or turbulent flows occur beneath the curtain-wall resulting in big energy losses. The improved MPS method shows a good agreement between numerical results and analytical/experimental data which are compared to related researches. It is thus verified that the improved pressure gradient model and free surface particle recognition methods are useful for enhancement of stability and accuracy of MPS model for water waves and marine structures. Therefore, it is possible for particle method (MPS method) to achieve an appropriate level of correctness to be applied in engineering fields through further study.

Keywords: curtain wall breakwaters, free surface flow, hydraulic performance, improved MPS method

Procedia PDF Downloads 147
1244 The Clinical Effectiveness of Off-The-Shelf Foot Orthoses on the Dynamics of Gait in Patients with Early Rheumatoid Arthritis

Authors: Vicki Cameron

Abstract:

Background: Rheumatoid Arthritis (RA) typically effects the feet and about 20% of patients present initially with foot and ankle symptoms. Custom moulded foot orthoses (FO) in the management of foot and ankle problems in RA is well documented in the literature. Off-the-shelf FO are thought to provide an effective alternative to custom moulded FO in patients with RA, however they are not evidence based. Objectives: To determine the effects of off-the-shelf FO on; 1. quality of life (QOL) 2. walking speed 4. peak plantar pressure in the forefoot (PPPft) Methods: Thirty-five patients (six male and 29 female) participated in the study from 11/2006 to 07/2008. The age of the patients ranged from 26 to 80 years (mean 52.4 years; standard deviation [SD] 13.3 years). A repeated measures design was used, with patients presenting at baseline, three months and six months. Patients were tested walking barefoot, shod and shod with FO. The type of orthoses used was the Slimflex Plastic ® (Algeos). The Leeds Foot Impact Scale (LFIS) was used to investigate QOL. The Vicon 612 motion analysis system was used to determine the effect of FO on walking speed. The F-scan walkway and in-shoe systems provided information of the effect on PPPft. Ethical approval was obtained on 07/2006. Data was analysed using SPSS version 15.0. Results/Discussion: The LFIS data was analysed with a repeated measures ANOVA. There was a significant improvement in the LFIS score with the use of the FO over the six months (p<0.01). A significant increase in walking speed with the orthoses was observed (p<0.01). Peak plantar pressure in the forefoot was reduced with the FO, as shown by a non-parametric Friedman’s test (chi-square = 55.314, df=2, p<0.05). Conclusion: The results show that off-the-shelf FO are effective in managing foot problems in patients with RA. Patients reported an improved QOL with the orthoses, and further objective measurements were quantified to provide a rationale for this change. Patients demonstrated an increased walking speed, which has been shown to be associated with reduced pain. The FO decreased PPPft which have been reported as a site of pain and ulceration in patients with RA. Salient Clinical Points: Off-the-shelf FO offer an effective alternative to custom moulded FO, and can be dispensed at the chair side. This is crucial in the management of foot problems associated with RA as early intervention is advocated due to the chronic and progressive nature of the disease.

Keywords: podiatry, rheumatoid arthritis, foot orthoses, gait analysis

Procedia PDF Downloads 256
1243 LaeA/1-Velvet Interplay in Aspergillus and Trichoderma: Regulation of Secondary Metabolites and Cellulases

Authors: Razieh Karimi Aghcheh, Christian Kubicek, Joseph Strauss, Gerhard Braus

Abstract:

Filamentous fungi are of considerable economic and social significance for human health, nutrition and in white biotechnology. These organisms are dominant producers of a range of primary metabolites such as citric acid, microbial lipids (biodiesel) and higher unsaturated fatty acids (HUFAs). In particular, they produce also important but structurally complex secondary metabolites with enormous therapeutic applications in pharmaceutical industry, for example: cephalosporin, penicillin, taxol, zeranol and ergot alkaloids. Several fungal secondary metabolites, which are significantly relevant to human health do not only include antibiotics, but also e.g. lovastatin, a well-known antihypercholesterolemic agent produced by Aspergillus. terreus, or aflatoxin, a carcinogen produced by A. flavus. In addition to their roles for human health and agriculture, some fungi are industrially and commercially important: Species of the ascomycete genus Hypocrea spp. (teleomorph of Trichoderma) have been demonstrated as efficient producer of highly active cellulolytic enzymes. This trait makes them effective in disrupting and depolymerization of lignocellulosic materials and thus applicable tools in number of biotechnological areas as diverse as clothes-washing detergent, animal feed, and pulp and fuel productions. Fungal LaeA/LAE1 (Loss of aflR Expression A) homologs their gene products act at the interphase between secondary metabolisms, cellulase production and development. Lack of the corresponding genes results in significant physiological changes including loss of secondary metabolite and lignocellulose degrading enzymes production. At the molecular level, the encoded proteins are presumably methyltransferases or demethylases which act directly or indirectly at heterochromatin and interact with velvet domain proteins. Velvet proteins bind to DNA and affect expression of secondary metabolites (SMs) genes and cellulases. The dynamic interplay between LaeA/LAE1, velvet proteins and additional interaction partners is the key for an understanding of the coordination of metabolic and morphological functions of fungi and is required for a biotechnological control of the formation of desired bioactive products. Aspergilli and Trichoderma represent different biotechnologically significant species with significant differences in the LaeA/LAE1-Velvet protein machinery and their target proteins. We, therefore, performed a comparative study of the interaction partners of this machinery and the dynamics of the various protein-protein interactions using our robust proteomic and mass spectrometry techniques. This enhances our knowledge about the fungal coordination of secondary metabolism, cellulase production and development and thereby will certainly improve recombinant fungal strain construction for the production of industrial secondary metabolite or lignocellulose hydrolytic enzymes.

Keywords: cellulases, LaeA/1, proteomics, secondary metabolites

Procedia PDF Downloads 269
1242 Symptom Burden and Quality of Life in Advanced Lung Cancer Patients

Authors: Ammar Asma, Bouafia Nabiha, Dhahri Meriem, Ben Cheikh Asma, Ezzi Olfa, Chafai Rim, Njah Mansour

Abstract:

Despite recent advances in treatment of the lung cancer patients, the prognosis remains poor. Information is limited regarding health related quality of life (QOL) status of advanced lung cancer patients. The purposes of this study were: to assess patient reported symptom burden, to measure their QOL, and to identify determinant factors associated with QOL. Materials/Methods: A cross sectional study of 60 patients was carried out from over the period of 03 months from February 1st to 30 April 2016. Patients were recruited in two department of health care: Pneumology department in a university hospital in Sousse and an oncology unit in a University Hospital in Kairouan. Patients with advanced stage (III and IV) of lung cancer who were hospitalized or admitted in the day hospital were recruited by convenience sampling. We used a questionnaire administrated and completed by a trained interviewer. This questionnaire is composed of three parts: demographic, clinical and therapeutic information’s, QOL measurements: based on the SF-36 questionnaire, Symptom’s burden measurement using the Lung Cancer Symptom Scale (LCSS). To assess Correlation between symptoms burden and QOL, we compared the scores of two scales two by two using the Pearson correlation. To identify factors influencing QOL in Lung cancer, a univariate statistical analysis then, a stepwise backward approach, wherein the variables with p< 0.2, were carried out to determine the association between SF-36 scores and different variables. Results: During the study period, 60 patients consented to complete symptom and quality of life questionnaires at a single point time (72% were recruited from day hospital). The majority of patients were male (88%), age ranged from 21 to 79 years with a mean of 60.5 years. Among patients, 48 (80%) were diagnosed as having non-small cell lung carcinoma (NSCLC). Approximately, 60 % (n=36) of patients were in stage IV, 25 % in stage IIIa and 15 % in stage IIIb. For symptom burden, the symptom burden index was 43.07 (Standard Deviation, 21.45). Loss of appetite and fatigue were rated as the most severe symptoms with mean scores (SD): 49.6 (25.7) and 58.2 (15.5). The average overall score of SF36 was 39.3 (SD, 15.4). The physical and emotional limitations had the lowest scores. Univariate analysis showed that factors which influence negatively QOL were: married status (p<0.03), smoking cessation after diagnosis (p<0.024), LCSS total score (p<0.001), LCSS symptom burden index (p<0.001), fatigue (p<0.001), loss of appetite (p<0.001), dyspnea (p<0.001), pain (p<0.002), and metastatic stage (p<0.01). In multivariate analysis, unemployment (p<0.014), smoking cessation after diagnosis (p<0.013), consumption of analgesic (p<0.002) and the indication of an analgesic radiotherapy (p<0.001) are revealed as independent determinants of QOL. The result of the correlation analyses between total LCSS scores and the total and individual domain SF36 scores was significant (p<0.001); the higher total LCSS score is, the poorer QOL is. Conclusion: A built in support of lung cancer patients would better control the symptoms and promote the QOL of these patients.

