Search results for: organic dyes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2586

Search results for: organic dyes

996 Improving the Strength Characteristics of Soil Using Cotton Fibers

Authors: Bindhu Lal, Karnika Kochal

Abstract:

Clayey soil contains clay minerals with traces of metal oxides and organic matter, which exhibits properties like low drainage, high plasticity, and shrinkage. To overcome these issues, various soil reinforcement techniques are used to elevate the stiffness, water tightness, and bearing capacity of the soil. Such techniques include cementation, bituminization, freezing, fiber inclusion, geo-synthetics, nailing, etc. Reinforcement of soil with fibers has been a cost-effective solution to soil improvement problems. An experimental study was undertaken involving the inclusion of cotton waste fibers in clayey soil as reinforcement with different fiber contents (1%, 1.5%, 2%, and 2.5% by weight) and analyzing its effects on the unconfined compressive strength of the soil. Two categories of soil were taken, comprising of natural clay and clay mixed with 5% sodium bentonite by weight. The soil specimens were subjected to proctor compaction and unconfined compression tests. The validated outcome shows that fiber inclusion has a strikingly positive impact on the compressive strength and axial strain at failure of the soil. Based on the commendatory results procured, compressive strength was found to be directly proportional to the fiber content, with the effect being more pronounced at lower water content.

Keywords: bentonite clay, clay, cotton fibers, unconfined compressive strength

Procedia PDF Downloads 157
995 Enhanced Degradation of Endosulfan in Soil Using Lycopersicon esculentum L. (Tomato) and Endosulfan Tolerant Bacterium Strains

Authors: Rupa Rani, Vipin Kumar

Abstract:

Endosulfan, an organochlorine pesticide is of environmental concern due to its apparent persistence and toxicity. It has been reported as contaminants in soil, air, and water and is bioaccumulated and magnified in ecosystems. The combined use of microorganisms and plants has great potential for remediating soil contaminated with organic compounds such as pesticides. The objective of this study was to evaluate whether the bacterial inoculation influences plant growth promotion, endosulfan degradation in soil and endosulfan accumulation in different plant parts. Lycopersicon esculentum L. (Tomato) was grown in endosulfan spiked soil and inoculated with endosulfan tolerant bacterial strains. Endosulfan residues from different parts of plants and soil were extracted and estimated by using gas chromatograph equipped with 63Ni electron capture detector (GC-ECD). The inoculation of bacterial strains into the soil with plants showed a beneficial effect on endosulfan degradation and plant biomass production. Maximum endosulfan (90%) degradation was observed after 120 days of bacterial inoculation in the soil. Furthermore, there was significantly less endosulfan accumulation in roots and shoots of bacterial strains inoculated plants as compared to uninoculated plants. The results show the effectiveness of inoculated endosulfan tolerant bacterial strains to increase the remediation of endosulfan contaminated soil.

Keywords: organochlorine pesticides, endosulfan, degradation, plant-bacteria partnerships

Procedia PDF Downloads 137
994 Reflection of Landscape Agrogenization in the Soil Cover Structure and Profile Morphology: Example of Lithuania Agroecosystem

Authors: Jonas Volungevicius, Kristina Amaleviciute, Rimantas Vaisvalavicius, Alvyra Slepetiene, Darijus Veteikis

Abstract:

Lithuanian territory is characterized by landscape with prevailing morain hills and clayey lowlands. The largest part of it has endured agrogenization of various degrees which was the cause of changes both in the structure of landscape and soil cover, transformations of soil profile and degradation of natural background soils. These changes influence negatively geoecological potential of landscape and soil and contribute to the weakening of the sustainability of agroecosystems. Research objective: to reveal the landscape agrogenization induced alterations of catenae and their appendant soil profiles in Lithuanian morain hills and clayey lowlands. Methods: Soil cover analysis and catenae charting was conducted using landscape profiling; soil morphology detected and soil type identified following WRB 2014. Granulometric composition of soil profiles was obtained by laser diffraction method (lazer diffractometer Mastersizer 2000). pH was measured in H2O extraction using potentiometric titration; SOC was determined by the Tyurin method modified by Nikitin, measuring with spectrometer Cary 50 (VARIAN) in 590 nm wavelength using glucose standards. Results: analysis showed that the decrease of forest vegetation and the other natural landscape components following the agrogenization of the research area influenced differently but significantly the structural alterations in soil cover and vertical soil profile. The research detected that due to landscape agrogenization, the suppression of zone-specific processes and the intensification of inter-zone processes determined by agrogenic factors take place in Lithuanian agroecosystems. In forested hills historically prevailing Retisols and Histosols territorial complex is transforming into the territorial complex of Regosols, Deluvial soils and drained Histosols. Processes taking place are simplification of vertical profile structure, intensive rejuvenation of profile, disappearance of the features of zone-specific soil-forming processes (podzolization, lessivage, gley formation). Erosion and deluvial processes manifest more intensively and weakly accumulating organic material more intensively spread in a vertical soil profile. The territorial soil complex of Gleyic Luvisols and Gleysols dominating in forested clayey lowlands subjected to agrogenization is transformed into the catena of drained Luvisols and pseudo Cambisols. The best expressed are their changes in moisture regime (morphological features of gley and stagnic properties are on decline) together with alterations of pH and distribution and intensity of accumulation of organic matter in profile. A specific horizon, antraquic, uncharacteristic to natural soil formation is appearing. Important to note that due to deep ploughing and other agrotechnical measures, the natural vertical differentiation of clay particles in a soil profile is destroyed which leads not only to alterations of physical qualities of soil, but also encumbers the identification of Luvisols by creating presumptions to misidentify them as Cambisols. The latter have never developed in these ecosystems under the present climatic conditions. Acknowledgements: This work was supported by the National Science Program: The effect of long-term, different-intensity management of resources on the soils of different genesis and on other components of the agro-ecosystems [grant number SIT-9/2015] funded by the Research Council of Lithuania.

