Search results for: psychological model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 18410

Search results for: psychological model

17000 The Effect and Mechanisms of Electroacupuncture on Motion Sickness in Mice

Authors: Chanya Inprasit, Yi-Wen Lin

Abstract:

Motion sickness (MS) is an acute disorder that occurs in healthy persons without considering gender, age or ethnicity worldwide. All signs and symptoms of MS are the results of confliction and mismatch among neural signal inputs. It is known that no singular remedy works for everybody, and electroacupuncture (EA) is one of the popular alternative therapies used for MS. Our study utilized a mouse model in order to exclude any psychological factors of MS and EA. Mice lack an emetic reflex. Therefore pica behavior, which is a normal consumption of non-nutritive substances, was found to measure the response of MS in mice. In the laboratory, Kaolin was used as a non-nutrient food substance instead of natural substances lacking nutritional value such as wood, cloth, charcoal, soil or grass. It was hypothesized that EA treatment could reduce the symptoms of MS through the TRPV1 pathways. The results of pica behavior showed a significantly increased intake of kaolin in the MS group throughout the experiment period. Moreover, the Kaolin intake of the EA group decreased to the average baseline of the control group. There was no recorded difference in the food and water intake of each group. The results indicated an increase of the TRPV1, pERK, pJNK and pmTOR protein levels in the thalamus after MS stimulation, and a significant decrease in the EA group compared with that of the control group. These findings suggest that TRPV1 pathways are associated in MS mechanisms and can be reduced by EA.

Keywords: electroacupuncture, motion sickness, Thalamus, TRPV1

Procedia PDF Downloads 253
16999 A Comprehensive Approach to Scour Depth Estimation Through HEC-RAS 2D and Physical Modeling

Authors: Ashvinie Thembiliyagoda, Kasun De Silva, Nimal Wijayaratna

Abstract:

The lowering of the riverbed level as a result of water erosion is termed as scouring. This phenomenon remarkably undermines the potential stability of the bridge pier, causing a threat of failure or collapse. The formation of vortices in the vicinity of bridges due to the obstruction caused by river flow is the main reason behind this pursuit. Scouring is aggravated by factors including high flow rates, bridge pier geometry, sediment configuration etc. Tackling scour-related problems when they become severe is more costly and disruptive compared to implementing preventive measures based on predicted scour depths. This paper presents a comprehensive investigation of the development of a numerical model that could reproduce the scouring effect around bridge piers and estimate the scour depth. The numerical model was developed for one selected bridge in Sri Lanka, the Kelanisiri Bridge. HEC-RAS two-dimensional (2D) modeling approach was utilized for the development of the model and was calibrated and validated with field data. To further enhance the reliability of the model, a physical model was developed, allowing for additional validation. Results from the numerical model were compared with those obtained from the physical model, revealing a strong correlation between the two methods and confirming the numerical model's accuracy in predicting scour depths. The findings from this study underscore the ability of the HEC-RAS two-dimensional modeling approach for the estimation of scour depth around bridge piers. The developed model is able to estimate the scour depth under varying flow conditions, and its flexibility allows it to be adapted for application to other bridges with similar hydraulic and geomorphological conditions, providing a robust tool for widespread use in scour estimation. The developed two-dimensional model not only offers reliable predictions for the case study bridge but also holds significant potential for broader implementation, contributing to the improved design and maintenance of bridge structures in diverse environments.

Keywords: piers, scouring, HEC-RAS, physical model

Procedia PDF Downloads 15
16998 Modern Tragic Substance in O’Neill’s Desire under the Elms and Mourning Becomes Electra

Authors: Azza Taha Zaki

Abstract:

The position Eugene O’Neill occupies in the history of American drama is undisputable. Critics have agreed that the American theatre was waiting for O’Neill to give it substance, character, and value. The American dramatist continues to be considered as a major influence on the body of dramatic repertoire across the globe. The American theatre before O’Neill knew playwrights who were mostly viewed as entertainers. The serious drama had to wait until O’Neill started his career with expressionistic and social drama. His breakthrough, however, came in 1925 when he published Desire Under the Elms, described as the first important tragedy to be written in America. Mourning Becomes Electra, published in 1931, further reinforced the reputation of Eugene O’Neill and was described as his 'magnum opus'. Aspiring to portray the essence of life and man’s innermost conflicts, O’Neill turned to the classical model, rather than to social realistic drama, to create modern tragedies with the aid of the then-new science of psychology. The present paper aims to undertake an in-depth study of how overtones from classical tragedies by the classical masters Aeschylus, Sophocles, and Euripides resonate through O’Neill’s two plays. The paper shows how leaning on classical themes and concepts interpreted in terms of psychological forces have added depth and tragic substance to a modern milieu and produced masterpieces of dramaturgy.