Keywords: quality of life, lung cancer, metastasis, symptoms burden

Procedia PDF Downloads 378
1241 Alcohol and Soda Consumption of University Students in Manila

Authors: Alexi Colleen F. Lim, Inna Felicia I. Agoncillo, Quenniejoy T. Dizon, Jennifer Joyce T. Eti, Carlota Aileen H. Monares, Neil Roy B. Rosales, Joshua F. Santillan, Alyssa Francesca D. S. Tanchuling, Josefina A. Tuazon, Mary Joan Therese C. Valera-Kourdache

Abstract:

Majority of leading causes of mortality in the Philippines are NCDs, which are preventable through control of known risk factors such as smoking, obesity, physical inactivity, and alcohol. Sugar-sweetened beverages such as soda and energy drinks also contribute to NCD risk and are of concern particularly for youth. This study provides baseline data on beverage consumption of university students in Manila with the focus on alcohol and soda. It further aims to identify factors affecting consumption. Specific objectives include: (1) to describe beverage consumption practices of university students in Manila; and (2) to determine factors promoting excessive consumption of alcohol and soda including demographic characteristics, attitude, interpersonal and environmental variables. Methods: The study employed correlational design with randomly selected students from two universities in Manila. Students 18 years or older who agreed to participate were included after obtaining ethical clearance. The study had two instruments: (1) World Health Organization’s Alcohol Use Disorders Identification Test (AUDIT) was used with permission, to determine excessive alcohol consumption; and (2) a questionnaire to obtain information regarding soda and energy drink consumption. Results: Out of 400 students surveyed, 70% were female and 78.75% were 18-20 years old (mean=19.79; SD=3.76). Among them, 51.50% consumed alcohol, with 30.10% excessive drinkers. Soda consumption is 91.50% with 37.70% excessive consumers. For energy drinks, 36.75% consume this and only 4.76% drink excessively. Using logistic regression, students who were more likely to be excessive alcohol drinkers belonged to non-health courses (OR=2.21) and purchased alcohol from bars (OR=7.84). Less likely to drink excessively are students who do not drink due to stress (OR=0.05) and drink when it is accessible (OR=0.02). Excessive soda consumption was less likely for female students (OR=0.28), those who drink when it is accessible (OR=0.14), do not drink soda during stressful situations (OR=0.19), and do not use soda as hangover treatment (OR=0.15). Conclusion: Excessive alcohol consumption was greater among students in Manila (30.10%) than in US (20%). Drinking alcohol with friends was not related to excessive consumption but availability in bars was. It is expected that health sciences students are less likely to engage in excessive alcohol as they are more aware of its ill effects. Prevalence of soda consumption in Manila (91.50%) is markedly higher compared to 24.5% in the US. These findings can inform schools in developing appropriate health education interventions and policies. For greater understanding of these behaviors and factors, further studies are recommended to explore knowledge and other factors that may promote excessive consumption.

Keywords: alcohol consumption, beverage consumption, energy drinks consumption, soda consumption, university students

Procedia PDF Downloads 275
1240 Technology Assessment of the Collection of Cast Seaweed and Use as Feedstock for Biogas Production- The Case of SolrøD, Denmark

Authors: Rikke Lybæk, Tyge Kjær

Abstract:

The Baltic Sea is suffering from nitrogen and phosphorus pollution, which causes eutrophication of the maritime environment and hence threatens the biodiversity of the Baltic Sea area. The intensified quantity of nutrients in the water has created challenges with the growth of seaweed being discarded on beaches around the sea. The cast seaweed has led to odor problems hampering the use of beach areas around the Bay of Køge in Denmark. This is the case in, e.g., Solrød Municipality, where recreational activities have been disrupted when cast seaweed pile up on the beach. Initiatives have, however, been introduced within the municipality to remove the cast seaweed from the beach and utilize it for renewable energy production at the nearby Solrød Biogas Plant, thus being co-digested with animal manure for power and heat production. This paper investigates which type of technology application’s have been applied in the effort to optimize the collection of cast seaweed, and will further reveal, how the seaweed has been pre-treated at the biogas plant to be utilized for energy production the most efficient, hereunder the challenges connected with the content of sand. Heavy metal contents in the seaweed and how it is managed will also be addressed, which is vital as the digestate is utilized as soil fertilizer on nearby farms. Finally, the paper will outline the energy production scheme connected to the use of seaweed as feedstock for biogas production, as well as the amount of nitrogen-rich fertilizer produced. The theoretical approach adopted in the paper relies on the thinking of Circular Bio-Economy, where biological materials are cascaded and re-circulated etc., to increase and extend their value and usability. The data for this research is collected as part of the EU Interreg project “Cluster On Anaerobic digestion, environmental Services, and nuTrients removAL” (COASTAL Biogas), 2014-2020. Data gathering consists of, e.g., interviews with relevant stakeholders connected to seaweed collection and operation of the biogas plant in Solrød Municipality. It further entails studies of progress and evaluation reports from the municipality, analysis of seaweed digestion results from scholars connected to the research, as well as studies of scientific literature to supplement the above. Besides this, observations and photo documentation have been applied in the field. This paper concludes, among others, that the seaweed harvester technology currently adopted is functional in the maritime environment close to the beachfront but inadequate in collecting seaweed directly on the beach. New technology hence needs to be developed to increase the efficiency of seaweed collection. It is further concluded that the amount of sand transported to Solrød Biogas Plant with the seaweed continues to pose challenges. The seaweed is pre-treated for sand in a receiving tank with a strong stirrer, washing off the sand, which ends at the bottom of the tank where collected. The seaweed is then chopped by a macerator and mixed with the other feedstock. The wear down of the receiving tank stirrer and the chopper are, however, significant, and new methods should be adopted.

Keywords: biogas, circular bio-economy, Denmark, maritime technology, cast seaweed, solrød municipality

Procedia PDF Downloads 286
1239 Molecular Dynamics Simulation Study of Sulfonated Polybenzimidazole Polymers as Promising Forward Osmosis Membranes

Authors: Seyedeh Pardis Hosseini

Abstract:

With increased levels of clean and affordable water scarcity crises in many countries, wastewater treatment has been chosen as a viable method to produce freshwater for various consumptions. Even though reverse osmosis dominates the wastewater treatment market, forward osmosis (FO) processes have significant advantages, such as potentially using a renewable and low-grade energy source and improving water quality. FO is an osmotically driven membrane process that uses a high concentrated draw solution and a relatively low concentrated feed solution across a semi-permeable membrane. Among many novel FO membranes that have been introduced over the past decades, polybenzimidazole (PBI) membranes, a class of aromatic heterocyclic-based polymers, have shown high thermal and chemical stability because of their unique chemical structure. However, the studies reviewed indicate that the hydrophilicity of PBI membranes is comparatively low. Hence, there is an urgent need to develop novel FO membranes with modified PBI polymers to promote hydrophilicity. A few studies have been undertaken to improve the PBI hydrophilicity by fabricating mixed matrix polymeric membranes and surface modification. Thereby, in this study, two different sulfonated polybenzimidazole (SPBI) polymers with the same backbone but different functional groups, namely arylsulfonate PBI (PBI-AS) and propylsulfonate PBI (PBI-PS), are introduced as FO membranes and studied via the molecular dynamics (MD) simulation method. The FO simulation box consists of three distinct regions: a saltwater region, a membrane region, and a pure-water region. The pure-water region is situated at the upper part of the simulation box, while the saltwater region, which contains an aqueous salt solution of Na+ and Cl− ions along with water molecules, occupies the lower part of the simulation box. Specifically, the saltwater region includes 710 water molecules and 24 Na+ and 24 Cl− ions, resulting in a combined concentration of 10 weight percent (wt%). The pure-water region comprises 788 water molecules. Both the saltwater and pure-water regions have a density of 1.0 g/cm³. The membrane region, positioned between the saltwater and pure-water regions, is constructed from three types of polymers: PBI, PBI-AS, and PBI-PS, each consisting of three polymer chains with 30 monomers per chain. The structural and thermophysical properties of the polymers, water molecules, and Na+ and Cl− ions were analyzed using the COMPASS forcefield. All simulations were conducted using the BIOVIA Materials Studio 2020 software. By monitoring the variation in the number of water molecules over the simulation time within the saltwater region, the water permeability of the polymer membranes was calculated and subsequently compared. The results indicated that SPBI polymers exhibited higher water permeability compared to PBI polymers. This enhanced permeability can be attributed to the structural and compositional differences between SPBI and PBI polymers, which likely facilitate more efficient water transport through the membrane. Consequently, the adoption of SPBI polymers in the FO process is anticipated to result in significantly improved performance. This improvement could lead to higher water flux rates, better salt rejection, and overall more efficient use of resources in desalination and water purification applications.