Keywords: agroecosystems, landscape agrogenization, luvisols, retisols, transformation of soil profile

Procedia PDF Downloads 244
993 First Occurrence of Histopathological Assessment in Gadoid Deep-Fish Phycis blennoides from the Southwestern Mediterranean Sea

Authors: Zakia Alioua, Amira Soumia, Zerouali-Khodja Fatiha

Abstract:

In spite of a wide variety of contaminants such as heavy metals and organic compounds in addition to the importance of extended pollution, the deep-sea and its species are not in haven and being affected through contaminants exposure. This investigation is performed in order to provide data on the presence of pathological changes in the liver and gonads of the greater forkbeard. A total of 998 specimens of the teleost fish Phycis blennoides Brünnich, 1768 ranged from 5,7 to 62,7 cm in total length, were obtained from the commercial fisheries of Algerian ports. The sampling has been carried out monthly from December 2013 to June 2015 and from January to June 2016 caught by trawlers and longlines between 75 and 600 fathoms in the coast of Algeria. Individuals were sexed their gonads, and their livers were removed and processed for light microscopy and one case of atresia was identified. In whole, overall 0,002% of the specimens presented some degree of liver steatosis. For the gastric section, 442 selected stomachs contents were observed looking for parasitic infestation and enumerate 212 nematodes. A prospecting survey for metal contaminant was performed on the liver by atomic absorption spectrophotometry analysis.

Keywords: atresia, coast of Algeria, histopathology, nematode, Phycis blennoides, steatosis

Procedia PDF Downloads 212
992 Preparation and Characterization of Conductive Poly(N-Ethyl Aniline)/Kaolinite Composite Material by Chemical Polymerization

Authors: Hande Taşdemir, Meral Şahin, Mehmet Saçak

Abstract:

Conductive composite materials obtained by physical or chemical mixing of two or more components having conducting and insulating properties have been increasingly attracted. Kaolinite in kaolin clays is one of silicates with two layers of molecular sheets of (Si2O5)2− and [Al2(OH)4]2+ with the chemical composition Al2Si2O5(OH)4. The most abundant hydrophillic kaolinite is extensively used in industrial processes and therefore it is convenient for the preparation of organic/inorganic composites. In this study, conductive poly(N-ethylaniline)/kaolinite composite was prepared by chemical polymerization of N-ethyl aniline in the presence of kaolinite particles using ammonium persulfate as oxidant in aqueous acidic medium. Poly(N-ethylaniline) content and conductivity of composite prepared were systematically investigated as a function of polymerization conditions such as ammonium persulfate, N-ethyl aniline and HCl concentrations. Poly(N-ethylaniline) content and conductivity of composite increased with increasing oxidant and monomer concentrations up to 0.1 M and 0.2 M, respectively, and decreased at higher concentrations. The maximum yield of polymer in the composite (15.0%) and the highest conductivity value of the composite (5.0×10-5 S/cm) was achieved by polymerization for 2 hours at 20°C in HCl of 0.5 M. The structure, morphological analyses and thermal behaviours of poly(N-ethylaniline)/kaolinite composite were characterized by FTIR and XRD spectroscopy, SEM and TGA techniques.

Keywords: kaolinite, poly(N-ethylaniline), conductive composite, chemical polymerization

Procedia PDF Downloads 273
991 Oat Grain Functional Ingredient Characterization

Authors: Vita Sterna, Sanita Zute, Inga Jansone, Linda Brunava, Inara Kantane

Abstract:

Grains, including oats (Avena sativa L.), have been recognized functional foods, because provide beneficial effect on the health of the consumer and decrease the risk of various diseases.Oats are good source of soluble fibre, essential amino acids, unsaturated fatty acids, vitamins and minerals. Oat breeders have developed oat varieties and improved yielding ability potential of oat varieties. Therefore, the aim of investigation was to analyze the composition of perspective oat varieties and breeding lines grains grown in different conditions and evaluate functional properties. In the studied samples content of protein, starch, β - glucans, total dietetic fibre, composition of amino acids and vitamin E were determined. The results of analysis showed that protein content depending of varieties ranged 9.70 –17.30% total dietary fibre 13.66-30.17 g100g-1, content of β-glucans 2.7-3.5 g100g-1, amount of vitamin E (α-tocopherol) determined from 4 to 9.9 mg kg-1. The sum of essential amino acids in oat grain samples were determined from 31.63 to 54.90 gkg-1. Concluded that amino acids composition of husked and naked oats grown in organic or conventional conditions is close to optimal.

Keywords: dietetic fibre, amino acids, scores, nutrition value

Procedia PDF Downloads 480
990 Preparation and Characterization of Antifouling Polysulfone Flat Sheet Membrane by Phase Inversion

Authors: Bharti Saini, Sukanta K. Dash

Abstract:

In this work polymeric Nanofiltration (NF) membranes of polysulfone (PSF) (average molecular weight of 22400 Da) were prepared using polyethylene glycol (PEG) (average molecular weight of 200 Da) as an organic additive and ZnCl2 as an inorganic additive. Dimethyl acetamide (DMAc) was used as the solvent, and Deionised water as nonsolvent. The membranes were prepared by phase inversion (immersion precipitation) method. PEG 200 and ZnCl2 in varying concentration are directly added into the casting solution of PSF and DMAc. PEG 200 was used in concentration varying from 0 to 10 % (w/w) in the solution of PSF and DMAc, while ZnCl2 is varied from 0 to 2% (w/w). Membranes were characterized for surface morphology, water uptake, porosity and contact angle, with respect to concentration of PEG and ZnCl2. It was observed that with the increase in additive PEG 200, the porosity and hence, hydrophilicity increase. As a result, the number of pores increases as justified by the SEM analysis as well. The study revealed that the synergistic effect of PEG with ZnCl2 is more effective, and the best results were produced by the solution containing 2% PEG 200 and 1% ZnCl2. It was inferred that with the increase in concentration of additives, the pore size goes on decreasing. The membranes obtained gradually move from microfiltration range to nanofiltration range, and this change is primarily brought about by the addition of ZnCl2.

Keywords: membrane, phase inversion method, polysulfone, porous structure

Procedia PDF Downloads 220
989 Compared Psychophysiological Responses under Stress in Patients of Chronic Fatigue Syndrome and Depressive Disorder

Authors: Fu-Chien Hung, Chi‐Wen Liang

Abstract:

Background: People who suffer from chronic fatigue syndrome (CFS) frequently complain about continuous tiredness, weakness or lack of strength, but without apparent organic etiology. The prevalence rate of the CFS is nearly from 3% to 20%, yet more than 80% go undiagnosed or misdiagnosed as depression. The biopsychosocial model has suggested the associations among the CFS, depressive syndrome, and stress. This study aimed to investigate the difference between individuals with the CFS and with the depressive syndrome on psychophysiological responses under stress. Method: There were 23 participants in the CFS group, 14 participants in the depression group, and 23 participants in the healthy control group. All of the participants first completed the measures of demographic data, CFS-related symptoms, daily life functioning, and depressive symptoms. The participants were then asked to perform a stressful cognitive task. The participants’ psychophysiological responses including the HR, BVP and SC were measured during the task. These indexes were used to assess the reactivity and recovery rates of the automatic nervous system. Results: The stress reactivity of the CFS and depression groups was not different from that of the healthy control group. However, the stress recovery rate of the CFS group was worse than that of the healthy control group. Conclusion: The results from this study suggest that the CFS is a syndrome which can be independent from the depressive syndrome, although the depressive syndrome may include fatigue syndrome.

