Search results for: skin and soft tissue infection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4535

Search results for: skin and soft tissue infection

3005 Computational Prediction of the Effect of S477N Mutation on the RBD Binding Affinity and Structural Characteristic, A Molecular Dynamics Study

Authors: Mohammad Hossein Modarressi, Mozhgan Mondeali, Khabat Barkhordari, Ali Etemadi

Abstract:

The COVID-19 pandemic, caused by SARS-CoV-2, has led to significant concerns worldwide due to its catastrophic effects on public health. The SARS-CoV-2 infection is initiated with the binding of the receptor-binding domain (RBD) in its spike protein to the ACE2 receptor in the host cell membrane. Due to the error-prone entity of the viral RNA-dependent polymerase complex, the virus genome, including the coding region for the RBD, acquires new mutations, leading to the appearance of multiple variants. These variants can potentially impact transmission, virulence, antigenicity and evasive immune properties. S477N mutation located in the RBD has been observed in the SARS-CoV-2 omicron (B.1.1. 529) variant. In this study, we investigated the consequences of S477N mutation at the molecular level using computational approaches such as molecular dynamics simulation, protein-protein interaction analysis, immunoinformatics and free energy computation. We showed that displacement of Ser with Asn increases the stability of the spike protein and its affinity to ACE2 and thus increases the transmission potential of the virus. This mutation changes the folding and secondary structure of the spike protein. Also, it reduces antibody neutralization, raising concern about re-infection, vaccine breakthrough and therapeutic values.

Keywords: S477N, COVID-19, molecular dynamic, SARS-COV2 mutations

Procedia PDF Downloads 176
3004 Half Dose Tissue Plasminogen Activator for Intermediate-Risk Pulmonary Embolism

Authors: Macie Matta, Ahmad Jabri, Stephanie Jackson

Abstract:

Introduction: In the absence of hypotension, pulmonary embolism (PE) causing right ventricular dysfunction or strain, whether confirmed by imaging or cardiac biomarkers, is deemed to be an intermediate-risk category. Urgent treatment of intermediate-risk PE can prevent progression to hemodynamic instability and death. Management options include thrombolysis, thrombectomy, or systemic anticoagulation. We aim to evaluate the short-term outcomes of a half-dose tissue plasminogen activator (tPA) for the management of intermediate-risk PE. Methods: We retrospectively identified adult patients diagnosed with intermediate-risk PE between the years 2000 and 2021. Demographic data, lab values, imaging, treatment choice, and outcomes were all obtained through chart review. Primary outcomes measured include major bleeding events and in-hospital mortality. Patients on standard systemic anticoagulation without receiving thrombolysis or thrombectomy served as controls. Patient data were analyzed using SAS®️ Software (version 9.4; Cary, NC) to compare individuals that received half-dose tPA with controls, and statistical significance was set at a p-value of 0.05. Results: We included 57 patients in our final analysis, with 19 receiving tPA. Patient characteristics and comorbidities were comparable between both groups. There was a significant difference between PE location, presence of acute deep vein thrombosis, and peak troponin level between both groups. The thrombolytic cohort was more likely to demonstrate a 60/60 sign and thrombus in transit finding on echocardiography than controls. The thrombolytic group was more likely to have major bleeding (17% vs 7.9%, p= 0.4) and in-hospital mortality (5.3% vs 0%, p=0.3); however, this was not statistically significant. Patients who received half-dose tPA had non-significantly higher rates of major bleeding and in-hospital mortality. Larger scale, randomized control trials are needed to establish the benefit and safety of thrombolytics in patients with intermediate-risk PE.

Keywords: pulmonary embolism, half dose thrombolysis, tissue plasminogen activator, cardiac biomarkers, echocardiographic findings, major bleeding event

Procedia PDF Downloads 75
3003 Molecular Pathogenesis of NASH through the Dysregulation of Metabolic Organ Network in the NASH-HCC Model Mouse Treated with Streptozotocin-High Fat Diet

Authors: Bui Phuong Linh, Yuki Sakakibara, Ryuto Tanaka, Elizabeth H. Pigney, Taishi Hashiguchi

Abstract:

NASH is an increasingly prevalent chronic liver disease that can progress to hepatocellular carcinoma and now is attracting interest worldwide. The STAM™ model is a clinically-correlated murine NASH model which shows the same pathological progression as NASH patients and has been widely used for pharmacological and basic research. The multiple parallel hits hypothesis suggests abnormalities in adipocytokines, intestinal microflora, and endotoxins are intertwined and could contribute to the development of NASH. In fact, NASH patients often exhibit gut dysbiosis and dysfunction in adipose tissue and metabolism. However, the analysis of the STAM™ model has only focused on the liver. To clarify whether the STAM™ model can also mimic multiple pathways of NASH progression, we analyzed the organ crosstalk interactions between the liver and the gut and the phenotype of adipose tissue in the STAM™ model. NASH was induced in male mice by a single subcutaneous injection of 200 µg streptozotocin 2 days after birth and feeding with high-fat diet after 4 weeks of age. The mice were sacrificed at NASH stage. Colon samples were snap-frozen in liquid nitrogen and stored at -80˚C for tight junction-related protein analysis. Adipose tissue was prepared into paraffin blocks for HE staining. Blood adiponectin was analyzed to confirm changes in the adipocytokine profile. Tight junction-related proteins in the intestine showed that expression of ZO-1 decreased with the progression of the disease. Increased expression of endotoxin in the blood and decreased expression of Adiponectin were also observed. HE staining revealed hypertrophy of adipocytes. Decreased expression of ZO-1 in the intestine of STAM™ mice suggests the occurrence of leaky gut, and abnormalities in adipocytokine secretion were also observed. Together with the liver, phenotypes in these organs are highly similar to human NASH patients and might be involved in the pathogenesis of NASH.

Keywords: Non-alcoholic steatohepatitis, hepatocellular carcinoma, fibrosis, organ crosstalk, leaky gut

Procedia PDF Downloads 159
3002 The Role of Vitamin D Supplementation in Augmenting IFN-γ Production in Response to Mycobacterium Tuberculosis Infection: A Randomized Controlled Trial

Authors: Muhammad Imran Hussain, Ramisha Ibtisam, Tayyaba Fatima, Huba Khalid, Ayesha Aziz, Khansa, Adan Sitara, Anam Shahzad, Aymen Jabeen

Abstract:

Vitamin D supports the immune system fight TB by inhibiting Interferon-gamma (IFN-γ) and lowering host inflammation. The purpose of the research was to see if giving the vitamin D supplements to TB patients affected their prognosis. A randomized placebo control study of 200 TB patients was performed among which 106 received 400,000 IU of injectable vitamin D3 and 94 received placebo for 2 doses. Assessment was carried out at the end of every month for 3 months. IFN-γ responses to whole blood stimulation generated by the Mycobacterium tuberculosis sonicate (MTBs) antigen and early secreted and T cell activated 6 kDa (ESAT6) were assessed at 0 and 12 weeks. The statistical analysis used descriptive statistics (mean and standard deviation), Friedman's test and Fisher's test. The vitamin D group gained significantly more weight (+3.90 pounds) and had less persistent lung disease on imaging (1.33 zones vs. 1.84 zones). They also had a 50% decrease in cavity size. Additionally, patients with low baseline serum concentrations of 25-(OH)D had a significant increase in MTB-induced IFN-γ production after taking vitamin D supplements. Vitamin D administration in large amounts can hasten the recovery of TB patients. The findings point is a therapeutically useful activity of Vitamin D's in the management for tuberculosis.