Keywords: forward osmosis, molecular dynamics simulation, sulfonated polybenzimidazole, water permeability

Procedia PDF Downloads 20
1238 In silico Designing of Imidazo [4,5-b] Pyridine as a Probable Lead for Potent Decaprenyl Phosphoryl-β-D-Ribose 2′-Epimerase (DprE1) Inhibitors as Antitubercular Agents

Authors: Jineetkumar Gawad, Chandrakant Bonde

Abstract:

Tuberculosis (TB) is a major worldwide concern whose control has been exacerbated by HIV, the rise of multidrug-resistance (MDR-TB) and extensively drug resistance (XDR-TB) strains of Mycobacterium tuberculosis. The interest for newer and faster acting antitubercular drugs are more remarkable than any time. To search potent compounds is need and challenge for researchers. Here, we tried to design lead for inhibition of Decaprenyl phosphoryl-β-D-ribose 2′-epimerase (DprE1) enzyme. Arabinose is an essential constituent of mycobacterial cell wall. DprE1 is a flavoenzyme that converts decaprenylphosphoryl-D-ribose into decaprenylphosphoryl-2-keto-ribose, which is intermediate in biosynthetic pathway of arabinose. Latter, DprE2 converts keto-ribose into decaprenylphosphoryl-D-arabinose. We had a selection of 23 compounds from azaindole series for computational study, and they were drawn using marvisketch. Ligands were prepared using Maestro molecular modeling interface, Schrodinger, v10.5. Common pharmacophore hypotheses were developed by applying dataset thresholds to yield active and inactive set of compounds. There were 326 hypotheses were developed. On the basis of survival score, ADRRR (Survival Score: 5.453) was selected. Selected pharmacophore hypotheses were subjected to virtual screening results into 1000 hits. Hits were prepared and docked with protein 4KW5 (oxydoreductase inhibitor) was downloaded in .pdb format from RCSB Protein Data Bank. Protein was prepared using protein preparation wizard. Protein was preprocessed, the workspace was analyzed using force field OPLS 2005. Glide grid was generated by picking single atom in molecule. Prepared ligands were docked with prepared protein 4KW5 using Glide docking. After docking, on the basis of glide score top-five compounds were selected, (5223, 5812, 0661, 0662, and 2945) and the glide docking score (-8.928, -8.534, -8.412, -8.411, -8.351) respectively. There were interactions of ligand and protein, specifically HIS 132, LYS 418, TRY 230, ASN 385. Pi-pi stacking was observed in few compounds with basic Imidazo [4,5-b] pyridine ring. We had basic azaindole ring in parent compounds, but after glide docking, we received compounds with Imidazo [4,5-b] pyridine as a basic ring. That might be the new lead in the process of drug discovery.

Keywords: DprE1 inhibitors, in silico drug designing, imidazo [4, 5-b] pyridine, lead, tuberculosis

Procedia PDF Downloads 150
1237 Hypersonic Propulsion Requirements for Sustained Hypersonic Flight for Air Transportation

Authors: James Rate, Apostolos Pesiridis

Abstract:

In this paper, the propulsion requirements required to achieve sustained hypersonic flight for commercial air transportation are evaluated. In addition, a design methodology is developed and used to determine the propulsive capabilities of both ramjet and scramjet engines. Twelve configurations are proposed for hypersonic flight using varying combinations of turbojet, turbofan, ramjet and scramjet engines. The optimal configuration was determined based on how well each of the configurations met the projected requirements for hypersonic commercial transport. The configurations were separated into four sub-configurations each comprising of three unique derivations. The first sub-configuration comprised four afterburning turbojets and either one or two ramjets idealised for Mach 5 cruise. The number of ramjets required was dependent on the thrust required to accelerate the vehicle from a speed where the turbojets cut out to Mach 5 cruise. The second comprised four afterburning turbojets and either one or two scramjets, similar to the first configuration. The third used four turbojets, one scramjet and one ramjet to aid acceleration from Mach 3 to Mach 5. The fourth configuration was the same as the third, but instead of turbojets, it implemented turbofan engines for the preliminary acceleration of the vehicle. From calculations which determined the fuel consumption at incremental Mach numbers this paper found that the ideal solution would require four turbojet engines and two Scramjet engines. The ideal mission profile was determined as being an 8000km sortie based on an averaging of popular long haul flights with strong business ties, which included Los Angeles to Tokyo, London to New York and Dubai to Beijing. This paper deemed that these routes would benefit from hypersonic transport links based on the previously mentioned factors. This paper has found that this configuration would be sufficient for the 8000km flight to be completed in approximately two and a half hours and would consume less fuel than Concord in doing so. However, this propulsion configuration still result in a greater fuel cost than a conventional passenger. In this regard, this investigation contributes towards the specification of the engine requirements throughout a mission profile for a hypersonic passenger vehicle. A number of assumptions have had to be made for this theoretical approach but the authors believe that this investigation lays the groundwork for appropriate framing of the propulsion requirements for sustained hypersonic flight for commercial air transportation. Despite this, it does serve as a crucial step in the development of the propulsion systems required for hypersonic commercial air transportation. This paper provides a methodology and a focus for the development of the propulsion systems that would be required for sustained hypersonic flight for commercial air transportation.

Keywords: hypersonic, ramjet, propulsion, Scramjet, Turbojet, turbofan

Procedia PDF Downloads 315
1236 Bartlett Factor Scores in Multiple Linear Regression Equation as a Tool for Estimating Economic Traits in Broilers

Authors: Oluwatosin M. A. Jesuyon

Abstract:

In order to propose a simpler tool that eliminates the age-long problems associated with the traditional index method for selection of multiple traits in broilers, the Barttlet factor regression equation is being proposed as an alternative selection tool. 100 day-old chicks each of Arbor Acres (AA) and Annak (AN) broiler strains were obtained from two rival hatcheries in Ibadan Nigeria. These were raised in deep litter system in a 56-day feeding trial at the University of Ibadan Teaching and Research Farm, located in South-west Tropical Nigeria. The body weight and body dimensions were measured and recorded during the trial period. Eight (8) zoometric measurements namely live weight (g), abdominal circumference, abdominal length, breast width, leg length, height, wing length and thigh circumference (all in cm) were recorded randomly from 20 birds within strain, at a fixed time on the first day of the new week respectively with a 5-kg capacity Camry scale. These records were analyzed and compared using completely randomized design (CRD) of SPSS analytical software, with the means procedure, Factor Scores (FS) in stepwise Multiple Linear Regression (MLR) procedure for initial live weight equations. Bartlett Factor Score (BFS) analysis extracted 2 factors for each strain, termed Body-length and Thigh-meatiness Factors for AA, and; Breast Size and Height Factors for AN. These derived orthogonal factors assisted in deducing and comparing trait-combinations that best describe body conformation and Meatiness in experimental broilers. BFS procedure yielded different body conformational traits for the two strains, thus indicating the different economic traits and advantages of strains. These factors could be useful as selection criteria for improving desired economic traits. The final Bartlett Factor Regression equations for prediction of body weight were highly significant with P < 0.0001, R2 of 0.92 and above, VIF of 1.00, and DW of 1.90 and 1.47 for Arbor Acres and Annak respectively. These FSR equations could be used as a simple and potent tool for selection during poultry flock improvement, it could also be used to estimate selection index of flocks in order to discriminate between strains, and evaluate consumer preference traits in broilers.

Keywords: alternative selection tool, Bartlet factor regression model, consumer preference trait, linear and body measurements, live body weight

Procedia PDF Downloads 200
1235 Innovations and Challenges: Multimodal Learning in Cybersecurity

Authors: Tarek Saadawi, Rosario Gennaro, Jonathan Akeley

Abstract:

There is rapidly growing demand for professionals to fill positions in Cybersecurity. This is recognized as a national priority both by government agencies and the private sector. Cybersecurity is a very wide technical area which encompasses all measures that can be taken in an electronic system to prevent criminal or unauthorized use of data and resources. This requires defending computers, servers, networks, and their users from any kind of malicious attacks. The need to address this challenge has been recognized globally but is particularly acute in the New York metropolitan area, home to some of the largest financial institutions in the world, which are prime targets of cyberattacks. In New York State alone, there are currently around 57,000 jobs in the Cybersecurity industry, with more than 23,000 unfilled positions. The Cybersecurity Program at City College is a collaboration between the Departments of Computer Science and Electrical Engineering. In Fall 2020, The City College of New York matriculated its first students in theCybersecurity Master of Science program. The program was designed to fill gaps in the previous offerings and evolved out ofan established partnership with Facebook on Cybersecurity Education. City College has designed a program where courses, curricula, syllabi, materials, labs, etc., are developed in cooperation and coordination with industry whenever possible, ensuring that students graduating from the program will have the necessary background to seamlessly segue into industry jobs. The Cybersecurity Program has created multiple pathways for prospective students to obtain the necessary prerequisites to apply in order to build a more diverse student population. The program can also be pursued on a part-time basis which makes it available to working professionals. Since City College’s Cybersecurity M.S. program was established to equip students with the advanced technical skills needed to thrive in a high-demand, rapidly-evolving field, it incorporates a range of pedagogical formats. From its outset, the Cybersecurity program has sought to provide both the theoretical foundations necessary for meaningful work in the field along with labs and applied learning projects aligned with skillsets required by industry. The efforts have involved collaboration with outside organizations and with visiting professors designing new courses on topics such as Adversarial AI, Data Privacy, Secure Cloud Computing, and blockchain. Although the program was initially designed with a single asynchronous course in the curriculum with the rest of the classes designed to be offered in-person, the advent of the COVID-19 pandemic necessitated a move to fullyonline learning. The shift to online learning has provided lessons for future development by providing examples of some inherent advantages to the medium in addition to its drawbacks. This talk will address the structure of the newly-implemented Cybersecurity Master’s Program and discuss the innovations, challenges, and possible future directions.