Keywords: chronic fatigue syndrome, depression, stress response, misdiagnosis

Procedia PDF Downloads 442
988 Environmental Fate and Toxicity of Aged Titanium Dioxide Nano-Composites Used in Sunscreen

Authors: Danielle Slomberg, Jerome Labille, Riccardo Catalano, Jean-Claude Hubaud, Alexandra Lopes, Alice Tagliati, Teresa Fernandes

Abstract:

In the assessment and management of cosmetics and personal care products, sunscreens are of emerging concern regarding both human and environmental health. Organic UV blockers in many sunscreens have been evidenced to undergo rapid photodegradation, induce dermal allergic reactions due to skin penetration, and to cause adverse effects on marine systems. While mineral UV-blockers may offer a safer alternative, their fate and impact and resulting regulation are still under consideration, largely related to the potential influence of nanotechnology-based products on both consumers and the environment. Nanometric titanium dioxide (TiO₂) UV-blockers have many advantages in terms of sun protection and asthetics (i.e., transparency). These UV-blockers typically consist of rutile nanoparticles coated with a primary mineral layer (silica or alumina) aimed at blocking the nanomaterial photoactivity and can include a secondary organic coating (e.g., stearic acid, methicone) aimed at favouring dispersion of the nanomaterial in the sunscreen formulation. The nanomaterials contained in the sunscreen can leave the skin either through a bathing of everyday usage, with subsequent release into rivers, lakes, seashores, and/or sewage treatment plants. The nanomaterial behaviour, fate and impact in these different systems is largely determined by its surface properties, (e.g. the nanomaterial coating type) and lifetime. The present work aims to develop the eco-design of sunscreens through the minimisation of risks associated with nanomaterials incorporated into the formulation. All stages of the sunscreen’s life cycle must be considered in this aspect, from its manufacture to its end-of-life, through its use by the consumer to its impact on the exposed environment. Reducing the potential release and/or toxicity of the nanomaterial from the sunscreen is a decisive criterion for its eco-design. TiO₂ UV-blockers of varied size and surface coating (e.g., stearic acid and silica) have been selected for this study. Hydrophobic TiO₂ UV-blockers (i.e., stearic acid-coated) were incorporated into a typical water-in-oil (w/o) formulation while hydrophilic, silica-coated TiO₂ UV-blockers were dispersed into an oil-in-water (o/w) formulation. The resulting sunscreens were characterised in terms of nanomaterial localisation, sun protection factor, and photo-passivation. The risk to the direct aquatic environment was assessed by evaluating the release of nanomaterials from the sunscreen through a simulated laboratory aging procedure. The size distribution, surface charge, and degradation state of the nano-composite by-products, as well as their nanomaterial concentration and colloidal behaviour were determined in a variety of aqueous environments (e.g., seawater and freshwater). Release of the hydrophobic nanocomposites into the aqueous environment was driven by oil droplet formation while hydrophilic nano-composites were readily dispersed. Ecotoxicity of the sunscreen by-products (from both w/o and o/w formulations) and their risk to marine organisms were assessed using coral symbiotes and tropical corals, evaluating both lethal and sublethal toxicities. The data dissemination and provided risk knowledge from the present work will help guide regulation related to nanomaterials in sunscreen, provide better information for consumers, and allow for easier decision-making for manufacturers.

Keywords: alteration, environmental fate, sunscreens, titanium dioxide nanoparticles

Procedia PDF Downloads 249
987 Effect of Selenium Source on Meat Quality of Bonsmara Bull Calves

Authors: J. van Soest, B. Bruneel, J. Smit, N. Williams, P. Swiegers

Abstract:

Selenium (Se) is an essential trace mineral involved in reducing oxidative stress, enhancing immune status, improving reproduction, and regulating growth. During finishing period, selenium supplementation can be applied to improve meat quality. Dietary selenium can be provided in inorganic or organic forms. Specifically, L-selenomethionine (organic selenium) allows for selenium storage in animal protein which supports the animal during periods of high oxidative stress. The objective of this study was to investigate the effects of synthetically produced, single amino acid, L-selenomethionine (Excential Selenium 4000, Orffa Additives BV) on production parameters, health status, and meat quality of Bonsmara bull calves. 24 calves, 7 months of age, completed a 60-day initial growing period at a commercial feedlot, after which they were transported to research station Rumen-8 (Bethlehem, South-Africa). After a ten-day adaptation period, the bulls were allocated to a control (n=12) or treatment (n=12) group. Each group was divided over 3 pens based on weight. Both groups received Total Mixed Ration supplemented with 5.25 mg Se/head per day. The control group was supplemented with sodium selenite as Se source, whilst the treatment group was supplemented with L-selenomethionine (Excential Selenium 4000, Orffa Additives BV). Animals were limited to 10 kg feed intake per head per day to ensure similar Se intake. Treatment period lasted 1.5 months. A beta-adrenergic agonist was included in the feed for the last 30 days. During the treatment period, average daily gain, average daily feed intake, and feed conversion ratio were recorded. Blood parameters were measured at day 1, day 25, and before slaughter (day 47). After slaughter, carcass weight, dressing percentage, grading, and meat quality (pH, tenderness, colour, odour, purge, proximate analyses, acid detergent fibre, and neutral detergent fibre) were determined. No differences between groups were found in performance. A higher number of animals with cortisol levels below detection limit (27.6 nmol/l) was recorded for the treatment group. Other blood parameters showed no differences. No differences were found regarding carcass weight and dressing percentage. Important parameters of meat quality were significantly improved in the treatment group: instrumental tenderness at 14 days ageing was 2.8 and 3.4 for treatment and control respectively (P=0.010), and a 0.5% decrease in purge (of fresh samples) was shown, 1.5% and 2.0% for treatment group and control respectively (p=0.029). Besides, pH was shown to be numerically reduced in the treatment group. In summary, supplementation with L-selenomethionine as selenium source improved meat quality compared to sodium selenite. Lower instrumental tenderness (Warner Bratzler Shear Force, WBSF) was recorded for the treatment group. This indicates less tough meat and highest consumer satisfaction. Regarding purge, control was just below 2.0%, an important threshold for consumer acceptation. Treatment group scored 0.5% lower for purge than control, indicating higher consumer satisfaction. The lower pH in the treatment group could be an indication of higher glycogen reserves in muscle which could contribute to a reduced risk of Dark Firm Dry carcasses. More animals showed cortisol levels below detection limit in the treatment group, indicating lower levels of stress when animals receive L-selenomethionine.