Keywords: tuberculosis, vitamin D, interferon gamma, protein, infection

Procedia PDF Downloads 52
3001 Epidemiological Survey of Feline Leukemia Virus in Domestic Cats on Tsushima Island, Japan: Tsushima Leopard Cats Are at Risk

Authors: Isaac Makundi, Kazuo Nishigaki

Abstract:

The Tsushima leopard cat (TLC) Prionailurus bengalensis euptilurus, designated a National Natural Monument of Japan, inhabits Tsushima Island, Nagasaki Prefecture, Japan. TLC is considered a subspecies of P. bengalensis, and lives only on Tsushima Island. TLCs are threatened by various infectious diseases. Feline leukemia virus (FeLV) causes a serious infectious disease with a poor prognosis in cats. Therefore, the transmission of FeLV from Tsushima domestic cats (TDCs) to TLCs may threaten the TLC population. We investigated the FeLV infection status of both TDCs and TLCs on Tsushima Island by screening blood samples for FeLV p27 antigen and using PCR to amplify the full-length FeLV env gene. The prevalence of FeLV was 6.4% in TDCs and 0% in TLCs. We also demonstrated that the virus can replicate in the cells of TLCs, suggesting its potential cross-species transmission. The viruses in TDCs were classified as genotype I/clade 3, which is prevalent on a nearby island, based on previous studies of FeLV genotypes and FeLV epidemiology. The FeLV viruses identified on Tsushima Island can be further divided into two lineages within genotype I/clade 3, which are geographically separated in Kamijima and Shimojima, indicating that FeLV may have been transmitted to Tsushima Island at least twice. Monitoring FeLV infection in the TDC and TLC populations is highly recommended as part of the TLC surveillance and management strategy.

Keywords: epidemiology, Feline leukemia virus, Tsushima Island, wildlife management

Procedia PDF Downloads 206
3000 Biocompatible Porous Titanium Scaffolds Produced Using a Novel Space Holder Technique

Authors: Yunhui Chen, Damon Kent, Matthew Dargusch

Abstract:

Synthetic scaffolds are a highly promising new approach to replace both autografts and allografts to repair and remodel damaged bone tissue. Biocompatible porous titanium scaffold was manufactured through a powder metallurgy approach. Magnesium powder was used as space holder material which was compacted with titanium powder and removed during sintering. Evaluation of the porosity and mechanical properties showed a high level of compatibility with human bone. Interconnectivity between pores is higher than 95% for porosity as low as 30%. The elastic moduli are 39 GPa, 16 GPa and 9 GPa for 30%, 40% and 50% porosity samples which match well to that of natural bone (4-30 GPa). The yield strengths for 30% and 40% porosity samples of 315 MPa and 175 MPa are superior to that of human bone (130-180 MPa). In-vitro cell culture tests on the scaffold samples using Human Mesenchymal Stem Cells (hMSCs) demonstrated their biocompatibility and indicated osseointegration potential. The scaffolds allowed cells to adhere and spread both on the surface and inside the pore structures. With increasing levels of porosity/interconnectivity, improved cell proliferation is obtained within the pores. It is concluded that samples with 30% porosity exhibit the best biocompatibility. The results suggest that porous titanium scaffolds generated using this manufacturing route have excellent potential for hard tissue engineering applications.

Keywords: scaffolds, MG-63 cell culture, titanium, space holder

Procedia PDF Downloads 235
2999 Evaluation of Pile Performance in Different Layers of Soil

Authors: Orod Zarrin, Mohesn Ramezan Shirazi, Hassan Moniri

Abstract:

The use of pile foundations technique is developed to support structures and buildings on soft soil. The most important dynamic load that can affect the pile structure is earthquake vibrations. Pile foundations during earthquake excitation indicate that piles are subject to damage by affecting the superstructure integrity and serviceability. During an earthquake, two types of stresses can damage the pile head, inertial load that is caused by superstructure and deformation which caused by the surrounding soil. Soil deformation and inertial load are associated with the acceleration developed in an earthquake. The acceleration amplitude at the ground surface depends on the magnitude of earthquakes, soil properties and seismic source distance. According to the investigation, the damage is between the liquefiable and non-liquefiable layers and also soft and stiff layers. This damage crushes the pile head by increasing the inertial load which is applied by the superstructure. On the other hand, the cracks on the piles due to the surrounding soil are directly related to the soil profile and causes cracks from small to large. However, the large cracks reason have been listed such as liquefaction, lateral spreading, and inertial load. In the field of designing, elastic response of piles is always a challenge for designer in liquefaction soil, by allowing deflection at top of piles. Moreover, absence of plastic hinges in piles should be insured, because the damage in the piles is not observed directly. In this study, the performance and behavior of pile foundations during liquefaction and lateral spreading are investigated. In addition, emphasize on the soil behavior in the liquefiable and non-liquefiable layers by different aspect of piles damage such as ranking, location and degree of damage are going to discuss.

Keywords: pile, earthquake, liquefaction, non-liquefiable, damage

Procedia PDF Downloads 301
2998 A Review of the Drawbacks of Current Fixed Connection Façade Systems, Non-Structural Standards, and Ways of Integrating Movable Façade Technology into Buildings

Authors: P. Abtahi, B. Samali

Abstract:

Façade panels of various shapes, weights, and connections usually act as a barrier between the indoor and outdoor environments. They also play a major role in enhancing the aesthetics of building structures. They are attached by different types of connections to the primary structure or inner panels in double skin façade skins. Structural buildings designed to withstand seismic shocks have been undergoing a critical appraisal in recent years, with the emphasis changing from ‘strength’ to ‘performance’. Performance based design and analysis have found their way into research, development, and practice of earthquake engineering, particularly after the 1994 Northridge and 1995 Kobe earthquakes. The design performance of facades as non-structural elements has now focused mainly on evaluating the damage sustained by façade frames with fixed connections, not movable ones. This paper will review current design standards for structural buildings, including the performance of structural and non-structural components during earthquake excitations in order to overview and evaluate the damage assessment and behaviour of various façade systems in building structures during seismic activities. The proposed solutions for each facade system will be discussed case by case to evaluate their potential for incorporation with newly designed connections. Finally, Double-Skin-Facade systems can potentially be combined with movable facade technology, although other glazing systems would require minor to major changes in their design before being integrated into the system.