Keywords: cybersecurity, new york, city college, graduate degree, master of science

Procedia PDF Downloads 142
1234 Modeling of the Fermentation Process of Enzymatically Extracted Annona muricata L. Juice

Authors: Calister Wingang Makebe, Wilson Agwanande Ambindei, Zangue Steve Carly Desobgo, Abraham Billu, Emmanuel Jong Nso, P. Nisha

Abstract:

Traditional liquid-state fermentation processes of Annona muricata L. juice can result in fluctuating product quality and quantity due to difficulties in control and scale up. This work describes a laboratory-scale batch fermentation process to produce a probiotic Annona muricata L. enzymatically extracted juice, which was modeled using the Doehlert design with independent extraction factors being incubation time, temperature, and enzyme concentration. It aimed at a better understanding of the traditional process as an initial step for future optimization. Annona muricata L. juice was fermented with L. acidophilus (NCDC 291) (LA), L. casei (NCDC 17) (LC), and a blend of LA and LC (LCA) for 72 h at 37 °C. Experimental data were fitted into mathematical models (Monod, Logistic and Luedeking and Piret models) using MATLAB software, to describe biomass growth, sugar utilization, and organic acid production. The optimal fermentation time was obtained based on cell viability, which was 24 h for LC and 36 h for LA and LCA. The model was particularly effective in estimating biomass growth, reducing sugar consumption, and lactic acid production. The values of the determination coefficient, R2, were 0.9946, 0.9913 and 0.9946, while the residual sum of square error, SSE, was 0.2876, 0.1738 and 0.1589 for LC, LA and LCA, respectively. The growth kinetic parameters included the maximum specific growth rate, µm, which was 0.2876 h-1, 0.1738 h-1 and 0.1589 h-1, as well as the substrate saturation, Ks, with 9.0680 g/L, 9.9337 g/L and 9.0709 g/L respectively for LC, LA and LCA. For the stoichiometric parameters, the yield of biomass based on utilized substrate (YXS) was 50.7932, 3.3940 and 61.0202, and the yield of product based on utilized substrate (YPS) was 2.4524, 0.2307 and 0.7415 for LC, LA, and LCA, respectively. In addition, the maintenance energy parameter (ms) was 0.0128, 0.0001 and 0.0004 with respect to LC, LA and LCA. With the kinetic model proposed by Luedeking and Piret for lactic acid production rate, the growth associated and non-growth associated coefficients were determined as 1.0028 and 0.0109, respectively. The model was demonstrated for batch growth of LA, LC, and LCA in Annona muricata L. juice. The present investigation validates the potential of Annona muricata L. based medium for heightened economical production of a probiotic medium.

Keywords: L. acidophilus, L. casei, fermentation, modelling, kinetics

Procedia PDF Downloads 63
1233 Prevention and Treatment of Hay Fever Prevalence by Natural Products: A Phytochemistry Study on India and Iran

Authors: Tina Naser Torabi

Abstract:

Prevalence of allergy is affected by different factors according to its base and seasonal weather changes, and it also needs various treatments.Although reasons of allergy existence are not clear but generally, allergens cause reaction between antigen and antibody because of their antigenic traits. In this state, allergens cause immune system to make mistake and identify safe material as threat, therefore function of immune system impaired because of histamine secretion. There are different reasons for allergy, but herbal reasons are on top of the list, although animal causes cannot be ignored. Important point is that allergenic compounds, cause making dedicated antibody, so in general every kind of allergy is different from the other one. Therefore, most of the plants in herbal allergenic category can cause various allergies for human beings, such as respiratory allergies, nutritional allergies, injection allergies, infection allergies, touch allergies, that each of them show different symptoms based on the reason of allergy and also each of them requires different prevention and treatment. Geographical condition is another effective factor in allergy. Seasonal changes, weather condition, herbal coverage variety play important roles in different allergies. It goes without saying that humid climate and herbal coverage variety in different seasons especially spring cause most allergies in human beings in Iran and India that are discussed in this article. These two countries are good choices for allergy prevalence because of their condition, various herbal coverage, human and animal factors. Hay fever is one of the allergies, although the reasons of its prevalence are unknown yet. It is one of the most popular allergies in Iran and India because of geographical, human, animal and herbal factors. Hay fever is on top of the list in these two countries. Significant point about these two countries is that herbal factor is the most important factor in prevalence of hay fever. Variety of herbal coverage especially in spring during herbal pollination is the main reason of hay fever prevalence in these two countries. Based on the research result of Pharmacognosy and Phytochemistry, pollination of some plants in spring is major reason of hay fever prevalence in these countries. If airborne pollens in pollination season enter the human body through air, they will cause allergic reactions in eyes, nasal mucosa, lungs, and respiratory system, and if these particles enter the body of potential person through food, they will cause allergic reactions in mouth, stomach, and other digestive systems. Occasionally, chemical materials produced by human body such as Histamine cause problems like: developing of nasal polyps, nasal blockage, sleep disturbance, risk of asthma developing, blood vasodilation, sneezing, eye tears, itching and swelling of eyes and nasal mucosa, Urticaria, decrease in blood pressure, and rarely trauma, anesthesia, anaphylaxis and finally death. This article is going to study the reasons of hay fever prevalence in Iran and India and presents prevention and treatment Method from Phytochemistry and Pharmocognocy point of view by using local natural products in these two countries.

Keywords: hay fever, India, Iran, natural treatment, phytochemistry

Procedia PDF Downloads 163
1232 A Novel Harmonic Compensation Algorithm for High Speed Drives

Authors: Lakdar Sadi-Haddad

Abstract:

The past few years study of very high speed electrical drives have seen a resurgence of interest. An inventory of the number of scientific papers and patents dealing with the subject makes it relevant. In fact democratization of magnetic bearing technology is at the origin of recent developments in high speed applications. These machines have as main advantage a much higher power density than the state of the art. Nevertheless particular attention should be paid to the design of the inverter as well as control and command. Surface mounted permanent magnet synchronous machine is the most appropriate technology to address high speed issues. However, it has the drawback of using a carbon sleeve to contain magnets that could tear because of the centrifugal forces generated in rotor periphery. Carbon fiber is well known for its mechanical properties but it has poor heat conduction. It results in a very bad evacuation of eddy current losses induce in the magnets by time and space stator harmonics. The three-phase inverter is the main harmonic source causing eddy currents in the magnets. In high speed applications such harmonics are harmful because on the one hand the characteristic impedance is very low and on the other hand the ratio between the switching frequency and that of the fundamental is much lower than that of the state of the art. To minimize the impact of these harmonics a first lever is to use strategy of modulation producing low harmonic distortion while the second is to introduce a sinus filter between the inverter and the machine to smooth voltage and current waveforms applied to the machine. Nevertheless, in very high speed machine the interaction of the processes mentioned above may introduce particular harmonics that can irreversibly damage the system: harmonics at the resonant frequency, harmonics at the shaft mode frequency, subharmonics etc. Some studies address these issues but treat these phenomena with separate solutions (specific strategy of modulation, active damping methods ...). The purpose of this paper is to present a complete new active harmonic compensation algorithm based on an improvement of the standard vector control as a global solution to all these issues. This presentation will be based on a complete theoretical analysis of the processes leading to the generation of such undesired harmonics. Then a state of the art of available solutions will be provided before developing the content of a new active harmonic compensation algorithm. The study will be completed by a validation study using simulations and practical case on a high speed machine.