Keywords: classical, drama, O'Neill, modern, tragic

Procedia PDF Downloads 146
16997 An Advanced Exponential Model for Seismic Isolators Having Hardening or Softening Behavior at Large Displacements

Authors: Nicolò Vaiana, Giorgio Serino

Abstract:

In this paper, an advanced Nonlinear Exponential Model (NEM), able to simulate the uniaxial dynamic behavior of seismic isolators having a continuously decreasing tangent stiffness with increasing displacement in the relatively large displacements range and a hardening or softening behavior at large displacements, is presented. The mathematical model is validated by comparing the experimental force-displacement hysteresis loops obtained during cyclic tests, conducted on a helical wire rope isolator and a recycled rubber-fiber reinforced bearing, with those predicted analytically. Good agreement between the experimental and simulated results shows that the proposed model can be an effective numerical tool to predict the force-displacement relationship of seismic isolation devices within the large displacements range. Compared to the widely used Bouc-Wen model, unable to simulate the response of seismic isolators at large displacements, the proposed one allows to avoid the numerical solution of a first order nonlinear ordinary differential equation for each time step of a nonlinear time history analysis, thus reducing the computation effort. Furthermore, the proposed model can simulate the smooth transition of the hysteresis loops from small to large displacements by adopting only one set of five parameters determined from the experimental hysteresis loops having the largest amplitude.

Keywords: base isolation, hardening behavior, nonlinear exponential model, seismic isolators, softening behavior

Procedia PDF Downloads 329
16996 A Scalable Model of Fair Socioeconomic Relations Based on Blockchain and Machine Learning Algorithms-1: On Hyperinteraction and Intuition

Authors: Merey M. Sarsengeldin, Alexandr S. Kolokhmatov, Galiya Seidaliyeva, Alexandr Ozerov, Sanim T. Imatayeva

Abstract:

This series of interdisciplinary studies is an attempt to investigate and develop a scalable model of fair socioeconomic relations on the base of blockchain using positive psychology techniques and Machine Learning algorithms for data analytics. In this particular study, we use hyperinteraction approach and intuition to investigate their influence on 'wisdom of crowds' via created mobile application which was created for the purpose of this research. Along with the public blockchain and private Decentralized Autonomous Organization (DAO) which were elaborated by us on the base of Ethereum blockchain, a model of fair financial relations of members of DAO was developed. We developed a smart contract, so-called, Fair Price Protocol and use it for implementation of model. The data obtained from mobile application was analyzed by ML algorithms. A model was tested on football matches.

Keywords: blockchain, Naïve Bayes algorithm, hyperinteraction, intuition, wisdom of crowd, decentralized autonomous organization

Procedia PDF Downloads 169
16995 Reduced Model Investigations Supported by Fuzzy Cognitive Map to Foster Circular Economy

Authors: A. Buruzs, M. F. Hatwágner, L. T. Kóczy

Abstract:

The aim of the present paper is to develop an integrated method that may provide assistance to decision makers during system planning, design, operation and evaluation. In order to support the realization of Circular Economy (CE), it is essential to evaluate local needs and conditions which help to select the most appropriate system components and resource needs. Each of these activities requires careful planning, however, the model of CE offers a comprehensive interdisciplinary framework. The aim of this research was to develop and to introduce a practical methodology for evaluation of local and regional opportunities to promote CE.