Keywords: building performance, earthquake engineering, glazing system, movable façade technology

Procedia PDF Downloads 548
2997 Experimental Study on Shaft Grouting Bearing Capacity of Small Diameter Bored Piles

Authors: Trung Le Thanh

Abstract:

Bored piles are always the optimal solution for high-rise building foundations. They have many advantages, such as large diameter, large pile length and construction in all different geological conditions. However, due to construction characteristics, the load-bearing capacity of bored piles is not optimal because wall friction is reduced due to poor contact between the pile and the surrounding soil. Therefore, grouting technology along the pile body helps improve the load-bearing capacity of bored piles significantly through increasing the skin resistance of the pile and surrounding soil. The improvement of pile skin resistance depends on the parameters of grouting technology, especially grouting volume, mortar viscosity, mortar strength,... and different geological conditions. Studies show that the technology of grouting piles on sandy soil is more effective than on clay. This article presents an experimental model to determine the load-bearing capacity of bored piles with a diameter of 400 mm and a length of 3 m on sand with different slurry volume in Tan Uyen city, Binh Duong province. On that basis, analyze the correlation between the increase in load-bearing capacity of bored piles without and with shaft grouting pile. Research results show that the wall resistance of shaft grouted piles increases 2-3 times compared to piles without grouting, and the pile's load-bearing capacity increases significantly. The article's research provides scientific value for consulting work on the design of bored piles when grouted along the pile body.

Keywords: bored pile, shaft grouting, bearing capacity, pile shaft resistance

Procedia PDF Downloads 65
2996 Effect of Porous Multi-Layer Envelope System on Effective Wind Pressure of Building Ventilation

Authors: Ying-Chang Yu, Yuan-Lung Lo

Abstract:

Building ventilation performance is an important indicator of indoor comfort. However, in addition to the geometry of the building or the proportion of the opening, the ventilation performance is also very much related to the actual wind pressure of the building. There are more and more contemporary building designs built with multi-layer exterior envelope. Due to ventilation and view observatory requirement, the porous outer layer of the building is commonly adopted and has a significant wind damping effect, causing the phenomenon of actual wind pressure loss. However, the relationship between the wind damping effect and the actual wind pressure is not linear. This effect can make the indoor ventilation of the building rationalized to reasonable range under the condition of high wind pressure, and also maintain a good amount of ventilation performance under the condition of low wind pressure. In this study, wind tunnel experiments were carried out to simulate the different wind pressures flow through the porous outer layer, and observe the actual wind pressure strength engage with the window layer to find the decreasing relationship between the damping effect of the porous shell and the wind pressure. Experiment specimen scale was designed to be 1:50 for testing real-world building conditions; the study found that the porous enclosure has protective shielding without affecting low-pressure ventilation. Current study observed the porous skin may damp more wind energy to ease the wind pressure under high-speed wind. Differential wind speed may drop the pressure into similar pressure level by using porous skin. The actual mechanism and value of this phenomenon will need further study in the future.

Keywords: multi-layer facade, porous media, wind damping, wind tunnel test, building ventilation

Procedia PDF Downloads 148
2995 Rheometer Enabled Study of Tissue/biomaterial Frequency-Dependent Properties

Authors: Polina Prokopovich

Abstract:

Despite the well-established dependence of cartilage mechanical properties on the frequency of the applied load, most research in the field is carried out in either load-free or constant load conditions because of the complexity of the equipment required for the determination of time-dependent properties. These simpler analyses provide a limited representation of cartilage properties thus greatly reducing the impact of the information gathered hindering the understanding of the mechanisms involved in this tissue replacement, development and pathology. More complex techniques could represent better investigative methods, but their uptake in cartilage research is limited by the highly specialised training required and cost of the equipment. There is, therefore, a clear need for alternative experimental approaches to cartilage testing to be deployed in research and clinical settings using more user-friendly and financial accessible devices. Frequency dependent material properties can be determined through rheometry that is an easy to use requiring a relatively inexpensive device; we present how a commercial rheometer can be adapted to determine the viscoelastic properties of articular cartilage. Frequency-sweep tests were run at various applied normal loads on immature, mature and trypsinased (as model of osteoarthritis) cartilage samples to determine the dynamic shear moduli (G*, G′ G″) of the tissues. Moduli increased with increasing frequency and applied load; mature cartilage had generally the highest moduli and GAG depleted samples the lowest. Hydraulic permeability (KH) was estimated from the rheological data and decreased with applied load; GAG depleted cartilage exhibited higher hydraulic permeability than either immature or mature tissues. The rheometer-based methodology developed was validated by the close comparison of the rheometer-obtained cartilage characteristics (G*, G′, G″, KH) with results obtained with more complex testing techniques available in literature. Rheometry is relatively simpler and does not require highly capital intensive machinery and staff training is more accessible; thus the use of a rheometer would represent a cost-effective approach for the determination of frequency-dependent properties of cartilage for more comprehensive and impactful results for both healthcare professional and R&D.

Keywords: tissue, rheometer, biomaterial, cartilage

Procedia PDF Downloads 81
2994 Social Strategeries for HIV and STDs Prevention

Authors: Binu Sahayam

Abstract:

HIV/AIDS epidemic is in its third decade and has become a virulent disease that threatens the world population. Many countless efforts had been made yet this has become a social and developmental concern. According to UNAIDS 2013 Report, In India around 2.4 million people are currently living with HIV and third in the infection rate. As every country is facing this health issue, this has become a social and developmental concern for India. In country like India, open discussion on sex and sexuality is not possible due to its conventional culture. Educational institution like schools and colleges can create awareness on sex education, life skill education, information on HIV and STD which is lacking. It is very clear that preventive knowledge remains low and this leads to increase in the HIV/AIDS infection rate. HIV/AIDS is a disease which is not curable but preventable, keeping this in mind religious leaders of various have come forward in addressing the issue of HIV/AIDS using various social strategies. The study has been focused on three main India religious teachings Hinduism, Christianity and Islam in addressing the issue of HIV/AIDS and its possible intervention in dealing with HIV/AIDS prevention. The study is important because it highlights the health issues, stigma discrimination, psychological disturbances and insecurity faced by the infected and affected persons. Therefore, this study privileges the role of religious leadership in the efforts and processes of preventing HIV/AIDS, caring and providing support to People living with HIV/AIDS and argues that intervention of religious leadership is an effective measure to confront many of the barriers associated with HIV/AIDS.

