Search results for: linear analysis
28540 A 2D Numerical Model of Viscous Flow-Cylinder Interaction
Authors: Bang-Fuh Chen, Chih-Chun Chu
Abstract:
The flow induced cylinder vibration or earthquake-induced cylinder motion are moving in an arbitrary direction with time. The phenomenon of flow across cylinder is highly nonlinear and a linear-superposition of flow pattern across separated oscillating direction of cylinder motion is not valid to obtain the flow pattern across a cylinder oscillating in multiple directions. A novel finite difference scheme is developed to simulate the viscous flow across an arbitrary moving circular cylinder and we call this a complete 2D (two-dimensional) flow-cylinder interaction. That is, the cylinder is simultaneously oscillating in x- and y- directions. The time-dependent domain and meshes associated with the moving cylinder are mapped to a fixed computational domain and meshes, which are time independent. The numerical results are validated by several bench mark studies. Several examples are introduced including flow across steam-wise, transverse oscillating cylinder and flow across rotating cylinder and flow across arbitrary moving cylinder. The Morison’s formula can not describe the complex interaction phenomenon between cross flow and oscillating circular cylinder. And the completed 2D computational fluid dynamic analysis should be made to obtain the correct hydrodynamic force acting on the cylinder.Keywords: 2D cylinder, finite-difference method, flow-cylinder interaction, flow induced vibration
Procedia PDF Downloads 51428539 Static Analysis Deployment Model for Code Quality on Research and Development Projects of Software Development
Authors: Jeong-Hyun Park, Young-Sik Park, Hyo-Teag Jung
Abstract:
This paper presents static analysis deployment model for code quality on R&D Projects of SW Development. The proposed model includes the scope of R&D projects and index for static analysis of source code, operation model and execution process, environments and infrastructure system for R&D projects of SW development. There is the static analysis result of pilot project as case study based on the proposed deployment model and environment, and strategic considerations for success operation of the proposed static analysis deployment model for R&D Projects of SW Development. The proposed static analysis deployment model in this paper will be adapted and improved continuously for quality upgrade of R&D projects, and customer satisfaction of developed source codes and products.Keywords: static analysis, code quality, coding rules, automation tool
Procedia PDF Downloads 52428538 Optimal Trajectories for Highly Automated Driving
Authors: Christian Rathgeber, Franz Winkler, Xiaoyu Kang, Steffen Müller
Abstract:
In this contribution two approaches for calculating optimal trajectories for highly automated vehicles are presented and compared. The first one is based on a non-linear vehicle model, used for evaluation. The second one is based on a simplified model and can be implemented on a current ECU. In usual driving situations both approaches show very similar results.Keywords: trajectory planning, direct method, indirect method, highly automated driving
Procedia PDF Downloads 53528537 Numerical Approach of RC Structural MembersExposed to Fire and After-Cooling Analysis
Authors: Ju-young Hwang, Hyo-Gyoung Kwak, Hong Jae Yim
Abstract:
This paper introduces a numerical analysis method for reinforced-concrete (RC) structures exposed to fire and compares the result with experimental results. The proposed analysis method for RC structure under the high temperature consists of two procedures. First step is to decide the temperature distribution across the section through the heat transfer analysis by using the time-temperature curve. After determination of the temperature distribution, the nonlinear analysis is followed. By considering material and geometrical non-linearity with the temperature distribution, nonlinear analysis predicts the behavior of RC structure under the fire by the exposed time. The proposed method is validated by the comparison with the experimental results. Finally, Prediction model to describe the status of after-cooling concrete can also be introduced based on the results of additional experiment. The product of this study is expected to be embedded for smart structure monitoring system against fire in u-City.Keywords: RC structures, heat transfer analysis, nonlinear analysis, after-cooling concrete model
Procedia PDF Downloads 37228536 Financial Analysis of Selected Private Healthcare Organizations with Special Referance to Guwahati City, Assam
Authors: Mrigakshi Das
Abstract:
The private sector investments and quantum of money required in this sector critically hinges on the financial risk and returns the sector offers to providers of capital. Therefore, it becomes important to understand financial performance of hospitals. Financial Analysis is useful for decision makers in a variety of settings. Consider the small proprietary hospitals, say, Physicians Clinic. The managers of such clinic need the information that financial statements provide. Attention to Financial Statements of healthcare Organizations can provide answers to questions like: How are they doing? What is their rate of profit? What is their solvency and liquidity position? What are their sources and application of funds? What is their Operational Efficiency? The researcher has studied Financial Statements of 5 Private Healthcare Organizations in Guwahati City.Keywords: not-for-profit organizations, financial analysis, ratio analysis, profitability analysis, liquidity analysis, operational efficiency, capital structure analysis
Procedia PDF Downloads 55328535 An Approach for Pattern Recognition and Prediction of Information Diffusion Model on Twitter
Authors: Amartya Hatua, Trung Nguyen, Andrew Sung
Abstract:
In this paper, we study the information diffusion process on Twitter as a multivariate time series problem. Our model concerns three measures (volume, network influence, and sentiment of tweets) based on 10 features, and we collected 27 million tweets to build our information diffusion time series dataset for analysis. Then, different time series clustering techniques with Dynamic Time Warping (DTW) distance were used to identify different patterns of information diffusion. Finally, we built the information diffusion prediction models for new hashtags which comprise two phrases: The first phrase is recognizing the pattern using k-NN with DTW distance; the second phrase is building the forecasting model using the traditional Autoregressive Integrated Moving Average (ARIMA) model and the non-linear recurrent neural network of Long Short-Term Memory (LSTM). Preliminary results of performance evaluation between different forecasting models show that LSTM with clustering information notably outperforms other models. Therefore, our approach can be applied in real-world applications to analyze and predict the information diffusion characteristics of selected topics or memes (hashtags) in Twitter.Keywords: ARIMA, DTW, information diffusion, LSTM, RNN, time series clustering, time series forecasting, Twitter