Keywords: calves, meat quality, nutrition, selenium

Procedia PDF Downloads 163
986 Adsorption and Corrosion Inhibition of New Synthesized Thiophene Schiff Base on Mild Steel in HCL Solution

Authors: H. Elmsellem, A. Aouniti, S. Radi, A. Chetouani, B. Hammouti

Abstract:

The synthesis of new organic molecules offers various molecular structures containing heteroatoms and substituents for corrosion protection in acid pickling of metals. The most synthesized compounds are the nitrogen heterocyclic compounds, which are known to be excellent complex or chelate forming substances with metals. The choice of the inhibitor is based on two considerations: first it could be synthesized conveniently from relatively cheap raw materials, secondly, it contains the electron cloud on the aromatic ring or, the electro negative atoms such as nitrogen and oxygen in the relatively long chain compounds. In the present study, (NE)‐2‐methyl‐N‐(thiophen‐2‐ylmethylidene) aniline(T) was synthesized and its inhibiting action on the corrosion of mild steel in 1 M hydrochloric acid was examined by different corrosion methods, such as weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The experimental results suggest that this compound is an efficient corrosion inhibitor and the inhibition efficiency increases with the increase in inhibitor concentration. Adsorption of this compound on mild steel surface obeys Langmuir’s isotherm. Correlation between quantum chemical calculations and inhibition efficiency of the investigated compound is discussed using the Density Functional Theory method (DFT).

Keywords: mild steel, Schiff base, inhibition, corrosion, HCl, quantum chemical

Procedia PDF Downloads 311
985 Evaluation of Nutritional Potential of Five Unexplored Wild Edible Food Plants from Eastern Himalayan Biodiversity Hotspot Region (India)

Authors: Pallabi Kalita, Hui Tag, Loxmi Jamoh, H. N. Sarma, A. K. Das

Abstract:

Wild edible food plants contain a number of organic phytochemical that have been linked to the promotion of good health. These plants used by the local people of Arunachal Pradesh (Northeast India) are found to have high nutritional potential to maintain general balance diet. A study was conducted to evaluate the nutritional potential of five commonly found, unexplored wild food plants namely, Piper pedicellatum C. DC (leaves), Gonostegia hirta (Blume ex Hassk.) Miq. (leaves), Mussaenda roxburghii Hook. f. (leaves), Solanum spirale Roxb. (leaves and fruits) and Cyathea spinulosa Wall. ex Hook. (pith portion and tender rachis) from East Siang District of Arunachal Pradesh Northeast (India) for ascertaining their suitability for utilization as supplementary food. Results of study revealed that P. pedicellatum, C. spinulosa, and S. spirale (leaves) are the most promising species which have high nutritional content out of the five wild food plants investigated which is required for the normal growth and development of human.

Keywords: wild edible plants, gross energy, Gonostegia hirta, Cyathea spinulosa

Procedia PDF Downloads 309
984 Cellulose Acetate/Polyacrylic Acid Filled with Nano-Hydroxapatite Composites: Spectroscopic Studies and Search for Biomedical Applications

Authors: E. M. AbdelRazek, G. S. ElBahy, M. A. Allam, A. M. Abdelghany, A. M. Hezma

Abstract:

Polymeric biocomposite of hydroxyapatite/polyacrylic acid were prepared and their thermal and mechanical properties were improved by addition of cellulose acetate. FTIR spectroscopy technique and X-ray diffraction analysis were employed to examine the physical and chemical characteristics of the biocomposites. Scanning electron microscopy shows a uniform distribution of HAp nano-particles through the polymeric matrix of two organic/inorganic composites weight ratios (60/40 and 70/30), at which the material crystallinity reaches a considerable value appropriate for the needed applications were studied and revealed that the HAp nano-particles are uniformly distributed in the polymeric matrix. Kinetic parameters were determined from the weight loss data using non isothermal thermogravimetric analysis (TGA). Also, the main degradation steps were described and discussed. The mechanical properties of composites were evaluated by measuring tensile strength and elastic modulus. The data indicate that the addition of cellulose acetate can make homogeneous composites scaffold significantly resistant to higher stress. Elastic modulus of the composites was also improved by the addition of cellulose acetate, making them more appropriate for bioapplications.

Keywords: biocomposite, chemical synthesis, infrared spectroscopy, mechanical properties

Procedia PDF Downloads 442
983 1,8-Naphthalimide Substituted 4,4-Difluoroboradiaza-S-Indacene Dyads: Synthesis, Structure, Properties and Live-Cell Imaging

Authors: Madhurima Poddar, Vinay Sharma, Shaikh M. Mobin, Rajneesh Misra

Abstract:

Three 1,8-naphthalimide (NPI) substituted 4,4-difluoroboradiaza-s-indacene (BODIPY) dyads were synthesized via Pd-catalyzed Sonogashira cross-coupling reaction of ethynyl substituted NPI with the meso-, β- and α-halogenated BODIPYs, respectively. The photophysical and electrochemical data reveals considerable electronic communication between the BODIPY and NPI moieties. The electronic absorption spectrum reveals that the substitution of NPI at α position of BODIPY exhibit better electronic communication between the NPI and the BODIPY units. The electronic structures of all the dyads exhibit planar geometries which are in a good correlation with the structures obtained from single crystal X-ray diffraction. The crystal structures of the dyads exhibit interesting supramolecular interactions. The dyads show good cytocompatibility with the potential of multicolor live-cell imaging; making them excellent candidates for biological applications. The work provides an important strategy of screening the substitution pattern at different position of BODIPYs which will be useful for the design of BODIPY based organic molecules for various optoelectronic applications as well as bio-imaging.