Keywords: HIV and AIDS, STDs, religion and religious organisation

Procedia PDF Downloads 392
2993 Protein Quality of Game Meat Hunted in Latvia

Authors: Vita Strazdina, Aleksandrs Jemeljanovs, Vita Sterna

Abstract:

Not all proteins have the same nutritional value, since protein quality strongly depends on its amino acid composition and digestibility. The meat of game animals could be a high protein source because of its well-balanced essential amino acids composition. Investigations about biochemical composition of game meat such as wild boar (Sus scrofa scrofa), roe deer (Capreolus capreolus) and beaver (Castor fiber) are not very much. Therefore, the aim of the investigation was evaluate protein composition of game meat hunted in Latvia. The biochemical analysis, evaluation of connective tissue and essential amino acids in meat samples were done, the amino acids score were calculate. Results of analysis showed that protein content 20.88-22.05% of all types of meat samples is not different statistically. The content of connective tissue from 1.3% in roe deer till 1.5% in beaver meat allowed classified game animal as high quality meat. The sum of essential amino acids in game meat samples were determined 7.05–8.26g100g-1. Roe deer meat has highest protein content and lowest content of connective tissues among game meat hunted in Latvia. Concluded that amino acid score for limiting amino acids phenylalanine and tyrosine is high and shows high biological value of game meat.

Keywords: dietic product, game meat, amino acids, scores

Procedia PDF Downloads 321
2992 The 6Rs of Radiobiology in Photodynamic Therapy: Review

Authors: Kave Moloudi, Heidi Abrahamse, Blassan P. George

Abstract:

Radiotherapy (RT) and photodynamic therapy (PDT) are both forms of cancer treatment that aim to kill cancer cells while minimizing damage to healthy tissue. The similarity between RT and PDT lies in their mechanism of action. Both treatments use energy to damage cancer cells. RT uses high-energy radiation to damage the DNA of cancer cells, while PDT uses light energy to activate a photosensitizing agent, which produces reactive oxygen species (ROS) that damage the cancer cells. Both treatments require careful planning and monitoring to ensure the correct dose is delivered to the tumor while minimizing damage to surrounding healthy tissue. They are also often used in combination with other treatments, such as surgery or chemotherapy, to improve overall outcomes. However, there are also significant differences between RT and PDT. For example, RT is a non-invasive treatment that can be delivered externally or internally, while PDT requires the injection of a photosensitizing agent and the use of a specialized light source to activate it. Additionally, the side effects and risks associated with each treatment can vary. In this review, we focus on generalizing the 6Rs of radiobiology in PDT, which can open a window for the clinical application of Radio-photodynamic therapy with minimum side effects. Furthermore, this review can open new insight to work on and design new radio-photosensitizer agents in Radio-photodynamic therapy.

Keywords: radiobiology, photodynamic therapy, radiotherapy, 6Rs in radiobiology, ROS, DNA damages, cellular and molecular mechanism, clinical application.

Procedia PDF Downloads 102
2991 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 164
2990 Experimental-Numerical Inverse Approaches in the Characterization and Damage Detection of Soft Viscoelastic Layers from Vibration Test Data

Authors: Alaa Fezai, Anuj Sharma, Wolfgang Mueller-Hirsch, André Zimmermann

Abstract:

Viscoelastic materials have been widely used in the automotive industry over the last few decades with different functionalities. Besides their main application as a simple and efficient surface damping treatment, they may ensure optimal operating conditions for on-board electronics as thermal interface or sealing layers. The dynamic behavior of viscoelastic materials is generally dependent on many environmental factors, the most important being temperature and strain rate or frequency. Prior to the reliability analysis of systems including viscoelastic layers, it is, therefore, crucial to accurately predict the dynamic and lifetime behavior of these materials. This includes the identification of the dynamic material parameters under critical temperature and frequency conditions along with a precise damage localization and identification methodology. The goal of this work is twofold. The first part aims at applying an inverse viscoelastic material-characterization approach for a wide frequency range and under different temperature conditions. For this sake, dynamic measurements are carried on a single lap joint specimen using an electrodynamic shaker and an environmental chamber. The specimen consists of aluminum beams assembled to adapter plates through a viscoelastic adhesive layer. The experimental setup is reproduced in finite element (FE) simulations, and frequency response functions (FRF) are calculated. The parameters of both the generalized Maxwell model and the fractional derivatives model are identified through an optimization algorithm minimizing the difference between the simulated and the measured FRFs. The second goal of the current work is to guarantee an on-line detection of the damage, i.e., delamination in the viscoelastic bonding of the described specimen during frequency monitored end-of-life testing. For this purpose, an inverse technique, which determines the damage location and size based on the modal frequency shift and on the change of the mode shapes, is presented. This includes a preliminary FE model-based study correlating the delamination location and size to the change in the modal parameters and a subsequent experimental validation achieved through dynamic measurements of specimen with different, pre-generated crack scenarios and comparing it to the virgin specimen. The main advantage of the inverse characterization approach presented in the first part resides in the ability of adequately identifying the material damping and stiffness behavior of soft viscoelastic materials over a wide frequency range and under critical temperature conditions. Classic forward characterization techniques such as dynamic mechanical analysis are usually linked to limitations under critical temperature and frequency conditions due to the material behavior of soft viscoelastic materials. Furthermore, the inverse damage detection described in the second part guarantees an accurate prediction of not only the damage size but also its location using a simple test setup and outlines; therefore, the significance of inverse numerical-experimental approaches in predicting the dynamic behavior of soft bonding layers applied in automotive electronics.

Keywords: damage detection, dynamic characterization, inverse approaches, vibration testing, viscoelastic layers

Procedia PDF Downloads 205
2989 Properties of Adipose Tissue Derived Mesenchymal Stem Cells with Long-Term Cryopreservation

Authors: Jienny Lee, In-Soo Cho, Sang-Ho Cha

Abstract:

Adult mesenchymal stem cells (MSCs) have been investigated using preclinical approaches for tissue regeneration. Porcine MSCs (pMSCs) are capable of growing and attaching to plastic with a fibroblast-like morphology and then differentiating into bone, adipose, and cartilage tissues in vitro. This study was conducted to investigate the proliferating abilities, differentiation potentials, and multipotency of miniature pig adipose tissue-derived MSCs (mpAD-MSCs) with or without long-term cryopreservation, considering that cryostorage has the potential for use in clinical applications. After confirming the characteristics of the mpAD-MSCs, we examined the effect of long-term cryopreservation (> 2 years) on expression of cell surface markers (CD34, CD90 and CD105), proliferating abilities (cumulative population doubling level, doubling time, colony-forming unit, and MTT assay) and differentiation potentials into mesodermal cell lineages. As a result, the expression of cell surface markers is similar between thawed and fresh mpAD-MSCs. However, long-term cryopreservation significantly lowered the differentiation potentials (adipogenic, chondrogenic, and osteogenic) of mpAD-MSCs. When compared with fresh mpAD-MSCs, thawed mpAD-MSCs exhibited lower expression of mesodermal cell lineage-related genes such as peroxisome proliferator-activated receptor-g2, lipoprotein lipase, collagen Type II alpha 1, osteonectin, and osteocalcin. Interestingly, long-term cryostoraged mpAD-MSCs exhibited significantly higher cell viability than the fresh mpAD-MSCs. Long-term cryopreservation induced a 30% increase in the cell viability of mpAD-MSCs when compared with the fresh mpAD-MSCs at 5 days after thawing. However, long-term cryopreservation significantly lowered expression of stemness markers such as Oct3/4, Sox2, and Nanog. Furthermore, long-term cryopreservation negatively affected expression of senescence-associated genes such as telomerase reverse transcriptase and heat shock protein 90 of mpAD-MSCs when compared with the fresh mpAD-MSCs. The results from this study might be important for the successful application of MSCs in clinical trials after long-term cryopreservation.

Keywords: mesenchymal stem cells, cryopreservation, stemness, senescence

Procedia PDF Downloads 235
2988 Serotype Distribution and Demographics of Dengue Patients in a Tertiary Hospital of Lahore, Pakistan During the 2011 Epidemic

Authors: Muhammad Munir, Riffat Mehboob, Samina Naeem, Muhammad Salman, Shehryar Ahmed, Irshad Hussain Qureshi, Tahira Murtaza Cheema, Ashraf Sultan, Akmal Laeeq, Nakhshab Choudhry, Asad Aslam Khan, Fridoon Jawad Ahmad

Abstract:

A dengue outbreak in Lahore, Pakistan during 2011 was unprecedented in terms of severity and magnitude. This research aims to determine the serotype distribution of dengue virus during this outbreak and classify the patients demographically. 5ml of venous blood was drawn aseptically from 166 patients with dengue-like signs to test for the virus between the months of August to November 2011. The samples were sent to the CDC, Atlanta, Georgia for the purpose of molecular assays to determine their serotype. RT-PCR protocol was performed targeting at the 4 dengue serotypes. Out of 166 cases, dengue infection was detected with RT-PCR in 95 cases, all infected with same serotype DEN-2. 75% of positive cases were males while 25% were females. Most positive patients were in the age range of 16-30 years. 33% positive cases had accompanying bleeding. This is first study during the 2011 dengue epidemic in Lahore that reports DEN-2 as the only prevalent serotype. It also indicates that more infected patients were males, adults, within age range of 16-30 years, peaked in the month of November, Dengue hemorrhagic fever (DHF) is manifested more in females, Ravi town was heavily hit by dengue virus infection.

Keywords: dengue, serotypes, Pakistan, DEN 2, Lahore, demography, serotype distrbution, 2011 epidemic

Procedia PDF Downloads 500
2987 The Effects of Periostin in a Rat Model of Isoproterenol-Mediated Cardiotoxicity

Authors: Mahmut Sozmen, Alparslan Kadir Devrim, Yonca Betil Kabak, Tuba Devrim

Abstract:

Acute myocardial infarction is the leading cause of deaths in the worldwide. Mature cardiomyocytes do not have the ability to regenerate instead fibrous tissue proliferate and granulation tissue to fill out. Periostin is an extracellular matrix protein from fasciclin family and it plays an important role in the cell adhesion, migration, and growth of the organism. Periostin prevents apoptosis while stimulating cardiomyocytes. The main objective of this project is to investigate the effects of the recombinant murine periostin peptide administration for the cardiomyocyte regeneration in a rat model of acute myocardial infarction. The experiment was performed on 84 male rats (6 months old) in 4 group each contains 21 rats. Saline applied subcutaneously (1 ml/kg) two times with 24 hours intervals to the rats in control group (Group 1). Recombinant periostin peptide (1 μg/kg) dissolved in saline applied intraperitoneally in group 2 on 1, 3, 7, 14 and 21. days on same dates in group 4. Isoproterenol dissolved in saline applied intraperitoneally (85mg/kg/day) two times with 24 hours intervals to the groups 3 and 4. Rats in group 4 further received recombinant periostin peptide (1 μg/kg) dissolved in saline intraperitoneally starting one day after the final isoproterenol administration on days 1, 3, 7, 14 and 21. Following the final application of periostin rats continued to feed routinely with pelleted chow and water ad libitum for further seven days. At the end of 7th day rats sacrificed, blood and heart tissue samples collected for the immunohistochemical and biochemical analysis. Angiogenesis in response to tissue damage, is a highly dynamic process regulated by signals from the surrounding extracellular matrix and blood serum. In this project, VEGF, ANGPT, bFGF, TGFβ are the key factors that contribute to cardiomyocyte regeneration were investigated. Additionally, the relationship between mitosis and apoptosis (Bcl-2, Bax, PCNA, Ki-67, Phopho-Histone H3), cell cycle activators and inhibitors (Cyclin D1, D2, A2, Cdc2), the origin of regenerating cells (cKit and CD45) were examined. Present results revealed that periostin stimulated cardiomyocye cell-cycle re-entry in both normal and MCA damaged cardiomyocytes and increased angiogenesis. Thus, periostin contributes to cardiomyocyte regeneration during the healing period following myocardial infarction which provides a better understanding of its role of this mechanism, improving recovery rates and it is expected to contribute the lack of literature on this subject. Acknowledgement: This project was financially supported by Turkish Scientific Research Council- Agriculture, Forestry and Veterinary Research Support Group (TUBİTAK-TOVAG; Project No: 114O734), Ankara, TURKEY.

Keywords: cardiotoxicity, immunohistochemistry, isoproterenol, periostin

Procedia PDF Downloads 234
2986 Method Optimisation for [¹⁸F]-FDG Rodent Imaging Studies

Authors: J. Visser, C. Driver, T. Ebenhan

Abstract:

[¹⁸F]-FDG (fluorodeoxyglucose) is a radiopharmaceutical compound that is used for non-invasive cancer tumor imaging through positron emission tomography (PET). This radiopharmaceutical is used to visualise the metabolic processes in tumour tissues, which can be applied for the diagnosis and prognosis of various types of cancer. [¹⁸F]-FDG has widespread use in both clinical and pre-clinical research settings. Imaging using [¹⁸F]-FDG results in representative normal tissue distribution as well as visualisation of hypermetabolic lesions ([¹⁸F]-FDG avid foci). The metabolic tissue concentration of these lesions following [¹⁸F]-FDG administration can be quantified using Standard Uptake Values (SUV). Standard uptake values of [¹⁸F]-FDG-based Positron Emission Tomography can be influenced by various biological and technical handling factors. Biological factors that affect [¹⁸F]-FDG uptake include the blood glucose levels of subjects, normal physiological variants between subjects and administration of certain pharmaceutical agents. Technical factors that can have an effect include the route of radiopharmaceutical or pharmaceutical agents administered and environmental conditions such as ambient temperature and lighting. These factors influencing tracer uptake need to be investigated to improve the robustness of the imaging protocol, which will achieve reproducible image acquisition across various research projects, optimised tumor visualisation and increased data validity and reliability.