Keywords: active harmonic compensation, eddy current losses, high speed machine

Procedia PDF Downloads 393
1231 Vision and Challenges of Developing VR-Based Digital Anatomy Learning Platforms and a Solution Set for 3D Model Marking

Authors: Gizem Kayar, Ramazan Bakir, M. Ilkay Koşar, Ceren U. Gencer, Alperen Ayyildiz

Abstract:

Anatomy classes are crucial for general education of medical students, whereas learning anatomy is quite challenging and requires memorization of thousands of structures. In traditional teaching methods, learning materials are still based on books, anatomy mannequins, or videos. This results in forgetting many important structures after several years. However, more interactive teaching methods like virtual reality, augmented reality, gamification, and motion sensors are becoming more popular since such methods ease the way we learn and keep the data in mind for longer terms. During our study, we designed a virtual reality based digital head anatomy platform to investigate whether a fully interactive anatomy platform is effective to learn anatomy and to understand the level of teaching and learning optimization. The Head is one of the most complicated human anatomy structures, with thousands of tiny, unique structures. This makes the head anatomy one of the most difficult parts to understand during class sessions. Therefore, we developed a fully interactive digital tool with 3D model marking, quiz structures, 2D/3D puzzle structures, and VR support so as to integrate the power of VR and gamification. The project has been developed in Unity game engine with HTC Vive Cosmos VR headset. The head anatomy 3D model has been selected with full skeletal, muscular, integumentary, head, teeth, lymph, and vein system. The biggest issue during the development was the complexity of our model and the marking of it in the 3D world system. 3D model marking requires to access to each unique structure in the counted subsystems which means hundreds of marking needs to be done. Some parts of our 3D head model were monolithic. This is why we worked on dividing such parts to subparts which is very time-consuming. In order to subdivide monolithic parts, one must use an external modeling tool. However, such tools generally come with high learning curves, and seamless division is not ensured. Second option was to integrate tiny colliders to all unique items for mouse interaction. However, outside colliders which cover inner trigger colliders cause overlapping, and these colliders repel each other. Third option is using raycasting. However, due to its own view-based nature, raycasting has some inherent problems. As the model rotate, view direction changes very frequently, and directional computations become even harder. This is why, finally, we studied on the local coordinate system. By taking the pivot point of the model into consideration (back of the nose), each sub-structure is marked with its own local coordinate with respect to the pivot. After converting the mouse position to the world position and checking its relation with the corresponding structure’s local coordinate, we were able to mark all points correctly. The advantage of this method is its applicability and accuracy for all types of monolithic anatomical structures.

Keywords: anatomy, e-learning, virtual reality, 3D model marking

Procedia PDF Downloads 97
1230 Single Cell Oil of Oleaginous Fungi from Lebanese Habitats as a Potential Feed Stock for Biodiesel

Authors: M. El-haj, Z. Olama, H. Holail

Abstract:

Single cell oils (SCOs) accumulated by oleaginous fungi have emerged as a potential alternative feedstock for biodiesel production. Five fungal strains were isolated from the Lebanese environment namely Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger that have been selected among 39 oleaginous strains for their potential ability to accumulate lipids (lipid content was more than 40% on dry weight basis). Wide variations were recorded in the environmental factors that lead to maximum lipid production by fungi under test and were cultivated under submerged fermentation on medium containing glucose as a carbon source. The maximum lipid production was attained within 6-8 days, at pH range 6-7, 24 to 48 hours age of seed culture, 4 to 6.107 spores/ml inoculum level and 100 ml culture volume. Eleven culture conditions were examined for their significance on lipid production using Plackett-Burman factorial design. Reducing sugars and nitrogen source were the most significant factors affecting lipid production process. Maximum lipid yield was noticed with 15.62, 14.48, 12.75, 13.68 and 20.41g/l for Fusarium oxysporum, Mucor hiemalis, Penicillium citrinum, Aspergillus tamari, and Aspergillus niger respectively. A verification experiment was carried out to examine model validation and revealed more than 94% validity. The profile of extracted lipids from each fungal isolate was studied using thin layer chromatography (TLC) indicating the presence of monoacylglycerols, diaacylglycerols, free fatty acids, triacylglycerols and sterol esters. The fatty acids profiles were also determined by gas-chromatography coupled with flame ionization detector (GC-FID). Data revealed the presence of significant amount of oleic acid (29-36%), palmitic acid (18-24%), linoleic acid (26.8-35%), and low amount of other fatty acids in the extracted fungal oils which indicate that the fatty acid profiles were quite similar to that of conventional vegetable oil. The cost of lipid production could be further reduced with acid-pretreated lignocellulotic corncob waste, whey and date molasses to be utilized as the raw material for the oleaginous fungi. The results showed that the microbial lipid from the studied fungi was a potential alternative resource for biodiesel production.

Keywords: agro-industrial waste products, biodiesel, fatty acid, single cell oil, Lebanese environment, oleaginous fungi

Procedia PDF Downloads 402
1229 Into the Dreamweaver’s World of the Mandaya and the Tboli: From Folklore to the Woven Fabric

Authors: Genevieve Jorolan Quintero

Abstract:

In Mindanao, the southern island of the Philippines, two provinces, Davao Oriental and Tboli of South Cotabato, respectively, are homes to indigenous communities known for their dream weavers. Davao Oriental is home to the Mandaya, while Lake Sebu is home to the Tboli. The dream weavers are mostly women who have continued the tradition of weaving, a spiritual practice of handicraft embodying the beliefs of the community. It is believed that a weaver is guided by the Tagamaling, or the nature spirit in Mandaya mythology, and Fu Dalu, or the spirit of the abaca among the Tboli. In the dream, the Tagamaling or Fu Dalu reveals to the weaver the design or the pattern of the dagmay as the abaca woven cloth is called among the Mandaya and the tnalak among the Tboli. The weaver then undertakes the production of this nature-spirit-inspired fabric based on her memory of the dream. This interaction between the spirit world and the human world inspired the theme of the short story with the title Loom of Dreams, published in 2015 by Kritika Kultura, an international peer-reviewed journal of language and literary/cultural studies of the Ateneo de Manila University in the Philippines. In Lake Sebu, a collection of the legendary tnalak with various designs is preserved by the cultural advocate and tnalak collector Reden S. Ulo. About a hundred tnalak designs are housed in a mini museum. The paper discusses how the dagmay and the tnalak of the two Philippine indigenous communities, the Mandaya and the Tboli, embody their folklore and cultural heritage. The specific objectives are: 1. To describe the role of the dreamweavers among the Mandaya and Tboli communities in the Philippines; 2. To analyse how folklore influences the designs on the woven fabric, the dagmay, and the tnalak, and 3. To discuss how dream-weaving helps preserve culture legacy. Ethnography was used in the conduct of this research. Specifically, the following data collection methods were done: 1. a series of visits to the Mandaya and Tboli communities; 2. face-to-face interviews with the respondents from the communities, and 3. the recording of the interviews with the knowledge-bearers and material culture keepers from both communities, the narratives of which were used as a basis for the data analysis. The influence of folklore in the culture and the arts of the indigenous communities is significantly evident in the designs of the dagmay and the tnalak. As the dream weavers continue to weave the dagmay and the tnalak, this cultural legacy will continue to prosper and be preserved for posterity.

Keywords: dreamweaver's, Mandaya, mindanao, Philippine folklore, Tboli

Procedia PDF Downloads 95
1228 Validation of an Educative Manual for Patients with Breast Cancer Submitted to Radiation Therapy

Authors: Flavia Oliveira de A. M. Cruz, Edison Tostes Faria, Paula Elaine D. Reis

Abstract:

When the breast is submitted to radiation therapy (RT), the most common effects are pain, skin changes, mobility restrictions, local sensory alteration, and fatigue. These effects, if not managed properly, may reduce the quality of life of cancer patients and may lead to the treatment discontinuation. Therefore, promoting knowledge and guidelines for symptom management remain a high priority for patients and a challenge for health professionals, due to the need to handle side effects in a population with a life-threatening disease. Printed materials are important strategies for supporting educative activities since they help the individual to assimilate and understand the amount of information transmitted. Nurses' behavior can be systematized through the use of an educative manual, which may be effective in promoting information regarding the treatment, self-care and how to control the effects of RT at home. In view of the importance of guaranteeing the validity of the material before its use, the objective of this research was to validate the content and appearance of an educative manual for breast cancer patients undergoing RT. The Theory of Psychometrics was used for the validation process in this descriptive methodological research. A minimum agreement rate (AR) of 80% was considered to guarantee the validity of the material. The data were collected from October to December 2017, by means of two assessments tools, constructed in the form of a Likert scale, with five levels of understanding. These instruments addressed different aspects of the evaluation, in view of two different groups of participants; 17 experts in the theme area of the educative manual, and 12 women that received RT previously to treat breast cancer. The manual was titled 'Orientation Manual: radiation therapy in breast', and was focused on breast cancer patients attended at the Department of Oncology of the Brasília University Hospital (UNACON/HUB). The research project was submitted to the Research Ethics Committee at the School of Health Sciences of the University of Brasília (CAAE: 24592213.1.0000.0030). Only two items of the assessment tool for the experts, one related to the manual's ability to promote behavioral and attitude changes and the other related to the extent of its use for other health services, obtained AR < 80% and were reformulated based on the participants' suggestions and in the literature. All other items were considered appropriate and/or complete appropriate in the three blocks proposed for the experts: objectives - 89%, structure and form - 93%, and relevance - 93%; and good and/or very good in the five blocks of analysis proposed for patients: objectives - 100%, organization - 100%, writing style - 100%, appearance - 100%, and motivation. The appearance and content validation of the educative manual proposed were attended to. The educative manual was considered relevant and pertinent and may contribute to the understanding of the therapeutic process by breast cancer patients during RT, as well as support clinical practice through the nursing consultation.