Keywords: bio-imaging studies, cross-coupling, cyclic voltammetry, density functional calculations, fluorescence spectra, single crystal XRD, UV/Vis spectroscopy

Procedia PDF Downloads 132
982 New Mahalle – A More Urban Green Inclusive Neighborhood

Authors: Eirini Oikonomopoulou

Abstract:

Paper is dealing with gentrification of a poor central historic district of Fener and Balat in Istanbul, Turkey and propose ålans and principles of a neighborhood. Istanbul is located in a special geographic place, just in the meeting of Europe and Asia and it has a long and great history, facts that had affected the urban form of the city. Trough the time different civilizations inhabited in the city and they changed it by giving different character to its parts. The modernization of Istanbul brought western ideas into the historic organic urban fabric and put in the first priority the need for a clear and strong car-road/highway network in order to improve the car accessibility along the city. Following that model, transformation of public spaces was based on the driving experience. New public spaces was formulated to be the new symbol of Turkish Republic, to give a beautiful and clean image of the modern Turkish city, as well as work as landmarks across the highway network. Even if city is upgraded, bad quality neighborhoods still exist, far and near to the historic city center. One of them is Fener/Balat, which is located in Fatih district on the European side of Istanbul. This project aims to analyze the urban qualities of that neighborhood (mahalle) and propose a better, qualitative urban space towards a denser, greener and more inclusive neighborhood which could be an example for the whole city.

Keywords: urban design, upgrade neighborhood, Istanbul, sustanability

Procedia PDF Downloads 501
981 Role of Nano-Technology on Remediation of Poly- and Perfluoroalkyl Substances Contaminated Soil and Ground Water

Authors: Leila Alidokht

Abstract:

PFAS (poly- and perfluoroalkyl substances) are a large collection of environmentally persistent organic chemicals of industrial origin that have a negative influence on human health and ecosystems. Many distinct PFAS are being utilized in a wide range of applications (on the order of thousands), and there is no comprehensive source of information on the many different compounds and their roles in diverse applications. Facilities are increasingly looking into ways to reduce waste from cleanup projects. PFAS are widespread in the environment, have been found in a wide range of human biomonitoring investigations, and are a rising source of regulatory concern for federal, state, and local governments. Nanotechnology has the potential to contribute considerably to the creation of a cleaner, greener technologies with considerable environmental and health benefits. Nanotechnology approaches are being studied for their potential to provide pollution management and mitigation options, as well as to increase the effectiveness of standard environmental cleanup procedures. Diversified nanoparticles have shown useful in removing certain pollutants from their original environment, such as sewage spills and landmines. Furthermore, they have a low hazardous effect during production rates and can thus be thoroughly explored in the future to make them more compatible with lower production costs.

Keywords: PFOS, PFOA, PFAS, soil remediation

Procedia PDF Downloads 87
980 Preparation and Characterization of the TiO₂ Photocatalytic Membrane for the Degradation of Reactive Orange 16 Dye

Authors: Shruti Sakarkar, Jega Jegatheesan, Srinivasan Madapusi

Abstract:

Photocatalytic membranes have shown great potential for the removal of an organic and inorganic pollutant from wastewater as it combines the degradation and antibacterial properties from photocatalysis and physical separation by the membrane in a single unit. Incorporation of the semiconductor in membrane structure results in enhancing the performance and the properties of the membrane. In this study porous ultrafiltration polyvinylidene fluoride (PVDF) membranes with entrapped TiO₂ nanoparticle were prepared by phase inversion method and further used for the degradation of reactive orange 16 (RO16). Prepared photocatalytic membranes were characterized by the scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), contact angle, and atomic force microscope (AFM). The addition of TiO₂ nanopartparticles improves the strength and thermal stability of the membrane. In particular hydrophilicity and permeability increases with the increase of TiO₂ nanoparticles into the membrane. The photocatalytic membrane achieves 80-85% degrdation of RO16. The impact of different parameters such as pH, concentration of photocatalyst, dye concentration and effect of H₂O₂ were analysed. The best conditions for dye degradation were an initial dye concentration of 50 mg/L, with a membrane containing TiO₂ loading of 2wt%. It was observed that in the presence of H₂O₂, degradation increases with increasing H₂O₂ concentration and reached up to 95-98%. The high quality permeates obtained from the photocatalytic membrane can be reused.

Keywords: photocatalytic membrane, TiO₂, PVDF, nanoparticles

Procedia PDF Downloads 145
979 Study of the Antimicrobial Activity of the Extract of the Eucalyptus camaldulensis stemming from the Algerian Northeast

Authors: Meksem Nabila, Bordjiba Ouahiba, Meraghni Messaouda, Meksem Amara Leila, Djebar Mohhamed Reda

Abstract:

The problems of protection of the cultures are being more and more important that they interest great number of farmers and scientists because of the excessive use of the organic phytosanitary products of synthesis that causes fatal damages on the environment. To reduce the inconveniences produced by these pesticides, the use of "biopesticides" originated from plants could be an alternative. The aim of this work is the valuation of a botanical species: Eucalyptus camaldulensis from Northeastern Algeria which extracts are supposed to have an antimicrobial activity, similar to pesticides. The extraction of secondary metabolites from the leaves of E. camaldulensis was realized using methanol and water, and measurements of total polyphenols were made by spectrometric method. Determination of the antimicrobial activity of the extracts at issue was realized in vitro on phyto-pathogenic fungal and bacterial stumps. Tests of comparison were included in the essays by using the chemical pesticidal products of synthesis. The obtained results show that the plant contains polyphenols with an efficiency mattering of the order of 22 %. These polyphenols have a strong fungicidal and bactericidal pesticidal activity against various microbial stumps and the values of the zones of inhibition are more important compared with that obtained in the presence of the chemicals of synthesis (fungicide).

Keywords: eucalyptus camaldulensis, biopesticide, polyphenols, antimicrobial activity

Procedia PDF Downloads 414
978 Challenging Human Trade in Sub-Saharan Africa and Beyond: A Foresight Approach to Contextualizing and Understanding the Consequences of Sub-Saharan Africa’s Demographic Emergence

Authors: Ricardo Schnug

Abstract:

This paper puts the transnational crime of human trafficking in the context of Sub-Saharan Africa and its quickly growing youth bulge. By mapping recent and concurrent trends and emerging issues, it explores the implications that it has not only for the region itself but also for the greater global dynamics of the issue. Through the application of Causal Layered Analysis to various alternative future scenarios as well as the identification of the core narrative surrounding the international discourse, it is possible to understand more deeply the forces that underlie future trafficking and what change becomes possible. With the provision of a reconstructed narrative that avoids the current blind spots, this research points out the need for a new and organic leadership paradigm that allows for a more holistic and future-oriented inquiry about socio-economic and political change and what it entails for a transnational crime such as human trafficking. 'Ubuntu' as a social and leadership philosophy then, provides the principles needed for creating this path towards a truly preferred future. Furthermore, this paper inspires follow-up research and the continuous monitoring and transdisciplinary research of this region’s demographic emergence as well as its possible consequences that have been explored in this inquiry.

