Search results for: prompt-gamma activation analysis
28399 Phosphoinositide 3-Kinase-Dependent CREB Activation is Required for the Induction of Aromatase in Tamoxifen-Resistant Breast Cancer
Authors: Ji Hye Im, Nguyen T. T. Phuong, Keon Wook Kang
Abstract:
Estrogens are important for the development and growth of estrogen receptor (ER)-positive breast cancer, for which anti-estrogen therapy is one of the most effective treatments. However, its efficacy can be limited by either de novo or acquired resistance. Aromatase is a key enzyme for the biosynthesis of estrogens, and inhibition of this enzyme leads to profound hypoestrogenism. Here, we found that the basal expression and activity of aromatase were significantly increased in tamoxifen (TAM)-resistant human breast cancer (TAMR-MCF-7) cells compared to control MCF-7 cells. We further revealed that aromatase immunoreactivity in tumor tissues was increased in recurrence group after TAM therapy compared to non-recurrence group after TAM therapy. Phosphorylation of Akt, extracellular signal-regulated kinase (ERK), and p38 kinase were all increased in TAMR-MCF-7 cells. Inhibition of phosphoinositide 3-kinase (PI3K) suppressed the transactivation of the aromatase gene and its enzyme activity. Furthermore, we have also shown that PI3K/Akt-dependent cAMP-response element binding protein (CREB) activation was required for the enhanced expression of aromatase in TAMR-MCF-7 cells. Our findings suggest that aromatase expression is up-regulated in TAM-resistant breast cancer via PI3K/Akt-dependent CREB activation.Keywords: TAMR-MCF-7, CREB, estrogen receptor, aromatase
Procedia PDF Downloads 41228398 A Comparative Study between Behaviour Activation, Rational Emotive Behaviour Therapy and Waiting List Control for Major Depressive Disorder
Authors: Shweta Jha, Digambar Darekar, Krishna Kadam
Abstract:
Major Depressive Disorder (MDD) is one of the most common of psychiatric disorders. It has a wide range of symptoms, aetiologies and risk factors, and these reasons make MDD affect not only the primary patient, but also their family, caregivers and associates; by negatively impacting their self dignity, economic condition and self-confidence. Thus, it is important to help individuals suffering from MDD learn adaptive mechanism and deal effectively with their environment, with that aim this study focused on a comparative therapeutic intervention using Behaviour Activation (BA), Rational Emotive Behaviour Therapy (REBT) and Waiting list control (WLC) for management of MDD. This study apart from enhancing personal skills will also help us understand which therapeutic method would be more beneficial in treating and prolonging relapse in patients with MDD in Indian population. Fifteen individuals following application of inclusion and exclusion criteria were selected as study samples. They were randomly assigned to three treatment groups. Ten sessions of therapy, forty-five minutes each according to the proposed sessions plan were conducted for each group. The individuals selected as samples were re–assessed after 2 months and 6 months post intervention. The overall result showed that individuals treated with BA and REBT showed more improvement in comparison to those in WLC.Keywords: behaviour activation, major depressive disorder, rational emotive behaviour therapy, therapeutic intervention
Procedia PDF Downloads 25428397 Atmospheric Oxidation of Carbonyls: Insight to Mechanism, Kinetic and Thermodynamic Parameters
Authors: Olumayede Emmanuel Gbenga, Adeniyi Azeez Adebayo
Abstract:
Carbonyls are the first-generation products from tropospheric degradation reactions of volatile organic compounds (VOCs). This computational study examined the mechanism of removal of carbonyls from the atmosphere via hydroxyl radical. The kinetics of the reactions were computed from the activation energy (using enthalpy (ΔH**) and Gibbs free energy (ΔG**). The minimum energy path (MEP) analysis reveals that in all the molecules, the products have more stable energy than the reactants, which implies that the forward reaction is more thermodynamically favorable. The hydrogen abstraction of the aromatic aldehyde, especially without methyl substituents, is more kinetically favorable compared with the other aldehydes in the order of aromatic (without methyl or meta methyl) > alkene (short chain) > diene > long-chain aldehydes. The activation energy is much lower for the forward reaction than the backward, indicating that the forward reactions are more kinetically stable than their backward reaction. In terms of thermodynamic stability, the aromatic compounds are found to be less favorable in comparison to the aliphatic. The study concludes that the chemistry of the carbonyl bond of the aldehyde changed significantly from the reactants to the products.Keywords: atmospheric carbonyls, oxidation, mechanism, kinetic, thermodynamic
Procedia PDF Downloads 5028396 The Role of Inflammasomes for aβ Microglia Phagocytosis in Alzheimer Disease
Authors: Francesca La Rosa , Marina Saresella, Mario Clerici, Michael Heneka
Abstract:
Neuroinflammation plays a key role in the modulation of the pathogenesis of neurodegenerative disorder such as Alzheimer's Disease (AD). Microglia, the main immune effector of the brain, are able to migrate to sites of Amyloid-beta (Aβ) deposition to eliminate Aβ phagocytosis upon activation by multiple receptors: Toll like receptors and scavenger receptors. The issue of whether microglia are able to eliminate pathological lesions such as neurofibrillary tangles or senile plaques from AD brain still remains the matter of controversy. Recent data suggest that the Nod Like Receptor 3 (NLRP3), multiprotein inflammasome complexes, plays a role in AD, as its activation in the microglia by Aβ triggers. IL-1β is produced as a biologically inactive pro-form and requires caspase-1 for activation and secretion. Caspase-1 activity is controlled by inflammasomes. We investigate about the importance of inflammasomes complex in the Aβ phagocytosis and its degradation. The preliminary results of phagocytosis assay and immunofluorescent experiment on primary Microglia cells to lipopolysaccharide (LPS) an Aβ exposure show that a previous treatment with LPS reduce Aβ phagocytosis. Different results were obtained in Primary Microglia wild type, NLRP3 and ASC Knockout suggesting a real inflammasomes involvement in Alzheimer's pathology. Inflammasomes inactivation reduces the production of inflammatory cytokines prolonging the protective activity of microglia and Aβ clearance, featuring a typical microglia phenotype of the early stage of AD disease.Keywords: Alzheimer disease, innate immunity, neuroinflammation, NLRP3