Keywords: fluorodeoxyglucose, tumour imaging, Rodent, Blood Glucose, PET/CT Imaging

Procedia PDF Downloads 11
2985 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer Disease - Curative and Protective Effect of Lepidium sativum Water Extract on Hippocampus Rats Brain Tissue

Authors: Maha J. Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad S. Ali

Abstract:

The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width(HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder and decreasing in lipid polarity in AlCl3 group were indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approaches nearly the control values. These results were supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. Also the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.

Keywords: aluminum chloride, alzheimer disease, ATR-IR, Lipidium sativum

Procedia PDF Downloads 366
2984 Street-Connected Youth: A Priority for Global HIV Prevention

Authors: Shorena Sadzaglishvili, Teona Gotsiridze, Ketevan Lekishvili, Darejan Javakhishvili, Alida Bouris

Abstract:

Globally, adolescents and young people experience high levels of HIV vulnerability and risk. Estimates suggest that AIDS-related deaths among young people are increasing, suggesting poor prioritization of adolescents in national plans for HIV testing and treatment services. HIV/AIDS is currently the sixth leading cause of death in people aged 10-24 years. Among young people, street connected youth are clearly distinguished as being among the most at risk for HIV infection. The present study recognizes the urgent need to scale up effective HIV responses that are tailored to the unique needs of street connected youth for the global HIV agenda and especially, the former Soviet country - Georgia, where 'street kids' are a new phenomenon and estimated to be about 2,500. During two months trained interviewers conducted individual semi-structured qualitative interviews with 22 key informants from the local governmental and nongovernmental service organizations, including psychologists, social workers, peer educators, mobile health workers, and managers. Informants discussed social network characteristics influencing street connected youth’s sexual risk behaviors. Data were analyzed using Dedoose. It was revealed that there are three types of homogeneous networks of street-connected youth aged 10-19 based on ethnical background: (1) Georgians; (2) migrant kids of Azeri-Kurdish origin, and (3) local Roma-Moldavian kids. These networks are distinguished with various HIV risk through both risky sexual and drug-related behaviors. In addition, there are several cases of HIV infection identified through reactive social services. Street connected youth do not have basic information about the HIV related sexual, alcohol and drug behaviors nor there are any systematic programs providing HIV testing and consultation for reducing the vulnerability of HIV infection. There is a need to systematically examine street-connected youth risk-taking behaviors by applying an integrated, multilevel framework to a population at great risk of HIV. Acknowledgment: This work was supported by Shota Rustaveli National Science Foundation of Georgia (SRNSFG) [#FR 17_31], Ilia State University.

Keywords: street connected youth, social networks, HIV/AIDS, HIV testing

Procedia PDF Downloads 165
2983 Rasagiline Improves Metabolic Function and Reduces Tissue Injury in the Substantia Nigra in Parkinson's Disease: A Longitudinal In-Vivo Advanced MRI Study

Authors: Omar Khan, Shana Krstevska, Edwin George, Veronica Gorden, Fen Bao, Christina Caon, NP-C, Carla Santiago, Imad Zak, Navid Seraji-Bozorgzad

Abstract:

Objective: To quantify cellular injury in the substantia nigra (SN) in patients with Parkinson's disease (PD) and to examine the effect of rasagiline of tissue injury in the SN in patients with PD. Background: N-acetylaspartate (NAA) quantified with MRS is a reliable marker of neuronal metabolic function. Fractional anisotropy (FA) and mean diffusivity (MD) obtained with DTI, characterize tissue alignment and integrity. Rasagline, has been shown to exert anti-apototic effect. We applied these advanced MRI techniques to examine: (i) the effect of rasagiline on cellular injury and metabolism in patients with early PD, and (ii) longitudinal changes seen over time in PD. Methods: We conducted a prospective longitudinal study in patients with mild PD, naive to dopaminergic treatment. The imaging protocol included multi-voxel proton-MRS and DTI of the SN, acquired on a 3T scanner. Scans were performed at baseline and month 3, during which the patient was on no treatment. At that point, rasagiline 1 mg orally daily was initiated and MRI scans are were obtained at 6 and 12 months after starting rasagiline. The primary objective was to compare changes during the 3-month period of “no treatment” to the changes observed “on treatment” with rasagiline at month 12. Age-matched healthy controls were also imaged. Image analysis was performed blinded to treatment allocation and period. Results: 25 patients were enrolled in this study. Compared to the period of “no treatment”, there was significant increase in the NAA “on treatment” period (-3.04 % vs +10.95 %, p= 0.0006). Compared to the period of “no treatment”, there was significant increase in following 12 month in the FA “on treatment” (-4.8% vs +15.3%, p<0.0001). The MD increased during “no treatment” and decreased in “on treatment” (+2.8% vs -7.5%, p=0.0056). Further analysis and clinical correlation are ongoing. Conclusions: Advanced MRI techniques quantifying cellular injury in the SN in PD is a feasible approach to investigate dopaminergic neuronal injury and could be developed as an outcome in exploratory studies. Rasagiline appears to have a stabilizing effect on dopaminergic cell loss and metabolism in the SN in PD, that warrants further investigation in long-term studies.

Keywords: substantia nigra, Parkinson's disease, MRI, neuronal loss, biomarker

Procedia PDF Downloads 315
2982 Effects of Multilayer Coating of Chitosan and Polystyrene Sulfonate on Quality of ‘Nam Dok Mai No.4’ Mango

Authors: N. Hadthamard, P. Chaumpluk, M. Buanong, P. Boonyaritthongchai, C. Wongs-Aree

Abstract:

Ripe ‘Nam Dok Mai’ mango (Mangifera indica L.) is an important exported fruit of Thailand, but rapidly declined in the quality attributes mainly by infection of anthracnose and stem end rot diseases. Multilayer coating is considered as a developed technique to maintain the postharvest quality of mangoes. The utilization of alternated coating by matching oppositely electrostatic charges between 0.1% chitosan and 0.1% polystyrene sulfonate (PSS) was studied. A number of the coating layers (layer by layer) were applied on mature green ‘Nam Dok Mai No.4’ mangoes prior to storage at 25 oC, 65-70% relative humidity (RH). There were significant differences in some quality attributes of mangoes coated by 3½ layers, 4½ layers and 5½ layers. In comparison to coated mangoes, uncoated fruits were higher in weight loss, total soluble solids, respiration rate, ethylene production and disease incidence except the titratable acidity. Coating fruit at 3½ layers exhibited the ripening delay and reducing disease infection without off flavour. On the other hand, fruit coated with 5½ layers comprised the lowest acceptable score, caused by exhibiting disorders from fermentation at the end of storage. As a result, multilayer coating between chitosan and PSS could effectively maintain the postharvest quality of mango, but number of coating layers should be thoroughly considered.