Keywords: causal layered analysis, emerging issues, human trafficking, scenarios, sub-Saharan Africa

Procedia PDF Downloads 173
977 Linking the Genetic Signature of Free-Living Soil Diazotrophs with Process Rates under Land Use Conversion in the Amazon Rainforest

Authors: Rachel Danielson, Brendan Bohannan, S.M. Tsai, Kyle Meyer, Jorge L.M. Rodrigues

Abstract:

The Amazon Rainforest is a global diversity hotspot and crucial carbon sink, but approximately 20% of its total extent has been deforested- primarily for the establishment of cattle pasture. Understanding the impact of this large-scale disturbance on soil microbial community composition and activity is crucial in understanding potentially consequential shifts in nutrient or greenhouse gas cycling, as well as adding to the body of knowledge concerning how these complex communities respond to human disturbance. In this study, surface soils (0-10cm) were collected from three forests and three 45-year-old pastures in Rondonia, Brazil (the Amazon state with the greatest rate of forest destruction) in order to determine the impact of forest conversion on microbial communities involved in nitrogen fixation. Soil chemical and physical parameters were paired with measurements of microbial activity and genetic profiles to determine how community composition and process rates relate to environmental conditions. Measuring both the natural abundance of 15N in total soil N, as well as incorporation of enriched 15N2 under incubation has revealed that conversion of primary forest to cattle pasture results in a significant increase in the rate of nitrogen fixation by free-living diazotrophs. Quantification of nifH gene copy numbers (an essential subunit encoding the nitrogenase enzyme) correspondingly reveals a significant increase of genes in pasture compared to forest soils. Additionally, genetic sequencing of both nifH genes and transcripts shows a significant increase in the diversity of the present and metabolically active diazotrophs within the soil community. Levels of both organic and inorganic nitrogen tend to be lower in pastures compared to forests, with ammonium rather than nitrate as the dominant inorganic form. However, no significant or consistent differences in total, extractable, permanganate-oxidizable, or loss-on-ignition carbon are present between the two land-use types. Forest conversion is associated with a 0.5- 1.0 unit pH increase, but concentrations of many biologically relevant nutrients such as phosphorus do not increase consistently. Increases in free-living diazotrophic community abundance and activity appear to be related to shifts in carbon to nitrogen pool ratios. Furthermore, there may be an important impact of transient, low molecular weight plant-root-derived organic carbon on free-living diazotroph communities not captured in this study. Preliminary analysis of nitrogenase gene variant composition using NovoSeq metagenomic sequencing indicates that conversion of forest to pasture may significantly enrich vanadium-based nitrogenases. This indication is complemented by a significant decrease in available soil molybdenum. Very little is known about the ecology of diazotrophs utilizing vanadium-based nitrogenases, so further analysis may reveal important environmental conditions favoring their abundance and diversity in soil systems. Taken together, the results of this study indicate a significant change in nitrogen cycling and diazotroph community composition with the conversion of the Amazon Rainforest. This may have important implications for the sustainability of cattle pastures once established since nitrogen is a crucial nutrient for forage grass productivity.

Keywords: free-living diazotrophs, land use change, metagenomic sequencing, nitrogen fixation

Procedia PDF Downloads 177
976 Theoretical Study of Acetylation of P-Methylaniline Catalyzed by Cu²⁺ Ions

Authors: Silvana Caglieri

Abstract:

Theoretical study of acetylation of p-methylaniline catalyzed by Cu2+ ions from the analysis of intermediate of the reaction was carried out. The study of acetylation of amines is of great interest by the utility of its products of reaction and is one of the most frequently used transformations in organic synthesis as it provides an efficient and inexpensive means for protecting amino groups in a multistep synthetic process. Acetylation of amine is a nucleophilic substitution reaction. This reaction can be catalyzed by Lewis acid, metallic ion. In reaction mechanism, the metallic ion formed a complex with the oxygen of the acetic anhydride carbonyl, facilitating the polarization of the same and the successive addition of amine at the position to form a tetrahedral intermediate, determining step of the rate of the reaction. Experimental work agreed that this reaction takes place with the formation of a tetrahedral intermediate. In the present theoretical work were investigated the structure and energy of the tetrahedral intermediate of the reaction catalyzed by Cu2+ ions. Geometries of all species involved in the acetylation were made and identified. All of the geometry optimizations were performed by the method at the DFT/B3LYP level of theory and the method MP2. Were adopted the 6-31+G* basis sets. Energies were calculated using the Mechanics-UFF method. Following the same procedure it was identified the geometric parameters and energy of reaction intermediate. The calculations show 61.35 kcal/mol of energy for the tetrahedral intermediate and the energy of activation for the reaction was 15.55 kcal/mol.

Keywords: amides, amines, DFT, MP2

Procedia PDF Downloads 260
975 The Synthesis and Characterization of Highly Water-Soluble Silane Coupling Agents for Increasing Silica Filler Content in Styrene-Butadiene Rubber

Authors: Jun Choi, Bo Ram Lee, Ji Hye Choi, Jung Soo Kim, No-Hyung Park, Dong Hyun Kim

Abstract:

The synthetic rubber compound, which is widely used as the core material for automobile tire industry, is manufactured by mixing styrene-butadiene rubber (SBR) and organic/inorganic fillers. It is known that the most important factor for the physical properties of rubber compound is the interaction between the filler and the rubber, which affects the rotational, braking and abrasion resistance. Silica filler has hydrophilic groups such as a silanol group on their surface which has a low affinity with hydrophobic rubbers. In order to solve this problem, researches on an efficient silane coupling agent (SCA) has been continuously carried out. In this study, highly water-soluble SCAs which are expected to show higher hydrolysis efficiency were synthesized. The hydrophobization process of the silica with the prepared SCAs was economical and environment-friendly. The SCAs structures were analysed by gas chromatography-mass spectrometry (GC/MS) and nuclear magnetic resonance (1H-NMR) spectroscopy. In addition, their hydrolysis efficiency and condensation side reaction in SBR wet master batch were examined by Fourier transform infrared spectroscopy (FT-IR) and gel permeation chromatography (GPC), respectively.