Keywords: oncology nursing, nursing care, validation studies, educational technology

Procedia PDF Downloads 122
1227 Production and Characterization of Biochars from Torrefaction of Biomass

Authors: Serdar Yaman, Hanzade Haykiri-Acma

Abstract:

Biomass is a CO₂-neutral fuel that is renewable and sustainable along with having very huge global potential. Efficient use of biomass in power generation and production of biomass-based biofuels can mitigate the greenhouse gasses (GHG) and reduce dependency on fossil fuels. There are also other beneficial effects of biomass energy use such as employment creation and pollutant reduction. However, most of the biomass materials are not capable of competing with fossil fuels in terms of energy content. High moisture content and high volatile matter yields of biomass make it low calorific fuel, and it is very significant concern over fossil fuels. Besides, the density of biomass is generally low, and it brings difficulty in transportation and storage. These negative aspects of biomass can be overcome by thermal pretreatments that upgrade the fuel property of biomass. That is, torrefaction is such a thermal process in which biomass is heated up to 300ºC under non-oxidizing conditions to avoid burning of the material. The treated biomass is called as biochar that has considerably lower contents of moisture, volatile matter, and oxygen compared to the parent biomass. Accordingly, carbon content and the calorific value of biochar increase to the level which is comparable with that of coal. Moreover, hydrophilic nature of untreated biomass that leads decay in the structure is mostly eliminated, and the surface properties of biochar turn into hydrophobic character upon torrefaction. In order to investigate the effectiveness of torrefaction process on biomass properties, several biomass species such as olive milling residue (OMR), Rhododendron (small shrubby tree with bell-shaped flowers), and ash tree (timber tree) were chosen. The fuel properties of these biomasses were analyzed through proximate and ultimate analyses as well as higher heating value (HHV) determination. For this, samples were first chopped and ground to a particle size lower than 250 µm. Then, samples were subjected to torrefaction in a horizontal tube furnace by heating from ambient up to temperatures of 200, 250, and 300ºC at a heating rate of 10ºC/min. The biochars obtained from this process were also tested by the methods applied to the parent biomass species. Improvement in the fuel properties was interpreted. That is, increasing torrefaction temperature led to regular increases in the HHV in OMR, and the highest HHV (6065 kcal/kg) was gained at 300ºC. Whereas, torrefaction at 250ºC was seen optimum for Rhododendron and ash tree since torrefaction at 300ºC had a detrimental effect on HHV. On the other hand, the increase in carbon contents and reduction in oxygen contents were determined. Burning characteristics of the biochars were also studied using thermal analysis technique. For this purpose, TA Instruments SDT Q600 model thermal analyzer was used and the thermogravimetric analysis (TGA), derivative thermogravimetry (DTG), differential scanning calorimetry (DSC), and differential thermal analysis (DTA) curves were compared and interpreted. It was concluded that torrefaction is an efficient method to upgrade the fuel properties of biomass and the biochars from which have superior characteristics compared to the parent biomasses.

Keywords: biochar, biomass, fuel upgrade, torrefaction

Procedia PDF Downloads 371
1226 Mother Tongues and the Death of Women: Applying Feminist Theory to Historically, Linguistically, and Philosophically Contextualize the Current Abortion Debate in Bolivia

Authors: Jennifer Zelmer

Abstract:

The debate regarding the morality, and therefore legality, of abortion has many social, political, and medical ramifications worldwide. In a developing country like Bolivia, carrying a pregnancy to delivery is incredibly risky. Given the very high maternal mortality rate in Bolivia, greater consideration has been given to the (de)criminalization of abortion – a contributing cause of maternal death. In the spring of 2017, the Bolivian government proposed to loosen restrictions on women’s access to receiving a safe abortion, which was met with harsh criticism from 'pro-vida' (pro-life) factions. Although the current Bolivian government Movimiento al Socialismo (Movement Toward Socialism) portrays an agenda of decolonization, or to seek a 'traditionally-modern' society, nevertheless, Bolivia still has one of the highest maternal mortality rates in the Americas, because of centuries of colonial and patriarchal order. Applying a feminist critique and using the abortion debate as the central point, this paper argues that the 'traditionally-modern' society Bolivia strives towards is a paradox, and in fact only contributes to the reciprocal process of the death of 'mother tongues' and the unnecessary death of women. This claim is supported by a critical analysis of historical texts about Spanish Colonialism in Bolivia; the linguistic reality of reproductive educational strategies, and the philosophical framework which the Bolivian government and its citizens implement. This analysis is demonstrated in the current state of women’s access to reproductive healthcare in Cochabamba, Bolivia based on recent fieldwork which included audits of clinics and hospitals, interviews, and participant observation. This paper has two major findings: 1) the language used by opponents of abortion in Bolivia is not consistent with the claim of being 'pro-life' but more accurately with being 'pro-potential'; 2) when the topic of reproductive health appears in Cochabamba, Bolivia, it is often found written in the Spanish language, and does not cater to the many indigenous communities that inhabit or visit this city. Finally, this paper considers the crucial role of public health documentation to better inform the abortion debate, as well as the necessity of expanding reproductive health information to more than text-based materials in Cochabamba. This may include more culturally appropriate messages and mediums that cater to the oral tradition of the indigenous communities, who historically and currently have some of the highest fertility rates. If the objective of one who opposes abortion is to save human lives, then preventing the death of women should equally be of paramount importance. But rather, the 'pro-life' movement in Bolivia is willing to risk the lives of to-be mothers, by judicial punishment or death, for the chance of a potential baby. Until abortion is fully legal, safe, and accessible, there will always be the vestiges of colonial and patriarchal order in Bolivia which only perpetuates the needless death of women.

Keywords: abortion, feminist theory, Quechua, reproductive health education

Procedia PDF Downloads 161
1225 OBD-Biofertilizer Impact on Crop Yield and Soil Quality in Lowland Rice Production, Badeggi, Niger State, Nigeria

Authors: Ayodele A. Otaiku

Abstract:

Purpose: Nigeria has become the largest importer of rice in Africa and second in the world, 2015. Investigate interactions of organic rice farming on soil quality and health from bio-waste converted to biofertilizer and its environmental impact on rice crop. Methodology: Bio-wastes, poultry waste, organic agriculture wastes, wood ash mixed with microbial inoculant organisms called OBD-Plus microbes (broad spectrum) composted in anaerobic digester to OBD-biofertilizer (2010 - 2012) uses microbes to build humus and other stable carbons. Two field experiments were carried out at Badeggi, Niger state in 2011 and 2012 to evaluate the response of lowland rice production using biofertilizer. The experimental field was laid out in a strip-plot design with five treatments and three replications and at twenty-one day old seedlings of FARO 44 and FARO 52 rice varieties were transplanted. Plots without fertiliser application served as control. Findings: The highest rice grain yield increase of 4.4 t/ha over the control in 2012 against the Nigeria average of lowland rice grain yields of 1.5 t/ha. The utilization of OBD-Biofertilizer can decrease the use of chemical nitrogen fertilizer, prevent the depletion of soil organic matter and reduce environmental pollution. Increasing the floodwater productivity and optimizing the recycling of nutrients cum grazer populations and disease by biocontrols microbes present in the OBD-Biofertilizer. Organic matter in the soil improves by 58% and C/N 15 (2011) and 13.35 (2012). Implications: OBD- Biofertilizer produce plant growth hormones such as indole acetic acid (IAA), glomalin related soil protein and extracellular enzymes as phosphatases that promote soil health and quality. Conclusion: Microorganisms can enhance nutrients use efficiency by increasing root surface area e.g., mycorrhizal, fungi, promoting other beneficial symbioses of the host plant and microbial interactions resulting to increase in soil organic matter. By 2030, climate change is projected to depress cereal production in Africa by 2 to 3 percent. Improved seeds and increased fertilizer use should more than compensate, but this factor will still weigh heavily on efforts to make progress.

Keywords: OBD-plus microbial consortia, OBD-biofertilizer, rice production, soil quality, sustainable agriculture

Procedia PDF Downloads 265
1224 Flexural Performance of the Sandwich Structures Having Aluminum Foam Core with Different Thicknesses

Authors: Emre Kara, Ahmet Fatih Geylan, Kadir Koç, Şura Karakuzu, Metehan Demir, Halil Aykul

Abstract:

The structures obtained with the use of sandwich technologies combine low weight with high energy absorbing capacity and load carrying capacity. Hence, there is a growing and markedly interest in the use of sandwiches with aluminium foam core because of very good properties such as flexural rigidity and energy absorption capability. The static (bending and penetration) and dynamic (dynamic bending and low velocity impact) tests were already performed on the aluminum foam cored sandwiches with different types of outer skins by some of the authors. In the current investigation, the static three-point bending tests were carried out on the sandwiches with aluminum foam core and glass fiber reinforced polymer (GFRP) skins at different values of support span distances (L= 55, 70, 80, 125 mm) aiming the analyses of their flexural performance. The influence of the core thickness and the GFRP skin type was reported in terms of peak load, energy absorption capacity and energy efficiency. For this purpose, the skins with two different types of fabrics ([0°/90°] cross ply E-Glass Woven and [0°/90°] cross ply S-Glass Woven which have same thickness value of 1.5 mm) and the aluminum foam core with two different thicknesses (h=10 and 15 mm) were bonded with a commercial polyurethane based flexible adhesive in order to combine the composite sandwich panels. The GFRP skins fabricated via Vacuum Assisted Resin Transfer Molding (VARTM) technique used in the study can be easily bonded to the aluminum foam core and it is possible to configure the base materials (skin, adhesive and core), fiber angle orientation and number of layers for a specific application. The main results of the bending tests are: force-displacement curves, peak force values, absorbed energy, energy efficiency, collapse mechanisms and the effect of the support span length and core thickness. The results of the experimental study showed that the sandwich with the skins made of S-Glass Woven fabrics and with the thicker foam core presented higher mechanical values such as load carrying and energy absorption capacities. The increment of the support span distance generated the decrease of the mechanical values for each type of panels, as expected, because of the inverse proportion between the force and span length. The most common failure types of the sandwiches are debonding of the upper or lower skin and the core shear. The obtained results have particular importance for applications that require lightweight structures with a high capacity of energy dissipation, such as the transport industry (automotive, aerospace, shipbuilding and marine industry), where the problems of collision and crash have increased in the last years.