Procedia PDF Downloads 39428534 Transitioning Towards a Circular Economy in the Textile Industry: Approaches to Address Environmental Challenges
Authors: Atefeh Salehipoor
Abstract:
Textiles play a vital role in human life, particularly in the form of clothing. However, the alarming rate at which textiles end up in landfills presents a significant environmental risk. With approximately one garbage truck per second being filled with discarded textiles, urgent measures are required to mitigate this trend. Governments and responsible organizations are calling upon various stakeholders to shift from a linear economy to a circular economy model in the textile industry. This article highlights several key approaches that can be undertaken to address this pressing issue. These approaches include the creation of renewable raw material sources, rethinking production processes, maximizing the use and reuse of textile products, implementing reproduction and recycling strategies, exploring redistribution to new markets, and finding innovative means to extend the lifespan of textiles. However, the rapid accumulation of textiles in landfills poses a significant threat to the environment. This article explores the urgent need for the textile industry to transition from a linear economy model to a circular economy model. The linear model, characterized by the creation, use, and disposal of textiles, is unsustainable in the long term. By adopting a circular economy approach, the industry can minimize waste, reduce environmental impact, and promote sustainable practices. This article outlines key approaches that can be undertaken to drive this transition. Approaches to Address Environmental Challenges: 1. Creation of Renewable Raw Materials Sources: Exploring and promoting the use of renewable and sustainable raw materials, such as organic cotton, hemp, and recycled fibers, can significantly reduce the environmental footprint of textile production. 2. Rethinking Production Processes: Implementing cleaner production techniques, optimizing resource utilization, and minimizing waste generation are crucial steps in reducing the environmental impact of textile manufacturing. 3. Maximizing Use and Reuse of Textile Products: Encouraging consumers to prolong the lifespan of textile products through proper care, maintenance, and repair services can reduce the frequency of disposal and promote a culture of sustainability. 4. Reproduction and Recycling Strategies: Investing in innovative technologies and infrastructure to enable efficient reproduction and recycling of textiles can close the loop and minimize waste generation. 5. Redistribution of Textiles to New Markets: Exploring opportunities to redistribute textiles to new and parallel markets, such as resale platforms, can extend their lifecycle and prevent premature disposal. 6. Improvising Means to Extend Textile Lifespan: Encouraging design practices that prioritize durability, versatility, and timeless aesthetics can contribute to prolonging the lifespan of textiles. Conclusion The textile industry must urgently transition from a linear economy to a circular economy model to mitigate the adverse environmental impact caused by textile waste. By implementing the outlined approaches, such as sourcing renewable raw materials, rethinking production processes, promoting reuse and recycling, exploring new markets, and extending the lifespan of textiles, stakeholders can work together to create a more sustainable and environmentally friendly textile industry. These measures require collective action and collaboration between governments, organizations, manufacturers, and consumers to drive positive change and safeguard the planet for future generations.Keywords: textiles, circular economy, environmental challenges, renewable raw materials, production processes, reuse, recycling, redistribution, textile lifespan extension
Procedia PDF Downloads 9028533 Mixed Sub-Fractional Brownian Motion
Authors: Mounir Zili
Abstract:
We will introduce a new extension of the Brownian motion, that could serve to get a good model of many natural phenomena. It is a linear combination of a finite number of sub-fractional Brownian motions; that is why we will call it the mixed sub-fractional Brownian motion. We will present some basic properties of this process. Among others, we will check that our process is non-Markovian and that it has non-stationary increments. We will also give the conditions under which it is a semimartingale. Finally, the main features of its sample paths will be specified.Keywords: mixed Gaussian processes, Sub-fractional Brownian motion, sample paths
Procedia PDF Downloads 49128532 Gut Microbiota in Patients with Opioid Use Disorder: A 12-week Follow up Study
Authors: Sheng-Yu Lee
Abstract:
Aim: Opioid use disorder is often characterized by repetitive drug-seeking and drug-taking behaviors with severe public health consequences. Animal model showed that opioid-induced perturbations in the gut microbiota causally relate to neuroinflammation, deficits in reward responding, and opioid tolerance, possibly due to changes in gut microbiota. Therefore, we propose that the dysbiosis of gut microbiota can be associated with pathogenesis of opioid dependence. In this current study, we explored the differences in gut microbiota between patients and normal controls and in patients before and after initiation of methadone treatment program for 12 weeks. Methods: Patients with opioid use disorder between 20 and 65 years were recruited from the methadone maintenance outpatient clinic in 2 medical centers in the Southern Taiwan. Healthy controls without any family history of major psychiatric disorders (schizophrenia, bipolar disorder and major depressive disorder) were recruited from the community. After initial screening, 15 patients with opioid use disorder joined the study for initial evaluation (Week 0), 12 of them completed the 12-week follow-up while receiving methadone treatment and ceased heroin use (Week 12). Fecal samples were collected from the patients at baseline and the end of 12th week. A one-time fecal sample was collected from the healthy controls. The microbiota of fecal samples were investigated using 16S rRNA V3V4 amplicon sequencing, followed by bioinformatics and statistical analyses. Results: We found no significant differences in species diversity in opioid dependent patients between Week 0 and Week 12, nor compared between patients at both points and controls. For beta diversity, using principal component analysis, we found no significant differences between patients at Week 0 and Week 12, however, both patient groups showed significant differences compared to control (P=0.011). Furthermore, the linear discriminant analysis effect size (LEfSe) analysis was used to identify differentially enriched bacteria between opioid use patients and healthy controls. Compared to controls, the relative abundance of Lactobacillaceae Lactobacillus (L. Lactobacillus), Megasphaera Megasphaerahexanoica (M. Megasphaerahexanoica) and Caecibacter Caecibactermassiliensis (C Caecibactermassiliensis) were increased in patients at Week 0, while Coriobacteriales Atopobiaceae (C. Atopobiaceae), Acidaminococcus Acidaminococcusintestini (A. Acidaminococcusintestini) and Tractidigestivibacter Tractidigestivibacterscatoligenes (T. Tractidigestivibacterscatoligenes) were increased in patients at Week 12. Conclusion: In conclusion, we suggest that the gut microbiome community maybe linked to opioid use disorder, such differences may not be altered even after 12-week of cessation of opioid use.Keywords: opioid use disorder, gut microbiota, methadone treatment, follow up study