Keywords: rubber, silane coupling agent, synthesis, water-soluble

Procedia PDF Downloads 282
974 Use Process Ring-Opening Polymerization to Melt Processing of Cellulose Nanowhisker from Coconut Husk Fibers-Filled Polylactide-Based Nanocomposites

Authors: Imam Wierawansyah Eltara, Iftitah, Agus Ismail

Abstract:

In the present work, cellulose nanowhiskers (CNW) extracted from coconut husk fibers, were incorporated in polylactide (PLA)-based composites. Prior to the blending, PLA chains were chemically grafted on the surface of CNW to enhance the compatibilization between CNW and the hydrophobic polyester matrix. Ring-opening polymerization of L-lactide was initiated from the hydroxyl groups available at the CNW surface to yield CNW-g-PLA nanohybrids. PLA-based nanocomposites were prepared by melt blending to ensure a green concept of the study thereby limiting the use of organic solvents. The influence of PLA-grafted cellulose nanoparticles on the mechanical and thermal properties of the ensuing nanocomposites was deeply investigated. The thermal behavior and mechanical properties of the nanocomposites were determined using differential scanning calorimetry (DSC) and dynamical mechanical and thermal analysis (DMTA), respectively. In theory, evidenced that the chemical grafting of CNW enhances their compatibility with the polymeric matrix and thus improves the final properties of the nanocomposites. Large modification of the crystalline properties such as the crystallization half-time was evidenced according to the nature of the PLA matrix and the content of nanofillers.

Keywords: cellulose nanowhiskers, nanocomposites, coconut husk fiber, ring opening polymerization

Procedia PDF Downloads 294
973 Curcumin and Methotrexate Loaded Montmollilite Clay for Sustained Oral Drug Delivery Application

Authors: Subrata Kar, Banani Kundu, Papiya Nandy, Ruma Basu, Sukhen Das

Abstract:

Natural montmorilollite clay is a common ingredient in pharmaceutical products, both as excipients and active support; hence considered as suitable candidate for Drug Delivery System. In this work, cationic detergent CTAB is used to increase the interlayer spacing of Na+-Montmoriollite clay to intercalate curcumin and methotrexate. Methotrexate is a folic acid antagonist, anti-proliferative and immunosuppressive agent; while curcumin is a bioactive constituent of rhizomes of Curcuma longa, possessing remarkable chemo-preventive and anti-inflammatory properties. The resultant inorganic-organic hybrids are characterized by X-ray diffraction (XRD), Infrared spectroscopy (FTIR) and Thermo Gravimetric Analysis (TGA) to confirm successful intercalation of curcumin and Methotrexate within clay layers. Pharmaceutical investigation of the hybrids is explored by studying the drug loading (%), encapsulation efficiency and release kinetics. Finally in-vitro studies are performed using cancer cells to find the effect of released curcumin to improve the sensitivity of clay bound methotrexate to ameliorate cell death compared to their effectiveness when used without the inorganic aluminosilicate vehicle.

Keywords: montmorillonite, methotrexate, curcumin, loading efficiency, release kinetics, anticancer activity

Procedia PDF Downloads 503
972 TiO2/Clay Minerals (Palygorskite/Halloysite) Nanocomposite Coatings for Water Disinfection

Authors: Dionisios Panagiotaras, Dimitrios Papoulis, Elias Stathatos

Abstract:

Microfibrous palygorskite and tubular halloysite clay mineral combined with nanocrystalline TiO2 are incorporating in the preparation of nanocomposite films on glass substrates via sol-gel route at 450 °C. The synthesis is employing nonionic surfactant molecule as pore directing agent along with acetic acid-based sol-gel route without addition of water molecules. Drying and thermal treatment of composite films ensure elimination of organic material lead to the formation of TiO2 nanoparticles homogeneously distributed on the palygorskite or halloysite surfaces. Nanocomposite films without cracks of active anatase crystal phase on palygorskite and halloysite surfaces are characterized by microscopy techniques, UV-Vis spectroscopy, and porosimetry methods in order to examine their structural properties. The composite palygorskite-TiO2 and halloysite-TiO2 films with variable quantities of palygorskite and halloysite were tested as photocatalysts in the photo-oxidation of Basic Blue 41 azo dye in water. These nanocomposite films proved to be most promising photocatalysts and highly effective to dye’s decoloration in spite of small amount of palygorskite -TiO2 or halloysite- TiO2 catalyst immobilized onto glass substrates mainly due to the high surface area and uniform distribution of TiO2 on clay minerals avoiding aggregation.

Keywords: halloysite, palygorskite, photocatalysis, titanium dioxide

Procedia PDF Downloads 300
971 Biodegradation Study of Diethyl Phthalate Using Bacteria Isolated from Plastic Industry Wastewater Discharge Site

Authors: Sangram Shamrao Patil, Hara Mohan Jena

Abstract:

Phthalates are among the most common organic pollutant since they have become widespread in the environment and found in sediments, natural waters, soils, plants, landfill leachates, biota including human tissue and aquatic organisms. Diethyl phthalate (DEP) is a low molecular weight phthalate which has wide applications as plasticizer and become a major cause of environmental pollution. Environmental protection agency (EPA) listed DEP as priority pollutant because of its toxicity and they recommended human health ambient water quality criterion for diethyl phthalate (DEP) as 4 mg/l. Therefore, wastes containing phthalates require proper treatment before being discharged into the environment. Biodegradation is attractive and efficient treatment method as it is cost effective and produces non-toxic end products. In the present study, a DEP degrading aerobic bacterium was isolated from soil contaminated with plastic industry wastewater. Morphological and biochemical characteristics of isolate were performed. 16S rRNA sequencing and phylogenetic analysis of isolate was carried out and it was identified as Empedobacter brevis. Isolate has been found to tolerate up to 1650 mg/l of DEP. This study will be significant for exploring an application of microbes for remediation of phthalates and development of a suitable bioreactor.