Keywords: aluminum foam, composite panel, flexure, transport application

Procedia PDF Downloads 332
1223 Private Coded Computation of Matrix Multiplication

Authors: Malihe Aliasgari, Yousef Nejatbakhsh

Abstract:

The era of Big Data and the immensity of real-life datasets compels computation tasks to be performed in a distributed fashion, where the data is dispersed among many servers that operate in parallel. However, massive parallelization leads to computational bottlenecks due to faulty servers and stragglers. Stragglers refer to a few slow or delay-prone processors that can bottleneck the entire computation because one has to wait for all the parallel nodes to finish. The problem of straggling processors, has been well studied in the context of distributed computing. Recently, it has been pointed out that, for the important case of linear functions, it is possible to improve over repetition strategies in terms of the tradeoff between performance and latency by carrying out linear precoding of the data prior to processing. The key idea is that, by employing suitable linear codes operating over fractions of the original data, a function may be completed as soon as enough number of processors, depending on the minimum distance of the code, have completed their operations. The problem of matrix-matrix multiplication in the presence of practically big sized of data sets faced with computational and memory related difficulties, which makes such operations are carried out using distributed computing platforms. In this work, we study the problem of distributed matrix-matrix multiplication W = XY under storage constraints, i.e., when each server is allowed to store a fixed fraction of each of the matrices X and Y, which is a fundamental building of many science and engineering fields such as machine learning, image and signal processing, wireless communication, optimization. Non-secure and secure matrix multiplication are studied. We want to study the setup, in which the identity of the matrix of interest should be kept private from the workers and then obtain the recovery threshold of the colluding model, that is, the number of workers that need to complete their task before the master server can recover the product W. The problem of secure and private distributed matrix multiplication W = XY which the matrix X is confidential, while matrix Y is selected in a private manner from a library of public matrices. We present the best currently known trade-off between communication load and recovery threshold. On the other words, we design an achievable PSGPD scheme for any arbitrary privacy level by trivially concatenating a robust PIR scheme for arbitrary colluding workers and private databases and the proposed SGPD code that provides a smaller computational complexity at the workers.

Keywords: coded distributed computation, private information retrieval, secret sharing, stragglers

Procedia PDF Downloads 119
1222 Meeting the Energy Balancing Needs in a Fully Renewable European Energy System: A Stochastic Portfolio Framework

Authors: Iulia E. Falcan

Abstract:

The transition of the European power sector towards a clean, renewable energy (RE) system faces the challenge of meeting power demand in times of low wind speed and low solar radiation, at a reasonable cost. This is likely to be achieved through a combination of 1) energy storage technologies, 2) development of the cross-border power grid, 3) installed overcapacity of RE and 4) dispatchable power sources – such as biomass. This paper uses NASA; derived hourly data on weather patterns of sixteen European countries for the past twenty-five years, and load data from the European Network of Transmission System Operators-Electricity (ENTSO-E), to develop a stochastic optimization model. This model aims to understand the synergies between the four classes of technologies mentioned above and to determine the optimal configuration of the energy technologies portfolio. While this issue has been addressed before, it was done so using deterministic models that extrapolated historic data on weather patterns and power demand, as well as ignoring the risk of an unbalanced grid-risk stemming from both the supply and the demand side. This paper aims to explicitly account for the inherent uncertainty in the energy system transition. It articulates two levels of uncertainty: a) the inherent uncertainty in future weather patterns and b) the uncertainty of fully meeting power demand. The first level of uncertainty is addressed by developing probability distributions for future weather data and thus expected power output from RE technologies, rather than known future power output. The latter level of uncertainty is operationalized by introducing a Conditional Value at Risk (CVaR) constraint in the portfolio optimization problem. By setting the risk threshold at different levels – 1%, 5% and 10%, important insights are revealed regarding the synergies of the different energy technologies, i.e., the circumstances under which they behave as either complements or substitutes to each other. The paper concludes that allowing for uncertainty in expected power output - rather than extrapolating historic data - paints a more realistic picture and reveals important departures from results of deterministic models. In addition, explicitly acknowledging the risk of an unbalanced grid - and assigning it different thresholds - reveals non-linearity in the cost functions of different technology portfolio configurations. This finding has significant implications for the design of the European energy mix.

Keywords: cross-border grid extension, energy storage technologies, energy system transition, stochastic portfolio optimization

Procedia PDF Downloads 164
1221 Community Based Psychosocial Intervention Reduces Maternal Depression and Infant Development in Bangladesh

Authors: S. Yesmin, N. F.Rahman, R. Akther, T. Begum, T. Tahmid, T. Chowdury, S. Afrin, J. D. Hamadani

Abstract:

Abstract: Maternal depression is one of the risk factors of developmental delay in young children in low-income countries. Maternal depressions during pregnancy are rarely reported in Bangladesh. Objectives: The purpose of the present study was to examine the efficacy of a community based psychosocial intervention on women with mild to moderate depressive illness during the perinatal period and on their children from birth to 12 months on mothers’ mental status and their infants’ growth and development. Methodology: The study followed a prospective longitudinal approach with a randomized controlled design. Total 250 pregnant women aged between 15 and 40 years were enrolled in their third trimester of pregnancy of which 125 women were in the intervention group and 125 in the control group. Women in the intervention group received the “Thinking Healthy (CBT based) program” at their home setting, from their last month of pregnancy till 10 months after delivery. Their children received psychosocial stimulation from birth till 12 months. The following instruments were applied to get the outcome information- Bangla version of Edinburgh Postnatal Depression Scale (BEPDS), Prenatal Attachment Inventory (PAI), Maternal Attachment Inventory (MAI), Bayley Scale of Infant Development-Third version (Bayley–III) and Family Care Indicator (FCI). In addition, sever morbidity; breastfeeding, immunization, socio-economic and demographic information were collected. Data were collected at three time points viz. baseline, midline (6 months after delivery) and endline (12 months after delivery). Results: There was no significant difference between any of the socioeconomic and demographic variables at baseline. A very preliminary analysis of the data shows an intervention effect on Socioemotional behaviour of children at endline (p<0.001), motor development at midline (p=0.016) and at endline (p=0.065), language development at midline (p=0.004) and at endline (p=0.023), cognitive development at midline (p=0.008) and at endline (p=0.002), and quality of psychosocial stimulation at midline (p=0.023) and at endline (p=0.010). EPDS at baseline was not different between the groups (p=0.419), but there was a significant improvement at midline (p=0.027) and at endline (p=0.024) between the groups following the intervention. Conclusion: Psychosocial intervention is found effective in reducing women’s low and moderate depressive illness to cope with mental health problem and improving development of young children in Bangladesh.