Procedia PDF Downloads 11128531 Effect of Annealing Temperature on the Photoelectric Work Function of Silver-Zinc Oxide Contact Materials
Authors: Bouchou Aïssa, Mohamed Akbi
Abstract:
Contact materials used for electrical breakers are often made with silver alloys. Mechanical and thermo dynamical properties as well as electron emission of such complicated alloys present a lack of reliable and accurate experimental data. This paper deals mainly with electron work function (EWF) measurements about silver-metal oxide (Ag-MeO) electrical contacts (Ag-ZnO (92/8), before and after surface heat treatments at 296 K 813 K, under UHV conditions (residual gas pressure of 1.4 x 10-7 mbar). The electron work function (EWF) of silver zinc oxide materials was measured photoelectrically, using both Fowler’s method of isothermal curves and linearized Fowler plots. In this paper, we present the development of a method for measuring photoelectric work function of contact materials. Also reported in this manuscript are the results of experimental work whose purpose has been the buildup of a reliable photoelectric system and associated monochromatic ultra-violet radiations source, and the photoelectric measurement of the electron work functions (EWF) of contact materials. In order to study the influence of annealing temperature on the EWF, a vacuum furnace was used for heating the metallic samples up to 800 K. The EWF of the silver – zinc oxide materials were investigated to study the influence of annealing temperature on the EWF. In the present study, the photoelectric measurements about Ag-ZnO(92/8) contacts have shown a linear decrease of the EWF with increasing temperature, i.e. the temperature coefficient is constant and negative: for the first annealing # 1, in the temperature range [299 K 823 K]. On the contrary, a linear increase was observed with increasing temperature (i.e. , being constant and positive), for the next annealing # 2, in the temperature range [296 K 813 K]. The EWFs obtained for silver-zinc oxide Ag-ZnO(92/8) show an obvious dependence on the annealing temperature which is strongly associated with the evolution of the arrangement on ZnO nano particles on the Ag-ZnO contact surface as well as surface charge distribution.Keywords: Photoemission, Electron work function, Fowler methods, Ag-ZnO contact materials, Vacuum heat treatment
Procedia PDF Downloads 41928530 Chikungunya Virus Detection Utilizing an Origami Based Electrochemical Paper Analytical Device
Authors: Pradakshina Sharma, Jagriti Narang
Abstract:
Due to the critical significance in the early identification of infectious diseases, electrochemical sensors have garnered considerable interest. Here, we develop a detection platform for the chikungunya virus by rationally implementing the extremely high charge-transfer efficiency of a ternary nanocomposite of graphene oxide, silver, and gold (G/Ag/Au) (CHIKV). Because paper is an inexpensive substrate and can be produced in large quantities, the use of electrochemical paper analytical device (EPAD) origami further enhances the sensor's appealing qualities. A cost-effective platform for point-of-care diagnostics is provided by paper-based testing. These types of sensors are referred to as eco-designed analytical tools due to their efficient production, usage of the eco-friendly substrate, and potential to reduce waste management after measuring by incinerating the sensor. In this research, the paper's foldability property has been used to develop and create 3D multifaceted biosensors that can specifically detect the CHIKVX-ray diffraction, scanning electron microscopy, UV-vis spectroscopy, and transmission electron microscopy (TEM) were used to characterize the produced nanoparticles. In this work, aptamers are used since they are thought to be a unique and sensitive tool for use in rapid diagnostic methods. Cyclic voltammetry (CV) and linear sweep voltammetry (LSV), which were both validated with a potentiostat, were used to measure the analytical response of the biosensor. The target CHIKV antigen was hybridized with using the aptamer-modified electrode as a signal modulation platform, and its presence was determined by a decline in the current produced by its interaction with an anionic mediator, Methylene Blue (MB). Additionally, a detection limit of 1ng/ml and a broad linear range of 1ng/ml-10µg/ml for the CHIKV antigen were reported.Keywords: biosensors, ePAD, arboviral infections, point of care
Procedia PDF Downloads 10328529 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks
Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer
Abstract:
New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics
Procedia PDF Downloads 14328528 A Cross-Dialect Statistical Analysis of Final Declarative Intonation in Tuvinian
Authors: D. Beziakina, E. Bulgakova
Abstract:
This study continues the research on Tuvinian intonation and presents a general cross-dialect analysis of intonation of Tuvinian declarative utterances, specifically the character of the tone movement in order to test the hypothesis about the prevalence of level tone in some Tuvinian dialects. The results of the analysis of basic pitch characteristics of Tuvinian speech (in general and in comparison with two other Turkic languages - Uzbek and Azerbaijani) are also given in this paper. The goal of our work was to obtain the ranges of pitch parameter values typical for Tuvinian speech. Such language-specific values can be used in speaker identification systems in order to get more accurate results of ethnic speech analysis. We also present the results of a cross-dialect analysis of declarative intonation in the poorly studied Tuvinian language.Keywords: speech analysis, statistical analysis, speaker recognition, identification of person
Procedia PDF Downloads 47528527 Factors That Influence Choice of Walking Mode in Work Trips: Case Study of Rasht, Iran
Authors: Nima Safaei, Arezoo Masoud, Babak Safaei
Abstract:
In recent years, there has been a growing emphasis on the role of urban planning in walking capability and the effects of individual and socioeconomic factors on the physical activity levels of city dwellers. Although considerable number of studies are conducted about walkability and for identifying the effective factors in walking mode choice in developed countries, to our best knowledge, literature lacks in the study of factors affecting choice of walking mode in developing countries. Due to the high importance of health aspects of human societies and in order to make insights and incentives for reducing traffic during rush hours, many researchers and policy makers in the field of transportation planning have devoted much attention to walkability studies; they have tried to improve the effective factors in the choice of walking mode in city neighborhoods. In this study, effective factors in walkability that have proven to have significant impact on the choice of walking mode, are studied at the same time in work trips. The data for the study is collected from the employees in their workplaces by well-instructed people using questionnaires; the statistical population of the study consists of 117 employed people who commute daily from work to home in Rasht city of Iran during the beginning of spring 2015. Results of the study which are found through the linear regression modeling, show that people who do not have freedom of choice for choosing their living locations and need to be present at their workplaces in certain hours have lower levels of walking. Additionally, unlike some of the previous studies which were conducted in developed countries, coincidental effects of Body Mass Index (BMI) and the income level of employees, do not have a significant effect on the walking level in work travels.Keywords: BMI, linear regression, transportation, walking, work trips
Procedia PDF Downloads 19828526 A Survey of Sentiment Analysis Based on Deep Learning
Authors: Pingping Lin, Xudong Luo, Yifan Fan
Abstract:
Sentiment analysis is a very active research topic. Every day, Facebook, Twitter, Weibo, and other social media, as well as significant e-commerce websites, generate a massive amount of comments, which can be used to analyse peoples opinions or emotions. The existing methods for sentiment analysis are based mainly on sentiment dictionaries, machine learning, and deep learning. The first two kinds of methods rely on heavily sentiment dictionaries or large amounts of labelled data. The third one overcomes these two problems. So, in this paper, we focus on the third one. Specifically, we survey various sentiment analysis methods based on convolutional neural network, recurrent neural network, long short-term memory, deep neural network, deep belief network, and memory network. We compare their futures, advantages, and disadvantages. Also, we point out the main problems of these methods, which may be worthy of careful studies in the future. Finally, we also examine the application of deep learning in multimodal sentiment analysis and aspect-level sentiment analysis.Keywords: document analysis, deep learning, multimodal sentiment analysis, natural language processing
Procedia PDF Downloads 16828525 The Effect of Second Victim-Related Distress on Work-Related Outcomes in Tertiary Care, Kelantan, Malaysia
Authors: Ahmad Zulfahmi Mohd Kamaruzaman, Mohd Ismail Ibrahim, Ariffin Marzuki Mokhtar, Maizun Mohd Zain, Saiful Nazri Satiman, Mohd Najib Majdi Yaacob
Abstract:
Background: Aftermath any patient safety incidents, the involved healthcare providers possibly sustained second victim-related distress (second victim distress and reduced their professional efficacy), with subsequent negative work-related outcomes or vice versa cultivating resilience. This study aimed to investigate the factors affecting negative work-related outcomes and resilience, with the triad of support; colleague, supervisor, and institutional support as the hypothetical mediators. Methods: This was a cross sectional study recruiting a total of 733 healthcare providers from three tertiary care in Kelantan, Malaysia. Three steps of hierarchical linear regression were developed for each outcome; negative work-related outcomes and resilience. Then, four multiple mediator models of support triad were analyzed. Results: Second victim distress, professional efficacy, and the support triad contributed significantly for each regression model. In the pathway of professional efficacy on each negative work-related outcomes and resilience, colleague support partially mediated the relationship. As for second victim distress on negative work related outcomes, colleague and supervisor support were the partial mediator, and on resilience; all support triad also produced a similar effect. Conclusion: Second victim distress, professional efficacy, and the support triad influenced the relationship with the negative work-related outcomes and resilience. Support triad as the mediators ameliorated the effect in between and explained the urgency of having good support for recovery post encountering patient safety incidents.Keywords: second victims, patient safety incidents, hierarchical linear regression, mediation, support
Procedia PDF Downloads 11428524 Cocoon Characterization of Sericigenous Insects in North-East India and Prospects
Authors: Tarali Kalita, Karabi Dutta
Abstract:
The North Eastern Region of India, with diverse climatic conditions and a wide range of ecological habitats, makes an ideal natural abode for a good number of silk-producing insects. Cocoon is the economically important life stage from where silk of economic importance is obtained. In recent years, silk-based biomaterials have gained considerable attention, which is dependent on the structure and properties of the silkworm cocoons as well as silk yarn. The present investigation deals with the morphological study of cocoons, including cocoon color, cocoon size, shell weight and shell ratio of eleven different species of silk insects collected from different regions of North East India. The Scanning Electron Microscopic study and X-ray photoelectron spectroscopy were performed to know the arrangement of silk threads in cocoons and the atomic elemental analysis, respectively. Further, collected cocoons were degummed and reeled/spun on a reeling machine or spinning wheel to know the filament length, linear density and tensile strength by using Universal Testing Machine. The study showed significant variation in terms of cocoon color, cocoon shape, cocoon weight and filament packaging. XPS analysis revealed the presence of elements (Mass %) C, N, O, Si and Ca in varying amounts. The wild cocoons showed the presence of Calcium oxalate crystals which makes the cocoons hard and needs further treatment to reel. In the present investigation, the highest percentage of strain (%) and toughness (g/den) were observed in Antheraea assamensis, which implies that the muga silk is a more compact packing of molecules. It is expected that this study will be the basis for further biomimetic studies to design and manufacture artificial fiber composites with novel morphologies and associated material properties.Keywords: cocoon characterization, north-east India, prospects, silk characterization
Procedia PDF Downloads 9328523 Analytical Study of the Structural Response to Near-Field Earthquakes
Authors: Isidro Perez, Maryam Nazari
Abstract:
Numerous earthquakes, which have taken place across the world, led to catastrophic damage and collapse of structures (e.g., 1971 San Fernando; 1995 Kobe-Japan; and 2010 Chile earthquakes). Engineers are constantly studying methods to moderate the effect this phenomenon has on structures to further reduce damage, costs, and ultimately to provide life safety to occupants. However, there are regions where structures, cities, or water reservoirs are built near fault lines. When an earthquake occurs near the fault lines, they can be categorized as near-field earthquakes. In contrary, a far-field earthquake occurs when the region is further away from the seismic source. A near-field earthquake generally has a higher initial peak resulting in a larger seismic response, when compared to a far-field earthquake ground motion. These larger responses may result in serious consequences in terms of structural damage which can result in a high risk for the public’s safety. Unfortunately, the response of structures subjected to near-field records are not properly reflected in the current building design specifications. For example, in ASCE 7-10, the design response spectrum is mostly based on the far-field design-level earthquakes. This may result in the catastrophic damage of structures that are not properly designed for near-field earthquakes. This research investigates the knowledge that the effect of near-field earthquakes has on the response of structures. To fully examine this topic, a structure was designed following the current seismic building design specifications, e.g. ASCE 7-10 and ACI 318-14, being analytically modeled, utilizing the SAP2000 software. Next, utilizing the FEMA P695 report, several near-field and far-field earthquakes were selected, and the near-field earthquake records were scaled to represent the design-level ground motions. Upon doing this, the prototype structural model, created using SAP2000, was subjected to the scaled ground motions. A Linear Time History Analysis and Pushover analysis were conducted on SAP2000 for evaluation of the structural seismic responses. On average, the structure experienced an 8% and 1% increase in story drift and absolute acceleration, respectively, when subjected to the near-field earthquake ground motions. The pushover analysis was ran to find and aid in properly defining the hinge formation in the structure when conducting the nonlinear time history analysis. A near-field ground motion is characterized by a high-energy pulse, making it unique to other earthquake ground motions. Therefore, pulse extraction methods were used in this research to estimate the maximum response of structures subjected to near-field motions. The results will be utilized in the generation of a design spectrum for the estimation of design forces for buildings subjected to NF ground motions.Keywords: near-field, pulse, pushover, time-history
Procedia PDF Downloads 14828522 Causes and Impacts of Marine Heatwaves in the Bay of Bengal Region in the Recent Period
Authors: Sudhanshu Kumar, Raghvendra Chandrakar, Arun Chakraborty
Abstract:
In the ocean, the temperature extremes have the potential to devastate marine habitats, ecosystems together with ensuing socioeconomic consequences. In recent years, these extreme events are more frequent and intense globally and their increasing trend is expected to continue in the upcoming decades. It recently attracted public interest, as well as scientific researchers, which motivates us to analyze the current marine heatwave (MHW) events in the Bay of Bengal region. we have isolated 107 MHW events (above 90th percentile threshold) in this region of the Indian Ocean and investigated the variation in duration, intensity, and frequency of MHW events during our test period (1982-2021). Our study reveals that in the study region the average of three MHW events per year with an increasing linear trend of 1.11 MHW events per decade. In the analysis, we found the longest MHW event which lasted about 99 days, which is far greater than an average MHW event duration. The maximum intensity was 5.29°C (above the climatology-mean), while the mean intensity was 2.03°C. In addition, we observed net heat flux accompanied by anticyclonic eddies to be the primary cause of these events. Moreover, we concluded that these events affect sea surface height and oceanic productivity, highlighting the adverse impact of MHWs on marine ecosystems.Keywords: marine heatwaves, global warming, climate change, sea surface temperature, marine ecosystem
Procedia PDF Downloads 12728521 Consequences of Youth Bulge in Pakistan
Authors: Muhammad Farooq, Muhammad Idrees
Abstract:
The present study has been designed to explore the causes and effects of Youth Bulge in Pakistan. However, youth bulge is a part of population segment which create problem for the whole society. The youth bulge is a common phenomenon in many developing countries, and in particular, in the least developed countries. It is often due to a stage of development where a country achieves success in reducing infant mortality but mothers still have a high fertility rate. The result is that a large share of the population is comprised of children and young adults, and today’s children are tomorrow’s young adults. Youth often play a prominent role in political violence and the existence of a “youth bulge” has been associated with times of political crisis. The population pyramid of Pakistan represents a large youth proportion and our government did not use that youth in positive way and did not provide them opportunity for development, this situation creates frustration in youth that leads them towards conflict, unrest and violence. This study will be focus on the opportunity and motives of the youth bulge situation in Pakistan in the lens of youth bulge theory. Moreover, it will give some suggestions to utilize youth in the development activities and avoid youth bulge situation in Pakistan. The present research was conducted in the metropolitan entities of Punjab, Pakistan. A sample of 300 respondents was taken from three randomly selected metropolitan entities (Faisalabad, Lahore and Rawalpindi) of Punjab Province of Pakistan. Information regarding demography, household, locality and other socio-cultural variables related to causes and effects of youth bulge in the state was collected through a well structured interview schedule. Mean, Standard Deviation and frequency distribution were used to check the measure of central tendency. Multiple linear regression was also applied to measure the influence of various independent variables on the response variable.Keywords: youth bulge, violence, conflict, social unrest, crime, metropolitan entities, mean, standard deviation, multiple linear regression
Procedia PDF Downloads 46128520 Containment/Penetration Analysis for the Protection of Aircraft Engine External Configuration and Nuclear Power Plant Structures
Authors: Dong Wook Lee, Adrian Mistreanu
Abstract:
The authors have studied a method for analyzing containment and penetration using an explicit nonlinear Finite Element Analysis. This method may be used in the stage of concept design for the protection of external configurations or components of aircraft engines and nuclear power plant structures. This paper consists of the modeling method, the results obtained from the method and the comparison of the results with those calculated from simple analytical method. It shows that the containment capability obtained by proposed method matches well with analytically calculated containment capability.Keywords: computer aided engineering, containment analysis, finite element analysis, impact analysis, penetration analysis