Procedia PDF Downloads 45628395 Preparation of Activated Carbon Fibers (ACF) Impregnated with Ionic Silver Particles from Cotton Woven Waste and Its Performance as Antibacterial Agent
Authors: Jonathan Andres Pullas Navarrete, Ernesto Hale de la Torre Chauvin
Abstract:
In this work, the antibacterial effect of activated carbon fibers (ACF) impregnated with ionic silver particles was studied. ACF were prepared from samples of cotton woven wastes (cotton based fabrics 5x10 cm) by applying a chemical activation procedure with H3PO4. This treatment was performed using several H3PO4: Cotton based fabrics weight ratios (1:2–2:1), temperatures (600–900 ºC) and activation times (0.5–2 h). The ACF obtained under the best activation conditions showed BET surface area of 1103 m2/g; this result along with iodine index demonstrated the microporous nature of the fibers herein obtained. Then, the obtained fibers were impregnated with ionic silver particles by immersion in 0.1 and 0.5 M AgNO3 solutions followed by drying and thermal decomposition in order to fix the silver particles in the structure of ACF. It was determined that the presence of Ag ions lowered the BET surface area of the ACF in approximately 17 % due to the obstruction of the porosities along the carbonized structure. Finally, the antibacterial effect of the ACF impregnated with silver was studied through direct counting method for coliforms. The antibacterial activity of the impregnated fibers was demonstrated, and it was attributed to the strongly inhibition of bacteria growth because of chemical properties of the particles of silver inside the ACF. This behavior was demonstrated at concentrations of silver as low as 0.035 % w/w.Keywords: activated carbon, adsorption, antibacterial activity, coliforms, surface area
Procedia PDF Downloads 28228394 Effects of β-Glucan on the Release of Nitric Oxide by RAW264.7 Cells Stimulated with Escherichia coli Lipopolysaccharide
Authors: Eun Young Choi, So Hui Choe, Jin Yi Hyeon, Ji Young Jin, Bo Ram Keum, Jong Min Lim, Hyung Rae Cho, Kwang Keun Cho, In Soon Choi
Abstract:
This research analyzed the effect of β-glucan that is expected to alleviate the production of inflammatory mediator in macrophagocyte, which was processed by the lipopolysaccharide (LPS) of Escherichia, a pathogen related to allergy. The incubated layer was used for nitric oxide (NO) analysis. The DNA-binding activation of the small unit of NF-κB was measured using ELISA-based kit. In RAW264.7 cells that were vitalized by E.coli LPS, β-glucan inhibited both the combatant and rendering phases of inducible NO synthase (iNOS)-derived NO. β-glucan increased the expression of heme oxygenase-1 (HO-1) in the cell that was stimulated by E.coli LPS, and HO-1 activation was inhibited by SnPP. This shows that NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of JNK and p38 induced by LPS were not influenced by β-glucan, and IκB-α decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of STAT1 that was induced by E.coli LPS. Overall, β-glucan inhibited the production of NO in macrophagocyte that was vitalized by E.coli LPS through HO-1 induction and STAT1 pathways inhibition in this research. As the host inflammation reaction control by β-glucan weakens the progress of allergy, β-glucan can be used as an effective treatment method.Keywords: β-glucan, lipopolysaccharide (LPS), nitric oxide (NO), RAW264.7 cells, STAT1
Procedia PDF Downloads 40828393 Microglia Activity and Induction of Mechanical Allodynia after Mincle Receptor Ligand Injection in Rat Spinal Cord
Authors: Jihoon Yang, Jeong II Choi
Abstract:
Mincle is expressed in macrophages and is members of immunoreceptors induced after exposure to various stimuli and stresses. Mincle receptor activation promotes the production of these substances by increasing the transcription of inflammatory cytokines and chemokines. Cytokines, which play an important role in the initiation and maintenance of such inflammatory pain diseases, have a significant effect on sensory neurons in addition to their enhancement and inhibitory effects on immune and inflammatory cells as mediators of cell interaction. Glial cells in the central nervous system play a critical role in development and maintenance of chronic pain states. Microglia are tissue-resident macrophages in the central nervous system, and belong to a group of mononuclear phagocytes. In the central nervous system, mincle receptor is present in neurons and glial cells of the brain.This study was performed to identify the Mincle receptor in the spinal cord and to investigate the effect of Mincle receptor activation on nociception and the changes of microglia. Materials and Methods: C-type lectins(Mincle) was identified in spinal cord of Male Sprague–Dawley rats. Then, mincle receptor ligand (TDB), via an intrathecal catheter. Mechanical allodynia was measured using von Frey test to evaluate the effect of intrathecal injection of TDB. Result: The present investigation shows that the intrathecal administration of TDB in the rat produces a reliable and quantifiable mechanical hyperalgesia. In addition, The mechanical hyperalgesia after TDB injection gradually developed over time and remained until 10 days. Mincle receptor is identified in the spinal cord, mainly expressed in neuronal cells, but not in microglia or astrocyte. These results suggest that activation of mincle receptor pathway in neurons plays an important role in inducing activation of microglia and inducing mechanical allodynia.Keywords: mincle, spinal cord, pain, microglia
Procedia PDF Downloads 15928392 Zinc Adsorption Determination of H2SO4 Activated Pomegranate Peel
Authors: S. N. Turkmen Koc, A. S. Kipcak, M. B. Piskin, E. Moroydor Derun, N. Tugrul
Abstract:
Active carbon can be obtained from agricultural sources. Due to the high surface area, the production of activated carbon from cheap resources is very important. Since the surface area of 1 g activated carbon is approximately between 300 and 2000 m2, it can be used to remove both organic and inorganic impurities. In this study, the adsorption of Zn metal was studied with the product of activated carbon, which is obtained from pomegranate peel by microwave and chemical activation methods. The microwave process of pomegranate peel was carried out under constant microwave power of 800 W and 1 to 4 minutes. After the microwave process, samples were treated with H2SO4 for 3 h. Then prepared product was used in synthetic waste water including 40 ppm Zn metal. As a result, removal of waste Zn in waste water ranged from 91% to 93%.Keywords: activated carbon, chemical activation, H₂SO₄, microwave, pomegranate peel
Procedia PDF Downloads 16928391 Carbon Nanomaterials from Agricultural Wastes for Adsorption of Organic Pollutions