Keywords: diethyl phthalate, plasticizer, pollutant, biodegradation

Procedia PDF Downloads 254
970 Fabrication of Nanostructured Arrays Using Si-Containing Block Copolymer and Dually Responsive Photoresist

Authors: Kyoungok Jung, Chang Hong Bak, Gyeong Cheon Jo, Jin-Baek Kim

Abstract:

Nanostructured arrays have drawn extensive attention because of their unique properties resulting from nanoscale features. However, it is difficult to achieve uniform and freestanding 1D nanostrcutures over a large area. Here, a simple and novel method was developed for fabrication of universal nanoporous templates for high-density nanostructure arrays, by combining self-assembly of a Si-containing block copolymer with a bilayer lithography system. We introduced a dually responsive photoresist bottom layer into which the nanopatterns of block copolymer are transferred by oxygen reactive ion etching. Because the dually responsive layer becomes cross-linked by heating, it can be used as a hard template during the etching process. It becomes soluble again by chain scission upon exposure to light. Therefore, it can be easily removed by the lift-off process. The template was applicable to the various conducting substrates due to the compatibility of the photoresist with a wide range of substrates and was used in electrodeposition for well-aligned and high-density inorganic and organic nanoarrays. We successfully obtained vertically aligned and highly ordered gold nanorods and polypyrrole dots on the substrate without aggregation, and these arrays did not collapse after removing the dually responsive templates by the simple lift-off process.

Keywords: block copolymer, dually responsive, nanostructure, photoresist

Procedia PDF Downloads 242
969 Formulation of Mortars with Marine Sediments

Authors: Nor-Edine Abriak, Mouhamadou Amar, Mahfoud Benzerzour

Abstract:

The transition to a more sustainable economy is directed by a reduction in the consumption of raw materials in equivalent production. The recovery of byproducts and especially the dredged sediment as mineral addition in cements matrix represents an alternative to reduce raw material consumption and construction sector’s carbon footprint. However, the efficient use of sediment requires adequate and optimal treatment. Several processing techniques have so far been applied in order to improve some physicochemical properties. The heat treatment by calcination was effective in removing the organic fraction and activates the pozzolanic properties. In this article, the effect of the optimized heat treatment of marine sediments in the physico-mechanical and environmental properties of mortars are shown. A finding is that the optimal substitution of a portion of cement by treated sediments by calcination at 750 °C helps to maintain or improve the mechanical properties of the cement matrix in comparison with a standard reference mortar. The use of calcined sediment enhances mortar behavior in terms of mechanical strength and durability. From an environmental point of view and life cycle, mortars formulated containing treated sediments are considered inert with respect to the inert waste storage facilities reference (ISDI-France).

Keywords: sediment, calcination, cement, reuse

Procedia PDF Downloads 168
968 Mechanical Testing on Bioplastics Obtained from Banana and Potato Peels in the City of Bogotá, Colombia

Authors: Juan Eduardo Rolon Rios, Fredy Alejandro Orjuela, Alexander Garcia Mariaca

Abstract:

For banana and potato wastes, their peels are processed in order to make animal food with the condition that those wastes must not have started the decomposition process. One alternative to taking advantage of those wastes is to obtain a bioplastic based on starch from banana and potato shells. These products are 100% biodegradables, and researchers have been studying them for different applications, helping in the reduction of organic wastes and ordinary plastic wastes. Without petroleum affecting the prices of bioplastics, bioplastics market has a growing tendency and it is seen that it can keep this tendency in the medium term up to 350%. In this work, it will be shown the results for elasticity module and percent elongation for bioplastics obtained from a mixture of starch of bananas and potatoes peels, with glycerol as plasticizer. The experimental variables were the plasticizer percentage and the mixture between banana starch and potato starch. The results show that the bioplastics obtained can be used in different applications such as plastic bags or sorbets, verifying their admissible degradation percentages for each one of these applications. The results also show that they agree with the data found in the literature due to the fact that mixtures with a major amount of potato starch had the best mechanical properties because of the potato starch characteristics.

Keywords: bioplastics, fruit waste, mechanical testing, mechanical properties

Procedia PDF Downloads 273
967 Geospatial and Statistical Evidences of Non-Engineered Landfill Leachate Effects on Groundwater Quality in a Highly Urbanised Area of Nigeria

Authors: David A. Olasehinde, Peter I. Olasehinde, Segun M. A. Adelana, Dapo O. Olasehinde

Abstract:

An investigation was carried out on underground water system dynamics within Ilorin metropolis to monitor the subsurface flow and its corresponding pollution. Africa population growth rate is the highest among the regions of the world, especially in urban areas. A corresponding increase in waste generation and a change in waste composition from predominantly organic to non-organic waste has also been observed. Percolation of leachate from non-engineered landfills, the chief means of waste disposal in many of its cities, constitutes a threat to the underground water bodies. Ilorin city, a transboundary town in southwestern Nigeria, is a ready microcosm of Africa’s unique challenge. In spite of the fact that groundwater is naturally protected from common contaminants such as bacteria as the subsurface provides natural attenuation process, groundwater samples have been noted to however possesses relatively higher dissolved chemical contaminants such as bicarbonate, sodium, and chloride which poses a great threat to environmental receptors and human consumption. The Geographic Information System (GIS) was used as a tool to illustrate, subsurface dynamics and the corresponding pollutant indicators. Forty-four sampling points were selected around known groundwater pollutant, major old dumpsites without landfill liners. The results of the groundwater flow directions and the corresponding contaminant transport were presented using expert geospatial software. The experimental results were subjected to four descriptive statistical analyses, namely: principal component analysis, Pearson correlation analysis, scree plot analysis, and Ward cluster analysis. Regression model was also developed aimed at finding functional relationships that can adequately relate or describe the behaviour of water qualities and the hypothetical factors landfill characteristics that may influence them namely; distance of source of water body from dumpsites, static water level of groundwater, subsurface permeability (inferred from hydraulic gradient), and soil infiltration. The regression equations developed were validated using the graphical approach. Underground water seems to flow from the northern portion of Ilorin metropolis down southwards transporting contaminants. Pollution pattern in the study area generally assumed a bimodal pattern with the major concentration of the chemical pollutants in the underground watershed and the recharge. The correlation between contaminant concentrations and the spread of pollution indicates that areas of lower subsurface permeability display a higher concentration of dissolved chemical content. The principal component analysis showed that conductivity, suspended solids, calcium hardness, total dissolved solids, total coliforms, and coliforms were the chief contaminant indicators in the underground water system in the study area. Pearson correlation revealed a high correlation of electrical conductivity for many parameters analyzed. In the same vein, the regression models suggest that the heavier the molecular weight of a chemical contaminant of a pollutant from a point source, the greater the pollution of the underground water system at a short distance. The study concludes that the associative properties of landfill have a significant effect on groundwater quality in the study area.

Keywords: dumpsite, leachate, groundwater pollution, linear regression, principal component

Procedia PDF Downloads 99