Procedia PDF Downloads 14228519 Geomorphology Evidence of Climate Change in Gavkhouni Lagoon, South East Isfahan, Iran
Authors: Manijeh Ghahroudi Tali, Ladan Khedri Gharibvand
Abstract:
Gavkhouni lagoon, in the South East of Isfahan (Iran), is one of the pluvial lakes and legacy of Quaternary era which has emerged during periods with more precipitation and less evaporation. Climate change, lack of water resources and dried freshwater of Zayandehrood resulted in increased entropy and activated a dynamic which in turn is converted to Playa. The morphometry of 61 polygonal clay microforms in wet zone soil, 52 polygonal clay microforms in pediplain zone soil and 63 microforms in sulfate soil, is evaluated by fractal model. After calculating the microforms’ area–perimeter fractal dimension, their turbulence level was analyzed. Fractal dimensions (DAP) obtained from the microforms’ analysis of pediplain zone, wet zone, and sulfate soils are 1/21-1/39, 1/27-1/44 and 1/29-1/41, respectively, which is indicative of turbulence in these zones. Logarithmic graph drawn for each region also shows that there is a linear relationship between logarithm of the microforms’ area and perimeter so that correlation coefficient (R2) obtained for wet zone is larger than 0.96, for pediplain zone is larger than 0.99 and for sulfated zone is 0.9. Increased turbulence in this region suggests morphological transformation of the system and lagoon’s conversion to a new ecosystem which can be accompanied with serious risks.Keywords: fractal, Gavkhouni, microform, Iran
Procedia PDF Downloads 27328518 New Gas Geothermometers for the Prediction of Subsurface Geothermal Temperatures: An Optimized Application of Artificial Neural Networks and Geochemometric Analysis
Authors: Edgar Santoyo, Daniel Perez-Zarate, Agustin Acevedo, Lorena Diaz-Gonzalez, Mirna Guevara
Abstract:
Four new gas geothermometers have been derived from a multivariate geo chemometric analysis of a geothermal fluid chemistry database, two of which use the natural logarithm of CO₂ and H2S concentrations (mmol/mol), respectively, and the other two use the natural logarithm of the H₂S/H₂ and CO₂/H₂ ratios. As a strict compilation criterion, the database was created with gas-phase composition of fluids and bottomhole temperatures (BHTM) measured in producing wells. The calibration of the geothermometers was based on the geochemical relationship existing between the gas-phase composition of well discharges and the equilibrium temperatures measured at bottomhole conditions. Multivariate statistical analysis together with the use of artificial neural networks (ANN) was successfully applied for correlating the gas-phase compositions and the BHTM. The predicted or simulated bottomhole temperatures (BHTANN), defined as output neurons or simulation targets, were statistically compared with measured temperatures (BHTM). The coefficients of the new geothermometers were obtained from an optimized self-adjusting training algorithm applied to approximately 2,080 ANN architectures with 15,000 simulation iterations each one. The self-adjusting training algorithm used the well-known Levenberg-Marquardt model, which was used to calculate: (i) the number of neurons of the hidden layer; (ii) the training factor and the training patterns of the ANN; (iii) the linear correlation coefficient, R; (iv) the synaptic weighting coefficients; and (v) the statistical parameter, Root Mean Squared Error (RMSE) to evaluate the prediction performance between the BHTM and the simulated BHTANN. The prediction performance of the new gas geothermometers together with those predictions inferred from sixteen well-known gas geothermometers (previously developed) was statistically evaluated by using an external database for avoiding a bias problem. Statistical evaluation was performed through the analysis of the lowest RMSE values computed among the predictions of all the gas geothermometers. The new gas geothermometers developed in this work have been successfully used for predicting subsurface temperatures in high-temperature geothermal systems of Mexico (e.g., Los Azufres, Mich., Los Humeros, Pue., and Cerro Prieto, B.C.) as well as in a blind geothermal system (known as Acoculco, Puebla). The last results of the gas geothermometers (inferred from gas-phase compositions of soil-gas bubble emissions) compare well with the temperature measured in two wells of the blind geothermal system of Acoculco, Puebla (México). Details of this new development are outlined in the present research work. Acknowledgements: The authors acknowledge the funding received from CeMIE-Geo P09 project (SENER-CONACyT).Keywords: artificial intelligence, gas geochemistry, geochemometrics, geothermal energy
Procedia PDF Downloads 35728517 Regional Hydrological Extremes Frequency Analysis Based on Statistical and Hydrological Models
Authors: Hadush Kidane Meresa
Abstract:
The hydrological extremes frequency analysis is the foundation for the hydraulic engineering design, flood protection, drought management and water resources management and planning to utilize the available water resource to meet the desired objectives of different organizations and sectors in a country. This spatial variation of the statistical characteristics of the extreme flood and drought events are key practice for regional flood and drought analysis and mitigation management. For different hydro-climate of the regions, where the data set is short, scarcity, poor quality and insufficient, the regionalization methods are applied to transfer at-site data to a region. This study aims in regional high and low flow frequency analysis for Poland River Basins. Due to high frequent occurring of hydrological extremes in the region and rapid water resources development in this basin have caused serious concerns over the flood and drought magnitude and frequencies of the river in Poland. The magnitude and frequency result of high and low flows in the basin is needed for flood and drought planning, management and protection at present and future. Hydrological homogeneous high and low flow regions are formed by the cluster analysis of site characteristics, using the hierarchical and C- mean clustering and PCA method. Statistical tests for regional homogeneity are utilized, by Discordancy and Heterogeneity measure tests. In compliance with results of the tests, the region river basin has been divided into ten homogeneous regions. In this study, frequency analysis of high and low flows using AM for high flow and 7-day minimum low flow series is conducted using six statistical distributions. The use of L-moment and LL-moment method showed a homogeneous region over entire province with Generalized logistic (GLOG), Generalized extreme value (GEV), Pearson type III (P-III), Generalized Pareto (GPAR), Weibull (WEI) and Power (PR) distributions as the regional drought and flood frequency distributions. The 95% percentile and Flow duration curves of 1, 7, 10, 30 days have been plotted for 10 stations. However, the cluster analysis performed two regions in west and east of the province where L-moment and LL-moment method demonstrated the homogeneity of the regions and GLOG and Pearson Type III (PIII) distributions as regional