Authors: Magdalena Blachnio, Viktor Bogatyrov, Mariia Galaburda, Anna Derylo-Marczewska
Abstract:
Agricultural waste materials from traditional oil mill and after extraction of natural raw materials in supercritical conditions were used for the preparation of carbon nanomaterials (activated carbons) by two various methods. Chemical activation using acetic acid and physical activation with a gaseous agent (carbon dioxide) were chosen as mild and environmentally friendly ones. The effect of influential factors: type of raw material, temperature and activation agent on the porous structure characteristics of the materials was discussed by using N₂ adsorption/desorption isotherms at 77 K. Furthermore scanning electron microscope (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were employed to examine the physicochemical properties of the obtained sorbents. Selection of a raw material and an optimization of the conditions of the synthesis process, allowed to obtain the cheap sorbents with a targeted distribution of pores enabling effective adsorption of the model organic pollutants carried out in the multicomponent systems. Adsorption behavior (capacity and rate) of the chosen activated carbons was estimated by utilizing Crystal violet (CV), 4-chlorophenoxyacetic acid (4-CPA), 2.4-dichlorophenoxyacetic acid (2.4-D) as the adsorbates. Both rate and adsorption capacity of the organics on the sorbents evidenced that the activated carbons could be effectively used in sewage treatment plants. The mechanisms of organics adsorption were studied and correlated with activated carbons properties.Keywords: activated carbon, adsorption equilibrium, adsorption kinetics, organics adsorption
Procedia PDF Downloads 17728390 Synthesis and Cytotoxic Activity of New Quinazolinone-Based Compounds against Human Breast Cancer Cell Line MCF-7
Authors: Maryam Zahedifard, Fadhil Lafta Faraj, Maryam Hajrezaie, Nazia Abdul Majid, Mahmood Ameen Abdulla, Hapipah Mohd Ali
Abstract:
In the current study, we prepared two new quinazoline schiff bases through condensation reaction of 2-aminobenzhydrazide with 5-bromosalicylaldehyde and 3-methoxy-5-bromosalicylaldehyde. The chemical structures of both newly synthesized compounds (1 and 2) were confirmed by FT-IR and X-ray crystallography studies. The cytotoxic effect of compounds was investigated against MCF-7 human breast cancer cells. MTT results showed that (1) and (2) decreased the viability of MCF-7 cells in a time-dependent manner, exhibiting an IC50 value of 3.23 ± 0.28 µg/mL and 3.41 ± 0.34 µg/mL, respectively, after a 72-hours treatment period. In contrast, they did not show significant anti-proliferative effect towards MCF-10A normal breast cells and WRL-68 normal liver cells. We found a perturbation in mitochondrial membrane potential and increased cytochrome c release from the mitochondria to the cytosol, suggesting an activation of apoptosis by compounds, which was confirmed by activation of the initiator caspase-9 and the executioner caspases-3/7. (1) was also able to trigger extrinsic pathway via activation of caspase-8 and inhibition of NF-κB translocation. The acute toxicity test showed no toxicity effect of the compounds in rats. Our results showed that the selected synthesized compounds are highly potent to induce apoptosis in MCF-7 cells via either intrinsic or extrinsic mitochondrial pathway.Keywords: Quinazoline Schiff base, apoptosis, MCF-7 human breast cancer cell line, caspase, NF-κB translocation
Procedia PDF Downloads 49128389 Kinetic Study of Thermal Degradation of a Lignin Nanoparticle-Reinforced Phenolic Foam
Authors: Juan C. Domínguez, Belén Del Saz-Orozco, María V. Alonso, Mercedes Oliet, Francisco Rodríguez
Abstract:
In the present study, the kinetics of thermal degradation of a phenolic and lignin reinforced phenolic foams, and the lignin used as reinforcement were studied and the activation energies of their degradation processes were obtained by a DAEM model. The average values for five heating rates of the mean activation energies obtained were: 99.1, 128.2, and 144.0 kJ.mol-1 for the phenolic foam, 109.5, 113.3, and 153.0 kJ.mol-1 for the lignin reinforcement, and 82.1, 106.9, and 124.4 kJ. mol-1 for the lignin reinforced phenolic foam. The standard deviation ranges calculated for each sample were 1.27-8.85, 2.22-12.82, and 3.17-8.11 kJ.mol-1 for the phenolic foam, lignin and the reinforced foam, respectively. The DAEM model showed low mean square errors (< 1x10-5), proving that is a suitable model to study the kinetics of thermal degradation of the foams and the reinforcement.Keywords: kinetics, lignin, phenolic foam, thermal degradation
Procedia PDF Downloads 48828388 Using Different Methods of Nanofabrication as a New Way to Activate Cement Replacement Materials in Concrete Industry
Authors: Azadeh Askarinejad, Parham Hayati, Reza Parchami, Parisa Hayati
Abstract:
One of the most important industries and building operations causing carbon dioxide emission is the cement and concrete related industries so that cement production (including direct fuel for mining and transporting raw material) consumes approximately 6 million Btus per metric-ton, and releases about 1 metric-ton of CO2. Reducing the consumption of cement with simultaneous utilizing waste materials as cement replacement is preferred for reasons of environmental protection. Blended cements consist of different supplementary cementitious materials (SCM), such as fly ash, silica fume, Ground Granulated Blast Furnace Slag (GGBFS), limestone, natural pozzolans, etc. these materials should be chemically activated to show effective cementitious properties. The present review article reports three different methods of nanofabrication that were used for activation of two types of SCMs.Keywords: nanofabrication, cement replacement materials, activation, concrete
Procedia PDF Downloads 61328387 An Experimental Approach of the Reuse of Dredged Sediments in a Cement Matrix by Physical and Heat Treatment
Authors: Mahfoud Benzerzour, Mouhamadou Amar, Nor-edine Abriak
Abstract:
In this study, a sediment was used as a secondary raw material in cement substitution with prior treatment. The treatment adopted is a physical treatment involving grinding and separation to obtain different fractions, using a dry method (1 mm, 250µm, 120µm) and washing method (250µm and 120µm). They were subsequently heat treated at temperatures of 650°C, 750°C and 850°C for 1 hour and 3 hours, in order to enable chemical activation by decarbonation or by pozzolanic activation of the material. Different characterization techniques were performed. The determination of main physical and chemical characteristics was obtained through multiple tests: particle size distribution, specific density, the BET surface area, the initial setting time and hydration heat calorimetry Langavant. The chemical tests include: ATG analysis, X-ray diffractometry (XRD) and X-ray fluorescence (XRF) which were used to quantify the fractions, phases and chemical elements present. Compression tests were performed conforming NF EN 196-1 French standard, over terms of 7 days - 14 days - 28 days and 60 days on all formulated mortars: reference mortar based on 100% CEM I 52.5N binder and cement substituted mortars with 8% and 15% by treated sediment. This clearly evidenced contribution due to the chemical activity which was confirmed by calorimetry monitoring and strength investigation.Keywords: sediment, characterization, grinding, heat treatment, substitution
Procedia PDF Downloads 20228386 Autoantibodies against Central Nervous System Antigens and the Serum Levels of IL-32 in Patients with Schizophrenia
Authors: Fatemeh Keshavarz
Abstract:
Background: Schizophrenia is a disease of the nervous system, and immune system disorders can affect its pathogenesis. Activation of microglia, proinflammatory cytokines, disruption of the blood-brain barrier (BBB) due to inflammation, activation of autoreactive B cells, and consequently the production of autoantibodies against system antigens are among the immune processes involved in neurological diseases. interleukin 32 (IL-32) a proinflammatory cytokine that important player in the activation of the innate and adaptive immune responses. This study aimed to measure the serum level of IL-32 as well as the frequency of autoantibody positivity against several nervous system antigens in patients with schizophrenia. Material and Methods: This study was conducted on 40 patients with schizophrenia and 40 healthy individuals in the control group. Serum IL-32 levels were measured by ELISA. The frequency of autoantibodies against Hu, Ri, Yo, Tr, CV2, Amphiphysin, SOX1, Zic4, ITPR1, CARP, GAD, Recoverin, Titin, and Ganglioside antigens were measured by indirect immunofluorescence method. Results: Serum IL-32 levels in patients with schizophrenia were significantly higher compared to the control group. Autoantibodies were positive in 8 patients for GAD antigen and 5 patients for Ri antigen, which showed a significant relationship compared to the control group. Autoantibodies were also positive in 2 patients for CV2, in 1 patient for Hu, and in 1 patient for CARP. Negative results were reported for other antigens. Conclusion: Our findings suggest that elevated the serum IL-32 level and autoantibody positivity against several nervous system antigens may be involved in the pathogenesis of schizophrenia.Keywords: schizophrenia, microglia, autoantibodies, IL-32
Procedia PDF Downloads 12628385 Mutagenic in vitro Activity and Genotoxic Effect of Zygophyllum Cornutun Methanolic Extract
Authors: Awatif Boumaza, Abderraouf Hilali, Hayat Talbi, Houda Sbayou
Abstract:
The methanolic extract of Zygophyllum cornutun coss, an Algerian medicinal plant, was screened to the presence of mutagenic activity and genotoxic effect using the Ames test (Salmonella/microsome) and the micronucleus assay respectively. Positive results were obtained with both tests. The Ames test showed mutagenic activity in the presence of microsomal activation, while negative result was observed without microsomal activation. In the micronucleus test, two parameters were evaluated: the frequency of the micronucleus that increased in a dose dependent way and the proliferation index that decreased according to the micronucleus frequency. Even that further studies must be carried out, the mutagenic activity and the genotoxic effect of Zygophyllum cornutum should be taken in consideration when used as therapeutic plant.Keywords: ames test, micronucleus test, mutagenic activity, genotoxicity, Zygophyllum cornutum
Procedia PDF Downloads 51028384 Experimental Study on Stabilisation of a Soft Soil by Alkaline Activation of Industrial By-Products
Authors: Mohammadjavad Yaghoubi, Arul Arulrajah, Mahdi M. Disfani, Suksun Horpibulsuk, Myint W. Bo, Stephen P. Darmawan
Abstract:
Utilising waste materials, such as fly ash (FA) and slag (S) stockpiled in landfills, has drawn the attention of researchers and engineers in the recent years. There is a great potential for usage of these wastes in ground improvement projects, especially where deep deposits of soft compressible soils exist. This paper investigates the changes in the strength development of a high water content soft soil stabilised with alkaline activated FA and S, termed as geopolymer binder, to use in deep soil mixing technology. The strength improvement and the changes in the microstructure of the mixtures have been studied. The results show that using FA and S-based geopolymers can increases the strength significantly. Furthermore, utilising FA and S in ground improvement projects, where large amounts of binders are required, can be a solution to the disposal of these wastes.Keywords: alkaline activation, fly ash, geopolymer, slag, strength development
Procedia PDF Downloads 26728383 MicroRNA Expression Distinguishes Neutrophil Subtypes
Authors: R. I. You, C. L. Ho, M. S. Dai, H. M. Hung, S. F. Yen, C. S. Chen, T. Y. Chao
Abstract:
Neutrophils are the most abundant innate immune cells to against invading microorganisms. Numerous data shown neutrophils have plasticity in response to physiological and pathological conditions. Tumor-associated neutrophils (TAN) exist in distinct types of tumor and play an important role in cancer biology. Different transcriptomic profiles of neutrophils in tumor and non-tumor samples have been identified. Several miRNAs have been recognized as regulators of gene expression in neutrophil, which may have key roles in neutrophil activation. However, the miRNAs expression patterns in TAN are not well known. To address this question, magnetic bead isolated neutrophils from tumor-bearing mice were used in this study. We analyzed production of reactive oxygen species (ROS) by luminol-dependent chemiluminescence assay. The expression of miRNAs targeting NADPH oxidase, ROS generation and autophagy was explored using quantitative real-time polymerase chain reaction. Our data suggest that tumor environment influence neutrophil develop to differential states of activation via miRNAs regulation.Keywords: tumor-associated neutrophil, miRNAs, neutrophil, ROS
Procedia PDF Downloads 47028382 Plantar Neuro-Receptor Activation in Total Knee Arthroplasty Patients: Impact on Clinical Function, Pain, and Stiffness - A Randomized Controlled Trial
Authors: Woolfrey K., Woolfrey M., Bolton C. L., Warchuk D.