Keywords: mental health, maternal depression, infant development, CBT, EPDS

Procedia PDF Downloads 270
1220 Dynamic Changes in NT-proBNP Levels in Unrelated Donors during Hematopoietic Stem Cells Mobilization

Authors: Natalia V. Minaeva, Natalia A. Zorina, Marina N. Khorobrikh, Philipp S. Sherstnev, Tatiana V. Krivokorytova, Alexander S. Luchinin, Maksim S. Minaev, Igor V. Paramonov

Abstract:

Background. Over the last few decades, the Center for International Blood and Marrow Transplant Research (CIBMTR) and the World Marrow Donor Association (WMDA) have been actively working to ensure the safety of the hematopoietic stem cell (HSC) donation process. Registration of adverse events that may occur during the donation period and establishing a relationship between donation and side effects are included in the WMDA international standards. The level of blood serum N-terminal pro-brain natriuretic peptide (NT-proBNP) is an early marker of myocardial stress. Due to the high analytical sensitivity and specificity, laboratory assessment of NT-proBNP makes it possible to objectively diagnose myocardial dysfunction. It is well known that the main stimulus for proBNP synthesis and secretion from atrial and ventricular cardiac myocytes is myocyte stretch and increasement of myocardial extensibility and pressure in the heart chambers. Аim. The aim of the study was to assess the dynamic changes in the levels of blood serum N-terminal pro-brain natriuretic peptide of unrelated donors at various stages of hematopoietic stem cell mobilization. Materials. We have examined 133 unrelated donors, including 92 men and 41 women, that have been included into the study. The NT-proBNP levels were measured before the start of mobilization, then on the day of apheresis, and after the donation of allogeneic HSC. The relationship between NT-proBNP levels and body mass index (BMI), ferritin, hemoglobin, and white blood cells (WBC) levels was assessed on the day of apheresis. The median age of donors was 34 years. Mobilization of HSCs was managed with filgrastim administration at a dose of 10 μg/kg daily for 4-5 days. The first leukocytapheresis was performed on day 4 from the start of filgrastim administration. Quantitative values of the blood serum NT-proBNP level are presented as a median (Me), first and third quartiles (Q1-Q3). Comparative analysis was carried out using the t-test and correlation analysis as well by Spearman method. Results. The baseline blood serum NT-proBNP levels in all 133 donors were within the reference values (<125 pg/ml) and equaled 21,6 (10,0; 43,3) pg/ml. At the same time, the level of NT-proBNP in women was significantly higher than that of men. On the day of the HSC apheresis, a significant increase of blood serum NT-proBNP levels was detected and equald 131,2 (72,6; 165,3) pg/ml (p<0,001), with higher rates in female donors. A statistically significant weak inverse correleation was established between the level of NT-proBNP and the BMI of donors (-0.18, p = 0,03), as well as the level of hemoglobin (-0.33, p <0,001), and ferritin levels (-0.19, p = 0,03). No relationship has been established between the magnitude of WBC levels achieved as a result of the mobilization of HSC on the day of leukocytapheresis. A day after the apheresis, the blood serum NT-proBNP levels still exceeded the reference values, but there was a decreasing tendency. Conclusion. An increase of the blood serum NT-proBNP level in unrelated donors during the mobilization of HSC was established. Future studies should clarify the reason for this phenomenon, as well as its effects on donors' long-term health.

Keywords: unrelated donors, mobilization, hematopoietic stem cells, N-terminal pro-brain natriuretic peptide

Procedia PDF Downloads 98
1219 Information and Communication Technology (ICT) Education Improvement for Enhancing Learning Performance and Social Equality

Authors: Heichia Wang, Yalan Chao

Abstract:

Social inequality is a persistent problem. One of the ways to solve this problem is through education. At present, vulnerable groups are often less geographically accessible to educational resources. However, compared with educational resources, communication equipment is easier for vulnerable groups. Now that information and communication technology (ICT) has entered the field of education, today we can accept the convenience that ICT provides in education, and the mobility that it brings makes learning independent of time and place. With mobile learning, teachers and students can start discussions in an online chat room without the limitations of time or place. However, because liquidity learning is quite convenient, people tend to solve problems in short online texts with lack of detailed information in a lack of convenient online environment to express ideas. Therefore, the ICT education environment may cause misunderstanding between teachers and students. Therefore, in order to better understand each other's views between teachers and students, this study aims to clarify the essays of the analysts and classify the students into several types of learning questions to clarify the views of teachers and students. In addition, this study attempts to extend the description of possible omissions in short texts by using external resources prior to classification. In short, by applying a short text classification, this study can point out each student's learning problems and inform the instructor where the main focus of the future course is, thus improving the ICT education environment. In order to achieve the goals, this research uses convolutional neural network (CNN) method to analyze short discussion content between teachers and students in an ICT education environment. Divide students into several main types of learning problem groups to facilitate answering student problems. In addition, this study will further cluster sub-categories of each major learning type to indicate specific problems for each student. Unlike most neural network programs, this study attempts to extend short texts with external resources before classifying them to improve classification performance. In short, by applying the classification of short texts, we can point out the learning problems of each student and inform the instructors where the main focus of future courses will improve the ICT education environment. The data of the empirical process will be used to pre-process the chat records between teachers and students and the course materials. An action system will be set up to compare the most similar parts of the teaching material with each student's chat history to improve future classification performance. Later, the function of short text classification uses CNN to classify rich chat records into several major learning problems based on theory-driven titles. By applying these modules, this research hopes to clarify the main learning problems of students and inform teachers that they should focus on future teaching.

Keywords: ICT education improvement, social equality, short text analysis, convolutional neural network

Procedia PDF Downloads 124
1218 China Pakistan Economic Corridor: An Unfolding Fiasco in World Economy

Authors: Debarpita Pande

Abstract:

On 22nd May 2013 Chinese Premier Li Keqiang on his visit to Pakistan tabled a proposal for connecting Kashgar in China’s Xinjiang Uygur Autonomous Region with the south-western Pakistani seaport of Gwadar via the China Pakistan Economic Corridor (hereinafter referred to as CPEC). The project, popularly termed as 'One Belt One Road' will encompass within it a connectivity component including a 3000-kilometre road, railways and oil pipeline from Kashgar to Gwadar port along with an international airport and a deep sea port. Superficially, this may look like a 'game changer' for Pakistan and other countries of South Asia but this article by doctrinal method of research will unearth some serious flaws in it, which may change the entire economic system of this region heavily affecting the socio-economic conditions of South Asia, further complicating the complete geopolitical situation of the region disturbing the world economic stability. The paper besets with a logical analyzation of the socio-economic issues arising out of this project with an emphasis on its impact on the Pakistani and Indian economy due to Chinese dominance, serious tension in international relations, security issues, arms race, political and provincial concerns. The research paper further aims to study the impact of huge burden of loan given by China towards this project where Pakistan already suffers from persistent debts in the face of declining foreign currency reserves along with that the sovereignty of Pakistan will also be at stake as the entire economy of the country will be held hostage by China. The author compares this situation with the fallout from projects in Sri Lanka, Tajikistan, and several countries of Africa, all of which are now facing huge debt risks brought by Chinese investments. The entire economic balance will be muddled by the increment in Pakistan’s demand of raw materials resulting to the import of the same from China, which will lead to exorbitant price-hike and limited availability. CPEC will also create Chinese dominance over the international movement of goods that will take place between the Atlantic and the Pacific oceans and hence jeopardising the entire economic balance of South Asia along with Middle Eastern countries like Dubai. Moreover, the paper also analyses the impact of CPEC in the context of international unrest and arms race between Pakistan and India as well as India and China due to border disputes and Chinese surveillance. The paper also examines the global change in economic dynamics in international trade that CPEC will create in the light of U.S.-China relationship. The article thus reflects the grave consequences of CPEC on the international economy, security and bilateral relations, which surpasses the positive impacts of it. The author lastly suggests for more transparency and proper diplomatic planning in the execution of this mega project, which can be a cause of economic complexity in international trade in near future.

Keywords: China, CPEC, international trade, Pakistan

Procedia PDF Downloads 171
1217 Nanoimprinted-Block Copolymer-Based Porous Nanocone Substrate for SERS Enhancement

Authors: Yunha Ryu, Kyoungsik Kim

Abstract:

Raman spectroscopy is one of the most powerful techniques for chemical detection, but the low sensitivity originated from the extremely small cross-section of the Raman scattering limits the practical use of Raman spectroscopy. To overcome this problem, Surface Enhanced Raman Scattering (SERS) has been intensively studied for several decades. Because the SERS effect is mainly induced from strong electromagnetic near-field enhancement as a result of localized surface plasmon resonance of metallic nanostructures, it is important to design the plasmonic structures with high density of electromagnetic hot spots for SERS substrate. One of the useful fabrication methods is using porous nanomaterial as a template for metallic structure. Internal pores on a scale of tens of nanometers can be strong EM hotspots by confining the incident light. Also, porous structures can capture more target molecules than non-porous structures in a same detection spot thanks to the large surface area. Herein we report the facile fabrication method of porous SERS substrate by integrating solvent-assisted nanoimprint lithography and selective etching of block copolymer. We obtained nanostructures with high porosity via simple selective etching of the one microdomain of the diblock copolymer. Furthermore, we imprinted of the nanocone patterns into the spin-coated flat block copolymer film to make three-dimensional SERS substrate for the high density of SERS hot spots as well as large surface area. We used solvent-assisted nanoimprint lithography (SAIL) to reduce the fabrication time and cost for patterning BCP film by taking advantage of a solvent which dissolves both polystyrenre and poly(methyl methacrylate) domain of the block copolymer, and thus block copolymer film was molded under the low temperature and atmospheric pressure in a short time. After Ag deposition, we measured Raman intensity of dye molecules adsorbed on the fabricated structure. Compared to the Raman signals of Ag coated solid nanocone, porous nanocone showed 10 times higher Raman intensity at 1510 cm(-1) band. In conclusion, we fabricated porous metallic nanocone arrays with high density electromagnetic hotspots by templating nanoimprinted diblock copolymer with selective etching and demonstrated its capability as an effective SERS substrate.

Keywords: block copolymer, porous nanostructure, solvent-assisted nanoimprint, surface-enhanced Raman spectroscopy

Procedia PDF Downloads 621