frequency distributions for each region, respectively. The spatial variation and regional frequency distribution of flood and drought characteristics for 10 best catchment from the whole region was selected and beside the main variable (streamflow: high and low) we used variables which are more related to physiographic and drainage characteristics for identify and delineate homogeneous pools and to derive best regression models for ungauged sites. Those are mean annual rainfall, seasonal flow, average slope, NDVI, aspect, flow length, flow direction, maximum soil moisture, elevation, and drainage order. The regional high-flow or low-flow relationship among one streamflow characteristics with (AM or 7-day mean annual low flows) some basin characteristics is developed using Generalized Linear Mixed Model (GLMM) and Generalized Least Square (GLS) regression model, providing a simple and effective method for estimation of flood and drought of desired return periods for ungauged catchments.Keywords: flood , drought, frequency, magnitude, regionalization, stochastic, ungauged, Poland
Procedia PDF Downloads 60528516 ‘An Invisible Labyrinth of Time’: Temporal Disjunction in J.M. Coetzee’s Dusklands
Authors: Barbara Janari
Abstract:
This paper focuses on temporality in J.M. Coetzee’s first novel, Dusklands, to argue that the novel’s fractured, disjointed temporality is intricately linked to the representations of the war in Vietnam and the colonial project in South Africa. The disrupted temporalities in the novel eschew chronological plots and linear time in favour of narratives that subvert the notion of historical progress to suggest instead the coextensive, multivalent ways in which the past and present interpenetrate one another. The disruption of temporal flow in the novel is evident in its form – the novel comprises two novellas that are juxtaposed, with the first part (‘The Vietnam War’) set centuries before the second part (‘The Narrative of Jacobus Coetzee’). The juxtaposition of the two novellas suggests history’s sometimes overlapping and lateral, rather than linear, movement. The novel’s form is extended in its montage narrative structure, which works to extend its temporal range. The temporal disjunction is reinforced, firstly, by Coetzee’s textual strategies, which include the subversion and critique of realism, parody, repetition, and the narrative technique of montage, and secondly, by the novel’s thematic concerns, which focus on the ways in which American domination can be linked to the colonial quest from earlier times. The complex structure of various strands and levels of authorship slows down the narrative’s temporal flow, requiring the reader to spend a fair amount of time unraveling the various parts of the narrative and relating them to each other. The structure epitomizes reflexive referencing, in which the reader can only make sense of the narrative by going back and forth and connecting various parts of it. The narrative structure also emphasizes the underlying similarities in the brutality that marked these two distinct historical events, epitomized by the drive towards subjection and domination by the novel’s two protagonists, Eugene Dawn and Jacobus Coetzee. The links and overlapping strands between the two novellas emphasize the ways in which the historical truth of colonial discourse becomes as much a myth as the propaganda program in Vietnam.Keywords: disjunction, juxtaposition, montage, temporality
Procedia PDF Downloads 6928515 Hybrid Algorithm for Non-Negative Matrix Factorization Based on Symmetric Kullback-Leibler Divergence for Signal Dependent Noise: A Case Study
Authors: Ana Serafimovic, Karthik Devarajan
Abstract:
Non-negative matrix factorization approximates a high dimensional non-negative matrix V as the product of two non-negative matrices, W and H, and allows only additive linear combinations of data, enabling it to learn parts with representations in reality. It has been successfully applied in the analysis and interpretation of high dimensional data arising in neuroscience, computational biology, and natural language processing, to name a few. The objective of this paper is to assess a hybrid algorithm for non-negative matrix factorization with multiplicative updates. The method aims to minimize the symmetric version of Kullback-Leibler divergence known as intrinsic information and assumes that the noise is signal-dependent and that it originates from an arbitrary distribution from the exponential family. It is a generalization of currently available algorithms for Gaussian, Poisson, gamma and inverse Gaussian noise. We demonstrate the potential usefulness of the new generalized algorithm by comparing its performance to the baseline methods which also aim to minimize symmetric divergence measures.Keywords: non-negative matrix factorization, dimension reduction, clustering, intrinsic information, symmetric information divergence, signal-dependent noise, exponential family, generalized Kullback-Leibler divergence, dual divergence
Procedia PDF Downloads 24828514 Collision Theory Based Sentiment Detection Using Discourse Analysis in Hadoop
Authors: Anuta Mukherjee, Saswati Mukherjee
Abstract:
Data is growing everyday. Social networking sites such as Twitter are becoming an integral part of our daily lives, contributing a large increase in the growth of data. It is a rich source especially for sentiment detection or mining since people often express honest opinion through tweets. However, although sentiment analysis is a well-researched topic in text, this analysis using Twitter data poses additional challenges since these are unstructured data with abbreviations and without a strict grammatical correctness. We have employed collision theory to achieve sentiment analysis in Twitter data. We have also incorporated discourse analysis in the collision theory based model to detect accurate sentiment from tweets. We have also used the retweet field to assign weights to certain tweets and obtained the overall weightage of a topic provided in the form of a query. Hadoop has been exploited for speed. Our experiments show effective results.Keywords: sentiment analysis, twitter, collision theory, discourse analysis
Procedia PDF Downloads 53828513 Bisphenol-A Concentrations in Urine and Drinking Water Samples of Adults Living in Ankara
Authors: Hasan Atakan Sengul, Nergis Canturk, Bahar Erbas
Abstract:
Drinking water is indispensable for life. With increasing awareness of communities, the content of drinking water and tap water has been a matter of curiosity. The presence of Bisphenol-A is the top one when content curiosity is concerned. The most used chemical worldwide for production of polycarbonate plastics and epoxy resins is Bisphenol-A. People are exposed to Bisphenol-A chemical, which disrupts the endocrine system, almost every day. Each year it is manufactured an average of 5.4 billion kilograms of Bisphenol-A. Linear formula of Bisphenol-A is (CH₃)₂C(C₆H₄OH)₂, its molecular weight is 228.29 and CAS number is 80-05-7. Bisphenol-A is known to be used in the manufacturing of plastics, along with various chemicals. Bisphenol-A, an industrial chemical, is used in the raw materials of packaging mate-rials in the monomers of polycarbonate and epoxy resins. The pass through the nutrients of Bisphenol-A substance happens by packaging. This substance contaminates with nutrition and penetrates into body by consuming. International researches show that BPA is transported through body fluids, leading to hormonal disorders in animals. Experimental studies on animals report that BPA exposure also affects the gender of the newborn and its time to reach adolescence. The extent to what similar endocrine disrupting effects are on humans is a debate topic in many researches. In our country, detailed studies on BPA have not been done. However, it is observed that 'BPA-free' phrases are beginning to appear on plastic packaging such as baby products and water carboys. Accordingly, this situation increases the interest of the society about the subject; yet it causes information pollution. In our country, all national and international studies on exposure to BPA have been examined and Ankara province has been designated as testing region. To assess the effects of plastic use in daily habits of people and the plastic amounts removed out of the body, the results of the survey conducted with volunteers who live in Ankara has been analyzed with Sciex appliance by means of LC-MS/MS in the laboratory and the amount of exposure and BPA removal have been detected by comparing the results elicited before. The results have been compared with similar studies done in international arena and the relation between them has been exhibited. Consequently, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine. This has also revealed that environmental exposure and the habits of daily plastic use have also direct effects a human body. When the amount of BPA in drinking water is considered; minimum 0.028 µg/L, maximum 1.136 µg/L, mean 0.29194 µg/L and SD(standard deviation)= 0.199 have been detected. When the amount of BPA in urine is considered; minimum 0.028 µg/L, maximum 0.48 µg/L, mean 0.19181 µg/L and SD= 0.099 have been detected. In conclusion, there has been found no linear correlation between the amount of BPA in drinking water and the amount of BPA in urine (r= -0.151). The p value of the comparison between drinking water’s and urine’s BPA amounts is 0.004 which shows that there is a significant change and the amounts of BPA in urine is dependent on the amounts in drinking waters (p < 0.05). This has revealed that environmental exposure and daily plastic habits have also direct effects on the human body.Keywords: analyze of bisphenol-A, BPA, BPA in drinking water, BPA in urine
Procedia PDF Downloads 13328512 Response Surface Methodology to Obtain Disopyramide Phosphate Loaded Controlled Release Ethyl Cellulose Microspheres
Authors: Krutika K. Sawant, Anil Solanki
Abstract:
The present study deals with the preparation and optimization of ethyl cellulose-containing disopyramide phosphate loaded microspheres using solvent evaporation technique. A central composite design consisting of a two-level full factorial design superimposed on a star design was employed for optimizing the preparation microspheres. The drug:polymer ratio (X1) and speed of the stirrer (X2) were chosen as the independent variables. The cumulative release of the drug at a different time (2, 6, 10, 14, and 18 hr) was selected as the dependent variable. An optimum polynomial equation was generated for the prediction of the response variable at time 10 hr. Based on the results of multiple linear regression analysis and F statistics, it was concluded that sustained action can be obtained when X1 and X2 are kept at high levels. The X1X2 interaction was found to be statistically significant. The drug release pattern fitted the Higuchi model well. The data of a selected batch were subjected to an optimization study using Box-Behnken design, and an optimal formulation was fabricated. Good agreement was observed between the predicted and the observed dissolution profiles of the optimal formulation.Keywords: disopyramide phosphate, ethyl cellulose, microspheres, controlled release, Box-Behnken design, factorial design
Procedia PDF Downloads 46028511 Instructors Willingness, Self-Efficacy Beliefs, Attitudes and Knowledge about Provisions of Instructional Accommodations for Students with Disabilities: The Case Selected Universities in Ethiopia
Authors: Abdreheman Seid Abdella
Abstract:
This study examined instructors willingness, self-efficacy beliefs, attitudes and knowledge about provisions of instructional accommodations for students with disabilities in universities. Major concepts used in this study operationally defined and some models of disability were reviewed. Questionnaires were distributed to a total of 181 instructors from four universities and quantitative data was generated. Then to analyze the data, appropriate methods of data analysis were employed. The result indicated that on average instructors had positive willingness, strong self-efficacy beliefs and positive attitudes towards providing instructional accommodations. In addition, the result showed that the majority of participants had moderate level of knowledge about provision of instructional accommodations. Concerning the relationship between instructors background variables and dependent variables, the result revealed that location of university and awareness raising training about Inclusive Education showed statistically significant relationship with all dependent variables (willingness, self-efficacy beliefs, attitudes and knowledge). On the other hand, gender and college/faculty did not show a statistically significant relationship. In addition, it was found that among the inter-correlation of dependent variables, the correlation between attitudes and willingness to provide accommodations was the strongest. Furthermore, using multiple linear regression analysis, this study also indicated that predictor variables like self-efficacy beliefs, attitudes, knowledge and teaching methodology training made statistically significant contribution to predicting the criterion willingness. Predictor variables like willingness and attitudes made statistically significant contribution to predicting self-efficacy beliefs. Predictor variables like willingness, Special Needs Education course and self-efficacy beliefs made statistically significant contribution to predict attitudes. Predictor variables like Special Needs Education courses, the location of university and willingness made statistically significant contribution to predicting knowledge. Finally, using exploratory factor analysis, this study showed that there were four components or factors each that represent the underlying constructs of willingness and self-efficacy beliefs to provide instructional accommodations items, five components for attitudes towards providing accommodations items and three components represent the underlying constructs for knowledge about provisions of instructional accommodations items. Based on the findings, recommendations were made for improving the situation of instructional accommodations in Ethiopian universities.Keywords: willingness, self-efficacy belief, attitude, knowledge
Procedia PDF Downloads 278