Keywords: multilayer, chitosan, polystyrene sulfonate, Nam Dok Mai No.4

Procedia PDF Downloads 211
2981 Flow and Heat Transfer Analysis of Copper-Water Nanofluid with Temperature Dependent Viscosity past a Riga Plate

Authors: Fahad Abbasi

Abstract:

Flow of electrically conducting nanofluids is of pivotal importance in countless industrial and medical appliances. Fluctuations in thermophysical properties of such fluids due to variations in temperature have not received due attention in the available literature. Present investigation aims to fill this void by analyzing the flow of copper-water nanofluid with temperature dependent viscosity past a Riga plate. Strong wall suction and viscous dissipation have also been taken into account. Numerical solutions for the resulting nonlinear system have been obtained. Results are presented in the graphical and tabular format in order to facilitate the physical analysis. An estimated expression for skin friction coefficient and Nusselt number are obtained by performing linear regression on numerical data for embedded parameters. Results indicate that the temperature dependent viscosity alters the velocity, as well as the temperature of the nanofluid and, is of considerable importance in the processes where high accuracy is desired. Addition of copper nanoparticles makes the momentum boundary layer thinner whereas viscosity parameter does not affect the boundary layer thickness. Moreover, the regression expressions indicate that magnitude of rate of change in effective skin friction coefficient and Nusselt number with respect to nanoparticles volume fraction is prominent when compared with the rate of change with variable viscosity parameter and modified Hartmann number.

Keywords: heat transfer, peristaltic flows, radially varying magnetic field, curved channel

Procedia PDF Downloads 166
2980 Characterization of Articular Cartilage Based on the Response of Cartilage Surface to Loading/Unloading

Authors: Z. Arabshahi, I. Afara, A. Oloyede, H. Moody, J. Kashani, T. Klein

Abstract:

Articular cartilage is a fluid-swollen tissue of synovial joints that functions by providing a lubricated surface for articulation and to facilitate the load transmission. The biomechanical function of this tissue is highly dependent on the integrity of its ultrastructural matrix. Any alteration of articular cartilage matrix, either by injury or degenerative conditions such as osteoarthritis (OA), compromises its functional behaviour. Therefore, the assessment of articular cartilage is important in early stages of degenerative process to prevent or reduce further joint damage with associated socio-economic impact. Therefore, there has been increasing research interest into the functional assessment of articular cartilage. This study developed a characterization parameter for articular cartilage assessment based on the response of cartilage surface to loading/unloading. This is because the response of articular cartilage to compressive loading is significantly depth-dependent, where the superficial zone and underlying matrix respond differently to deformation. In addition, the alteration of cartilage matrix in the early stages of degeneration is often characterized by PG loss in the superficial layer. In this study, it is hypothesized that the response of superficial layer is different in normal and proteoglycan depleted tissue. To establish the viability of this hypothesis, samples of visually intact and artificially proteoglycan-depleted bovine cartilage were subjected to compression at a constant rate to 30 percent strain using a ring-shaped indenter with an integrated ultrasound probe and then unloaded. The response of articular surface which was indirectly loaded was monitored using ultrasound during the time of loading/unloading (deformation/recovery). It was observed that the rate of cartilage surface response to loading/unloading was different for normal and PG-depleted cartilage samples. Principal Component Analysis was performed to identify the capability of the cartilage surface response to loading/unloading, to distinguish between normal and artificially degenerated cartilage samples. The classification analysis of this parameter showed an overlap between normal and degenerated samples during loading. While there was a clear distinction between normal and degenerated samples during unloading. This study showed that the cartilage surface response to loading/unloading has the potential to be used as a parameter for cartilage assessment.

Keywords: cartilage integrity parameter, cartilage deformation/recovery, cartilage functional assessment, ultrasound

Procedia PDF Downloads 192
2979 Computational Study on Traumatic Brain Injury Using Magnetic Resonance Imaging-Based 3D Viscoelastic Model

Authors: Tanu Khanuja, Harikrishnan N. Unni

Abstract:

Head is the most vulnerable part of human body and may cause severe life threatening injuries. As the in vivo brain response cannot be recorded during injury, computational investigation of the head model could be really helpful to understand the injury mechanism. Majority of the physical damage to living tissues are caused by relative motion within the tissue due to tensile and shearing structural failures. The present Finite Element study focuses on investigating intracranial pressure and stress/strain distributions resulting from impact loads on various sites of human head. This is performed by the development of the 3D model of a human head with major segments like cerebrum, cerebellum, brain stem, CSF (cerebrospinal fluid), and skull from patient specific MRI (magnetic resonance imaging). The semi-automatic segmentation of head is performed using AMIRA software to extract finer grooves of the brain. To maintain the accuracy high number of mesh elements are required followed by high computational time. Therefore, the mesh optimization has also been performed using tetrahedral elements. In addition, model validation with experimental literature is performed as well. Hard tissues like skull is modeled as elastic whereas soft tissues like brain is modeled with viscoelastic prony series material model. This paper intends to obtain insights into the severity of brain injury by analyzing impacts on frontal, top, back, and temporal sites of the head. Yield stress (based on von Mises stress criterion for tissues) and intracranial pressure distribution due to impact on different sites (frontal, parietal, etc.) are compared and the extent of damage to cerebral tissues is discussed in detail. This paper finds that how the back impact is more injurious to overall head than the other. The present work would be helpful to understand the injury mechanism of traumatic brain injury more effectively.