Abstract:
Objectives: Osteoarthritis is the most common joint disease of adults worldwide. Despite total knee arthroplasty (TKA) demonstrating high levels of success, 20% of patients report dissatisfaction with their result. VOXX Wellness Stasis Socks are embedded with a proprietary pattern of neuro-receptor activation points that have been proven to activate a precise neuro-response, according to the pattern theory of haptic perception, which stimulates improvements in pain and function. The use of this technology in TKA patients may prove beneficial as an adjunct to recovery as many patients suffer from deficits to their proprioceptive system caused by ligamentous damage and alterations to mechanoreceptors during the procedure. We hypothesized that VOXX Wellness Stasis Socks are a safe, cost-effective, and easily scalable strategy to support TKA patients through their recovery. Design: Double-blinded, placebo-controlled randomized trial. Participants: Patients scheduled to receive TKA were considered eligible for inclusion in the trial. Interventions: Intervention group (I): VOXX Wellness Stasis socks containing receptor point-activation technology. Control group (C): VOXX Wellness Stasis socks without receptor point-activation technology. Sock use during the waking hours x 6 weeks. Main Outcome Measures: Western Ontario McMaster Universities Osteoarthritis Index (WOMAC) questionnaire completed at baseline, 2 weeks, and 6 weeks to assess pain, stiffness, and physical function. Results: Data analysis using SPSS software. P-values, effect sizes, and confidence intervals are reported to assess clinical relevance of the finding. Physical status classifications were compared using t-test. Within-subject and between-subject differences in the mean WOMAC were analyzed by ANOVA. Effect size was analyzed using Cramer’s V. Consistent improvement in WOMAC scores for pain and stiffness at 2 weeks post op in the I over the C group. The womac scores assessing physical function showed a consistent improvement at both 2 and 6 weeks post op in the I group compared to C group. Conclusions: VOXX proved to be a low cost, safe intervention in TKA to help patients improve with regard to pain, stiffness, and physical function. Disclosures: NoneKeywords: osteoarthritis, RCT, pain management, total knee arthroplasty
Procedia PDF Downloads 53128381 The Effect of Seated Distance on Muscle Activation and Joint Kinematics during Seated Strengthening in Patients with Stroke with Extensor Synergy Pattern in the Lower Limbs
Authors: Y. H. Chen, P. Y. Chiang, T. Sugiarto, I. Karsuna, Y. J. Lin, C. C. Chang, W. C. Hsu
Abstract:
Task-specific training with intense practice of functional tasks has been emphasized for the approaches in motor rehabilitation in patients with hemiplegic strokes. Although reciprocal actions which may increase demands on motor control during seated stepping exercise, motor control is not explicitly trained with emphasis and instruction focused on traditional strengthening. Apart from cycling and treadmill, various forms of seated exerciser are becoming available for the lower extremity exercise. The benefit of seated exerciser has been focused on the effect on the cardiopulmonary system. Thus, the aim of current study is to investigate the effect of seated distance on muscle activation during seated strengthening in patients with stroke with extensor synergy pattern in the lower extremities. Electrodes were placed on the surface of lower limbs muscles, including rectus femoris (RF), vastus lateralis (VL), biceps femoris (BF) and gastrocnemius (GT) of both sides. Maximal voluntary contraction (MVC) of the muscles were obtained to normalize the EMG amplitude obtained during dynamic trials with analog raw data digitized with a sampling frequency of 2000 Hz, fully rectified and the linear enveloped. Movement cycle was separated into two phases by pushing (PP) and Return (RP). Integral EMG (iEMG) is then used to quantify level of activation during each of the phases. Subjects performed strengthening with moderate resistance with speed of 60 rpm in two different distances (D1, short) and (D2, long). The results showed greater iEMG in RF and smaller iEMG in VL and BF with obvious increase range of motion of hip flexion in D1 condition. On the contrary, no significant involvement of RF while greater level of muscular activation in VL and BF during RP was found during PP in D2 condition. In addition, greater hip internal rotation was observed in D2 condition. In patients with stroke with abnormal tone revealed by extensor synergy in the lower extremities, shorter seated distance is suggested to facilitate hip flexor muscle activation while avoid inducing hyper extensor tone which may prevent a smooth repetitive motion. Repetitive muscular contraction exercise of hip flexor may be helpful for further gait training as it may assist hip flexion during swing phase of the walking.Keywords: seated strengthening, patients with stroke, electromyography, synergy pattern
Procedia PDF Downloads 21328380 Regression of Hand Kinematics from Surface Electromyography Data Using an Long Short-Term Memory-Transformer Model
Authors: Anita Sadat Sadati Rostami, Reza Almasi Ghaleh
Abstract:
Surface electromyography (sEMG) offers important insights into muscle activation and has applications in fields including rehabilitation and human-computer interaction. The purpose of this work is to predict the degree of activation of two joints in the index finger using an LSTM-Transformer architecture trained on sEMG data from the Ninapro DB8 dataset. We apply advanced preprocessing techniques, such as multi-band filtering and customizable rectification methods, to enhance the encoding of sEMG data into features that are beneficial for regression tasks. The processed data is converted into spike patterns and simulated using Leaky Integrate-and-Fire (LIF) neuron models, allowing for neuromorphic-inspired processing. Our findings demonstrate that adjusting filtering parameters and neuron dynamics and employing the LSTM-Transformer model improves joint angle prediction performance. This study contributes to the ongoing development of deep learning frameworks for sEMG analysis, which could lead to improvements in motor control systems.Keywords: surface electromyography, LSTM-transformer, spiking neural networks, hand kinematics, leaky integrate-and-fire neuron, band-pass filtering, muscle activity decoding
Procedia PDF Downloads 728379 Equilibrium and Kinetic Studies of Lead Adsorption on Activated Carbon Derived from Mangrove Propagule Waste by Phosphoric Acid Activation
Authors: Widi Astuti, Rizki Agus Hermawan, Hariono Mukti, Nurul Retno Sugiyono
Abstract:
The removal of lead ion (Pb2+) from aqueous solution by activated carbon with phosphoric acid activation employing mangrove propagule as precursor was investigated in a batch adsorption system. Batch studies were carried out to address various experimental parameters including pH and contact time. The Langmuir and Freundlich models were able to describe the adsorption equilibrium, while the pseudo first order and pseudo second order models were used to describe kinetic process of Pb2+ adsorption. The results show that the adsorption data are seen in accordance with Langmuir isotherm model and pseudo-second order kinetic model.Keywords: activated carbon, adsorption, equilibrium, kinetic, lead, mangrove propagule
Procedia PDF Downloads 16728378 Drying Characteristics of Shrimp by Using the Traditional Method of Oven
Authors: I. A. Simsek, S. N. Dogan, A. S. Kipcak, E. Morodor Derun, N. Tugrul
Abstract:
In this study, the drying characteristics of shrimp are studied by using the traditional drying method of oven. Drying temperatures are selected between 60-80°C. Obtained experimental drying results are applied to eleven mathematical models of Alibas, Aghbashlo et al., Henderson and Pabis, Jena and Das, Lewis, Logaritmic, Midilli and Kucuk, Page, Parabolic, Wang and Singh and Weibull. The best model was selected as parabolic based on the highest coefficient of determination (R²) (0.999990 at 80°C) and the lowest χ² (0.000002 at 80°C), and the lowest root mean square error (RMSE) (0.000976 at 80°C) values are compared to other models. The effective moisture diffusivity (Deff) values were calculated using the Fick’s second law’s cylindrical coordinate approximation and are found between 6.61×10⁻⁸ and 6.66×10⁻⁷ m²/s. The activation energy (Ea) was calculated using modified form of Arrhenius equation and is found as 18.315 kW/kg.Keywords: activation energy, drying, effective moisture diffusivity, modelling, oven, shrimp
Procedia PDF Downloads 18828377 Kinetic Study on Extracting Lignin from Black Liquor Using Deep Eutectic Solvents
Authors: Fatemeh Saadat Ghareh Bagh, Srimanta Ray, Jerald Lalman
Abstract:
Lignin, the largest inventory of organic carbon with a high caloric energy value is a major component in woody and non-woody biomass. In pulping mills, a large amount of the lignin is burned for energy. At the same time, the phenolic structure of lignin enables it to be converted to value-added compounds.This study has focused on extracting lignin from black liquor using deep eutectic solvents (DESs). Therefore, three choline chloride (ChCl)-DESs paired with lactic acid (LA) (1:11), oxalic acid.2H₂O (OX) (1:4), and malic acid (MA) (1:3) were synthesized at 90oC and atmospheric pressure. The kinetics of lignin recovery from black liquor using DES was investigated at three moderate temperatures (338, 353, and 368 K) at time intervals from 30 to 210 min. The extracted lignin (acid soluble lignin plus Klason lignin) was characterized by Fourier transform infrared spectroscopy (FTIR). The FTIR studies included comparing the extracted lignin with a model Kraft lignin. The extracted lignin was characterized spectrophotometrically to determine the acid soluble lignin (ASL) [TAPPI UM 250] fraction and Klason lignin was determined gravimetrically using TAPPI T 222 om02. The lignin extraction reaction using DESs was modeled by first-order reaction kinetics and the activation energy of the process was determined. The ChCl:LA-DES recovered lignin was 79.7±2.1% at 368K and a DES:BL ratio of 4:1 (v/v). The quantity of lignin extracted for the control solvent, [emim][OAc], was 77.5+2.2%. The activation energy measured for the LA-DES system was 22.7 KJ mol⁻¹, while the activation energy for the OX-DES and MA-DES systems were 7.16 KJ·mol⁻¹ and 8.66 KJ·mol⁻¹ when the total lignin recovery was 75.4 ±0.9% and 62.4 ±1.4, % respectively.Keywords: black liquor, deep eutectic solvents, kinetics, lignin
Procedia PDF Downloads 14728376 Targeting NLRP3 Inflammasome Activation: A New Mechanism Underlying the Protective Effects of Nafamostat Against Acute Pancreatitis
Authors: Jiandong Ren, Lijun Zhao, Peng Chen
Abstract:
Nafamostat (NA), a synthetic broad-spectrum serine protease inhibitor, has been routinely employed for the treatment of acute pancreatitis (AP) and other inflammatory-associated diseases in some East Asia countries. Although the potent inhibitory activity against inflammation-related proteases such as thrombin, trypsin, kallikrein, plasmin, coagulation factors and complement factors is generally considered to be responsible for the anti-inflammatory effects of NA, precise target and molecular mechanism underlying the anti-inflammatory activity in the treatment of AP remain largely unknown yet. As an intracellular inflammatory signaling platform, the NOD-like receptor protein 3 (NLRP3) inflammasome is recently identified to be involved in the development of AP. In present study, we have revealed that NA alleviated pancreatic injury in a caerulein-induced AP model by inhibiting the NLRP3 inflammasome activation in pancreas. Mechanistically, NA interacted with HDAC6, a cytoplasmic deacetylase implicated in the NLRP3 inflammasome pathway, and efficiently abrogated the function of HDAC6. This property enabled NA to influence HDAC6 dependent NF-κB transcriptional activity and thus block NF-κB-driven transcriptional priming of NLRP3 inflammasome. Moreover, NA exerted the potential to interfere HDAC6-mediated intracellular transport of NLRP3, thereby leading to the failure of NLRP3 inflammasome activation. Our current work has provided valuable insight into the molecular mechanism underlying the immunomodulatory effect of NA in treatment of AP, highlighting its promising application in prevention of NLRP3 inflammasome-associated inflammatory pathological damage.Keywords: acute pancreatitis, HDAC6, nafamostat, NLRP3 inflammasome
Procedia PDF Downloads 7028375 Usage of Biosorbent Material for the Removal of Nitrate from Wastewater
Authors: M. Abouleish, R. Umer, Z. Sara
Abstract:
Nitrate can cause serious environmental and human health problems. Effluent from different industries and excessive use of fertilizers have increased the level of nitrate in ground and surface water. Nitrate can convert to nitrite in the body, and as a result, can lead to Methemoglobinemia and cancer. Therefore, different organizations have set standard limits for nitrate and nitrite. The United States Environmental Protection Agency (USEPA) has set a Maximum Contaminant Level Goal (MCLG) of 10 mg N/L for nitrate and 1 mg N/L for nitrite. The removal of nitrate from water and wastewater is very important to ensure the availability of clean water. Different plant materials such as banana peel, rice hull, coconut and bamboo shells, have been studied as biosorbents for the removal of nitrates from water. The use of abundantly existing plant material as an adsorbent material and the lack of energy requirement for the adsorption process makes biosorption a sustainable approach. Therefore, in this research, the fruit of the plant was investigated for its ability to act as a biosorbent to remove the nitrate from wastewater. The effect of pH on nitrate removal was studied using both the raw and chemically activated fruit (adsorbent). Results demonstrated that the adsorbent needs to be chemically activated before usage to remove the nitrate from wastewater. pH did not have a significant effect on the adsorption process, with maximum adsorption of nitrate occurring at pH 4. SEM/EDX results demonstrated that there is no change in the surface of the adsorbent as a result of the chemical activation. Chemical activation of the adsorbent using NaOH increased the removal of nitrate by 6%; therefore, various methods of activation of the adsorbent will be investigated to increase the removal of nitrate.Keywords: biosorption, nitrates, plant material, water, and wastewater treatment
Procedia PDF Downloads 15328374 Research on the Path of Renewal and Activation of Public Space in Guangzhou Historical City under the Guidance of Public Art
Authors: Jingjing Li, Shifu Wang
Abstract:
After the irreversible consequences of the traditional renewal mode of ‘function first and then beautification’, such as the constructive destruction, social differentiation, and cultural, ecological imbalance, the renewal of the historical urban area began to pay attention to the excavation of cultural connotation, and entered a new stage from the pursuit of ‘quantity’ growth to the promotion of ‘quality’, expecting to rejuvenate the old city through the intervention of public art. This paper interprets the cases at home and abroad, summarizes the different forms of expression and application strategies of public art in the renewal of historical urban areas, and combs the limitations of the existing practice in Guangzhou through observation. Finally, it puts forward suggestions from three aspects of the system, implementation strategy, and implementation path, respectively, and explores the path of simultaneous rejuvenation of material space and cultural space in historical urban areas under the intervention of public art.Keywords: public art, historic city, public space, renewal activation
Procedia PDF Downloads 13528373 Factors Affecting Early Antibiotic Delivery in Open Tibial Shaft Fractures
Authors: William Elnemer, Nauman Hussain, Samir Al-Ali, Henry Shu, Diane Ghanem, Babar Shafiq
Abstract:
Introduction: The incidence of infection in open tibial shaft injuries varies depending on the severity of the injury, with rates ranging from 1.8% for Gustilo-Anderson type I to 42.9% for type IIIB fractures. The timely administration of antibiotics upon presentation to the emergency department (ED) is an essential component of fracture management, and evidence indicates that prompt delivery of antibiotics is associated with improved outcomes. The objective of this study is to identify factors that contribute to the expedient administration of antibiotics. Methods: This is a retrospective study of open tibial shaft fractures at an academic Level I trauma center. Current Procedural Terminology (CPT) codes identified all patients treated for open tibial shaft fractures between 2015 and 2021. Open fractures were identified by reviewing ED and provider notes, and with ballistic fractures were considered open. Chart reviews were performed to extract demographics, fracture characteristics, postoperative outcomes, time to operative room, time to antibiotic order, and delivery. Univariate statistical analysis compared patients who received early antibiotics (EA), which were delivered within one hour of ED presentation, and those who received late antibiotics (LA), which were delivered outside of one hour of ED presentation. A multivariate analysis was performed to investigate patient, fracture, and transport/ED characteristics contributing to faster delivery of antibiotics. The multivariate analysis included the dependent variables: ballistic fracture, activation of Delta Trauma, Gustilo-Andersen (Type III vs. Type I and II), AO-OTA Classification (Type C vs. Type A and B), arrival between 7 am and 11 pm, and arrival via Emergency Medical Services (EMS) or walk-in. Results: Seventy ED patients with open tibial shaft fractures were identified. Of these, 39 patients (55.7%) received EA, while 31 patients (44.3%) received LA. Univariate analysis shows that the arrival via EMS as opposed to walk-in (97.4% vs. 74.2%, respectively, p = 0.01) and activation of Delta Trauma (89.7% vs. 51.6%, respectively, p < 0.001) was significantly higher in the EA group vs. the LA group. Additionally, EA cases had significantly shorter intervals between the antibiotic order and delivery when compared to LA cases (0.02 hours vs. 0.35 hours, p = 0.007). No other significant differences were found in terms of postoperative outcomes or fracture characteristics. Multivariate analysis shows that a Delta Trauma Response, arrival via EMS, and presentation between 7 am and 11 pm were independent predictors of a shorter time to antibiotic administration (Odds Ratio = 11.9, 30.7, and 5.4, p = 0.001, 0.016, and 0.013, respectively). Discussion: Earlier antibiotic delivery is associated with arrival to the ED between 7 am and 11 pm, arrival via EMS, and a coordinated Delta Trauma activation. Our findings indicate that in cases where administering antibiotics is critical to achieving positive outcomes, it is advisable to employ a coordinated Delta Trauma response. Hospital personnel should be attentive to the rapid administration of antibiotics to patients with open fractures who arrive via walk-in or during late-night hours.Keywords: antibiotics, emergency department, fracture management, open tibial shaft fractures, orthopaedic surgery, time to or, trauma fractures
Procedia PDF Downloads 6528372 A Comparative Density Functional Theory Study of Hydrocarbon Combustion on Metal Surfaces
Authors: Abas Mohsenzadeh, Mina Arya, Kim Bolton
Abstract:
Catalytic combustion of hydrocarbons is an important technology developed to produce energy with minimum pollutant formation. The catalyst plays a key role in this process which operates at lower temperatures compared to conventional flame combustion. The energetics of the direct combustion of hydrocarbons (CH → C + H) on a series of metal surfaces including Ag, Au, Al, Cu, Rh, Pt, Pd, Ni, Fe and Co were investigated using density functional theory (DFT). Brønsted-Evans-Polanyi (BEP) and transition state scaling (TSS) correlations were proposed based on DFT calculations on the Ag, Au, Al, Cu, Rh, Pt and Pd surfaces. These correlations were then used to estimate the energetics on Fe, Ni and Co surfaces. Results showed that the estimated reaction and activation energies by BEP and TSS correlations on Fe, Ni and Co surfaces are in an excellent agreement with those obtained by DFT calculations. Therefore these correlations can be efficiently used to predict energetics of similar reactions on these surfaces without doing computationally costly transition state calculations. It was found that the activation barrier for CH dissociation follows the order Ag ˃ Au ˃ Al ˃ Cu ˃ Pt ˃ Pd ˃ Ni > Co > Rh > Fe. Also, BEP (with R2 value of 0.96) and TSS correlations (with R2 value of 0.99) support the results.Keywords: BEP, DFT, hydrocarbon combustion, metal surfaces, TSS
Procedia PDF Downloads 25628371 Combined Use of FMRI and Voxel-Based Morphometry in Assessment of Memory Impairment in Alzheimer's Disease Patients
Authors: A. V. Sokolov, S. V. Vorobyev, A. Yu. Efimtcev, V. Yu. Lobzin, I. A. Lupanov, O. A. Cherdakov, V. A. Fokin
Abstract:
Alzheimer’s disease (AD) is the most common form of dementia. Different brain regions are involved to the pathological process of AD. The purpose of this study was to evaluate brain activation by visual memory task in patients with Alzheimer's disease and determine correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. To investigate the organization of memory and localize cortical areas activated by visual memory task we used functional magnetic resonance imaging and to evaluate brain atrophy of patients with Alzheimer's disease we used voxel-based morphometry. FMRI was performed on 1.5 T MR-scanner Siemens Magnetom Symphony with BOLD (Blood Oxygenation Level Dependent) technique, based on distinctions of magnetic properties of hemoglobin. For test stimuli we used series of 12 not related images for "Baseline" and 12 images with 6 presented before for "Active". Stimuli were presented 3 times with reduction of repeated images to 4 and 2. Patients with Alzheimer's disease showed less activation in hippocampal formation (HF) region and parahippocampal gyrus then healthy persons of control group (p<0.05). The study also showed reduced activation in posterior cingulate cortex (p<0.001). Voxel-based morphometry showed significant atrophy of grey matter in Alzheimer’s disease patients, especially of both temporal lobes (fusiform and parahippocampal gyri); frontal lobes (posterior cingulate and superior frontal gyri). The study showed correlation between memory impairment and atrophy of memory specific brain regions of frontal and medial temporal lobes. Thus, reduced activation in hippocampal formation and parahippocampal gyri, in posterior cingulate gyrus in patients with Alzheimer's disease correlates to significant atrophy of these regions, detected by voxel-based morphometry, and to deterioration of specific cognitive functions.Keywords: Alzheimer’s disease, functional MRI, voxel-based morphometry
Procedia PDF Downloads 32028370 Structural Geology along the Jhakri-Wangtu Road (Jutogh Section) Himachal Pradesh, NW Higher Himalaya, India
Authors: Rajkumar Ghosh
Abstract:
The paper presents a comprehensive study of the structural analysis of the Chaura Thrust in Himachal Pradesh, India. The research focuses on several key aspects, including the activation timing of the Main Central Thrust (MCT) and the South Tibetan Detachment System (STDS), the identification and characterization of mylonitised zones through microscopic examination, and the understanding of box fold characteristics and their implications in the regional geology of the Himachal Himalaya. The primary objective of the study is to provide field documentation of the Chaura Thrust, which was previously considered a blind thrust with limited field evidence. Additionally, the research aims to characterize box folds and their signatures within the broader geological context of the Himachal Himalaya, document the temperature range associated with grain boundary migration (GBM), and explore the overprinting structures related to multiple sets of Higher Himalayan Out-of-Sequence Thrusts (OOSTs). The research methodology employed geological field observations and microscopic studies. Samples were collected along the Jhakri-Chaura transect at regular intervals of approximately 1 km to conduct strain analysis. Microstructural studies at the grain scale along the Jhakri-Wangtu transect were used to document the GBM-associated temperature range. The study reveals that the MCT activated in two parts, as did the STDS, and provides insights into the activation ages of the Main Boundary Thrust (MBT) and the Main Frontal Thrust (MFT). Under microscopic examination, the study identifies two mylonitised zones characterized by S-C fabric, and it documents dynamic and bulging recrystallization, as well as sub-grain formation. Various types of crenulated schistosity are observed in photomicrographs, including a rare occurrence where crenulation cleavage and sigmoid Muscovite are found juxtaposed. The study also notes the presence of S/SE-verging meso- and micro-scale box folds around Chaura, which may indicate structural upliftment. Kink folds near Chaura are visible, while asymmetric shear sense indicators in augen mylonite are predominantly observed under microscopic examination. Moreover, the research highlights the documentation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh, which activated the MCT and occurred within a zone south of the Main Central Thrust Upper (MCTU). The presence of multiple sets of OOSTs suggests a zigzag pattern of strain accumulation in the area. The study emphasizes the significance of understanding the overprinting structures associated with OOSTs. Overall, this study contributes to the understanding of the structural analysis of the Chaura Thrust and its implications in the regional geology of the Himachal Himalaya. The research underscores the importance of microscopic studies in identifying mylonitised zones and various types of crenulated schistosity. Additionally, the study documents the GBM-associated temperature range and provides insights into the activation of the Higher Himalayan Out-of-Sequence Thrust (OOST) in Himachal Pradesh. The findings of the study were obtained through geological field observations, microscopic studies, and strain analysis, offering valuable insights into the activation timing, mylonitization characteristics, and overprinting structures related to the Chaura Thrust and the broader tectonic framework of the region.Keywords: Main Central Thrust, Jhakri Thrust, Chaura Thrust, Higher Himalaya, Out-of-Sequence Thrust, Sarahan Thrust
Procedia PDF Downloads 102