Keywords: dynamic impact analysis, finite element analysis, intracranial pressure, MRI, traumatic brain injury, von Misses stress

Procedia PDF Downloads 160
2978 The Type II Immune Response in Acute and Chronic Pancreatitis Mediated by STAT6 in Murine

Authors: Hager Elsheikh

Abstract:

Context: Pancreatitis is a condition characterized by inflammation in the pancreas, which can lead to serious complications if untreated. Both acute and chronic pancreatitis are associated with immune reactions and fibrosis, which further damage the pancreas. The type 2 immune response, primarily driven by alternative activated macrophages (AAMs), plays a significant role in the development of fibrosis. The IL-4/STAT6 pathway is a crucial signaling pathway for the activation of M2 macrophages. Pancreatic fibrosis is induced by dysregulated inflammatory responses and can result in the autodigestion and necrosis of pancreatic acinar cells. Research Aim: The aim of this study is to investigate the impact of STAT6, a crucial molecule in the IL-4/STAT6 pathway, on the severity and development of fibrosis during acute and chronic pancreatitis. The research also aims to understand the influence of the JAK/STAT6 signaling pathway on the balance between fibrosis and regeneration in the presence of different macrophage populations. Methodology: The research utilizes murine models of acute and chronic pancreatitis induced by cerulean injection. Animal models will be employed to study the effect of STAT6 knockout on disease severity and fibrosis. Isolation of acinar cells and cell culture techniques will be used to assess the impact of different macrophage populations on wound healing and regeneration. Various techniques such as PCR, histology, immunofluorescence, and transcriptomics will be employed to analyze the tissues and cells. Findings: The research aims to provide insights into the mechanisms underlying tissue fibrosis and wound healing during acute and chronic pancreatitis. By investigating the influence of the JAK/STAT6 signaling pathway and different macrophage populations, the study aims to understand their impact on tissue fibrosis, disease severity, and pancreatic regeneration. Theoretical Importance: This research contributes to our understanding of the role of specific signaling pathways, macrophage polarization, and the type 2 immune response in pancreatitis. It provides insights into the molecular mechanisms underlying tissue fibrosis and the potential for targeted therapies. Data Collection and Analysis Procedures: Data will be collected through the use of murine models, isolation and culture of acinar cells, and various experimental techniques such as PCR, histology, immunofluorescence, and transcriptomics. Data will be analyzed using appropriate statistical methods and techniques, and the findings will be interpreted in the context of the research objectives. Conclusion: By investigating the mechanisms of tissue fibrosis and wound healing during acute and chronic pancreatitis, this research aims to enhance our understanding of the disease progression and potential therapeutic targets. The findings have theoretical importance in expanding our knowledge of pancreatic fibrosis and the role of macrophage polarization in the context of the type 2 immune response.

Keywords: immunity in chronic diseases, pancreatitis, macrophages, immune response

Procedia PDF Downloads 33
2977 Knowledge and Awareness of HIV/AIDS among Male Prisoners in Kuwait

Authors: Saroj Bala Grover, Al Munther Alhasawi, Prem N. Sharma, P. S. N. Menon

Abstract:

Background: Prisoners are considered one of the high-risk populations for the transmission of human immunodeficiency virus (HIV) infection. Targeting this group is one of the strategies to reduce the incidence of acquired immune deficiency syndrome (AIDS) in the community. Subjects and Methods: A cross-sectional study was conducted among male inmates in Kuwait’s prison by administering three sets of questionnaires to assess the level of their knowledge and awareness about the mode of transmission of HIV/AIDS, their risky personal behavior that may lead to HIV infection, and the presence of any negative attitudes and stigmatization towards HIV infected individuals. Results: The study included 123 male inmates, with a mean ± SD age of 30.9 ± 8.4 years. Most participants had good general knowledge (90%) about the mode of transmission of HIV/AIDS, including sharing contaminated syringes, risky personal behaviors such as having unprotected sex and increased number of extramarital relationships (66%), and the avoidance of the regular use of condoms. The younger age group (< 35 years) had more extramarital relationships than those > 35 years (71.4% Vs. 46.4%; p=0.016). There was a perceived attitude of stigmatization among inmates towards HIV-infected persons. Conclusions: This vulnerable group of prisoners, especially young adults, need educational programs to improve knowledge about the transmission of HIV and to correct and change their risky personal behaviors to protect themselves and the community against HIV transmission.

Keywords: HIV/AIDS, Kuwait, prisoners, knowledge, awareness, personal behavior, extramarital relationships, safe sex, discrimination, stigmatization

Procedia PDF Downloads 78
2976 3D Printing of Polycaprolactone Scaffold with Multiscale Porosity Via Incorporation of Sacrificial Sucrose Particles

Authors: Mikaela Kutrolli, Noah S. Pereira, Vanessa Scanlon, Mohamadmahdi Samandari, Ali Tamayol

Abstract:

Bone tissue engineering has drawn significant attention and various biomaterials have been tested. Polymers such as polycaprolactone (PCL) offer excellent biocompatibility, reasonable mechanical properties, and biodegradability. However, PCL scaffolds suffer a critical drawback: a lack of micro/mesoporosity, affecting cell attachment, tissue integration, and mineralization. It also results in a slow degradation rate. While 3D-printing has addressed the issue of macroporosity through CAD-guided fabrication, PCL scaffolds still exhibit poor smaller-scale porosity. To overcome this, we generated composites of PCL, hydroxyapatite (HA), and powdered sucrose (PS). The latter serves as a sacrificial material to generate porous particles after sucrose dissolution. Additionally, we have incorporated dexamethasone (DEX) to boost the PCL osteogenic properties. The resulting scaffolds maintain controlled macroporosity from the lattice print structure but also develop micro/mesoporosity within PCL fibers when exposed to aqueous environments. The study involved mixing PS into solvent-dissolved PCL in different weight ratios of PS to PCL (70:30, 50:50, and 30:70 wt%). The resulting composite was used for 3D printing of scaffolds at room temperature. Printability was optimized by adjusting pressure, speed, and layer height through filament collapse and fusion test. Enzymatic degradation, porogen leaching, and DEX release profiles were characterized. Physical properties were assessed using wettability, SEM, and micro-CT to quantify the porosity (percentage, pore size, and interconnectivity). Raman spectroscopy was used to verify the absence of sugar after leaching. Mechanical characteristics were evaluated via compression testing before and after porogen leaching. Bone marrow stromal cells (BMSCs) behavior in the printed scaffolds was studied by assessing viability, metabolic activity, osteo-differentiation, and mineralization. The scaffolds with a 70% sugar concentration exhibited superior printability and reached the highest porosity of 80%, but performed poorly during mechanical testing. A 50% PS concentration demonstrated a 70% porosity, with an average pore size of 25 µm, favoring cell attachment. No trace of sucrose was found in Raman after leaching the sugar for 8 hours. Water contact angle results show improved hydrophilicity as the sugar concentration increased, making the scaffolds more conductive to cell adhesion. The behavior of bone marrow stromal cells (BMSCs) showed positive viability and proliferation results with an increasing trend of mineralization and osteo-differentiation as the sucrose concentration increased. The addition of HA and DEX also promoted mineralization and osteo-differentiation in the cultures. The integration of PS as porogen at a concentration of 50%wt within PCL scaffolds presents a promising approach to address the poor cell attachment and tissue integration issues of PCL in bone tissue engineering. The method allows for the fabrication of scaffolds with tunable porosity and mechanical properties, suitable for various applications. The addition of HA and DEX further enhanced the scaffolds. Future studies will apply the scaffolds in an in-vivo model to thoroughly investigate their performance.

Keywords: bone, PCL, 3D printing, tissue engineering

Procedia PDF Downloads 58