Keywords: circular economy, factors, fuzzy cognitive map, model reduction, sustainability

Procedia PDF Downloads 244
16994 The Use of Geographically Weighted Regression for Deforestation Analysis: Case Study in Brazilian Cerrado

Authors: Ana Paula Camelo, Keila Sanches

Abstract:

The Geographically Weighted Regression (GWR) was proposed in geography literature to allow relationship in a regression model to vary over space. In Brazil, the agricultural exploitation of the Cerrado Biome is the main cause of deforestation. In this study, we propose a methodology using geostatistical methods to characterize the spatial dependence of deforestation in the Cerrado based on agricultural production indicators. Therefore, it was used the set of exploratory spatial data analysis tools (ESDA) and confirmatory analysis using GWR. It was made the calibration a non-spatial model, evaluation the nature of the regression curve, election of the variables by stepwise process and multicollinearity analysis. After the evaluation of the non-spatial model was processed the spatial-regression model, statistic evaluation of the intercept and verification of its effect on calibration. In an analysis of Spearman’s correlation the results between deforestation and livestock was +0.783 and with soybeans +0.405. The model presented R²=0.936 and showed a strong spatial dependence of agricultural activity of soybeans associated to maize and cotton crops. The GWR is a very effective tool presenting results closer to the reality of deforestation in the Cerrado when compared with other analysis.

Keywords: deforestation, geographically weighted regression, land use, spatial analysis

Procedia PDF Downloads 363
16993 In the Eyes of Basilyo at Crispin: A Phenomenological Lived Experience of the Filipino Children of Parents with Mental Illness

Authors: Cely D. Magpantay, Geolynne Marie Adel, Cire-rine Mae Concepcion, Dessa Jean Orcajada, Jorgette Andrea Santos, Orian Laurace Canaman

Abstract:

Mental illness initiative is very relevant in promoting the Mental Health Bill act of 2017. In the Philippines alone, the public is more open and receptive to people at risks with a mental condition. Although it is uncommon that parents can become more psychologically unfit compared to their children, research shows that parents who are suffering from mental illness have a more significant negative effect than another family member. The impact of parent’s mental health can put their children more susceptible to acquire the same disorder. The aim of the study is to explore the lived experiences of children whose parents suffered from mental illness. It discusses how their parent's mental condition in, anyway, affects their psychological development. Using Phenomenological Qualitative Research, an in-depth, interview was conducted to five (5) consenting adults who lived with their parents diagnosed with a mental disorder. Results are clustered into four themes. The first theme is the negative emotion towards parents, the second theme is the psychosocial dynamics in caring for the patient, third is accepting the disease, and fourth is a general perspective on the family. Each themes is validated by experts and the participants. This theme generates subcomponent like isolation, shallow relationship and debt of gratitude. Along with these themes comes the fear of having a family emerged. There is a growing need to strengthen the family ties even more because of parent’s mental illness. Therefore, parental mental illness has an effect on the children’s psychological and social development.

Keywords: lived experience in Philippines, mental health, parental mental illness, psychosocial dynamics

Procedia PDF Downloads 315
16992 Dislocation Density-Based Modeling of the Grain Refinement in Surface Mechanical Attrition Treatment

Authors: Reza Miresmaeili, Asghar Heydari Astaraee, Fereshteh Dolati

Abstract:

In the present study, an analytical model based on dislocation density model was developed to simulate grain refinement in surface mechanical attrition treatment (SMAT). The correlation between SMAT time and development in plastic strain on one hand, and dislocation density evolution, on the other hand, was established to simulate the grain refinement in SMAT. A dislocation density-based constitutive material law was implemented using VUHARD subroutine. A random sequence of shots is taken into consideration for multiple impacts model using Python programming language by utilizing a random function. The simulation technique was to model each impact in a separate run and then transferring the results of each run as initial conditions for the next run (impact). The developed Finite Element (FE) model of multiple impacts describes the coverage evolution in SMAT. Simulations were run to coverage levels as high as 4500%. It is shown that the coverage implemented in the FE model is equal to the experimental coverage. It is depicted that numerical SMAT coverage parameter is adequately conforming to the well-known Avrami model. Comparison between numerical results and experimental measurements for residual stresses and depth of deformation layers confirms the performance of the established FE model for surface engineering evaluations in SMA treatment. X-ray diffraction (XRD) studies of grain refinement, including resultant grain size and dislocation density, were conducted to validate the established model. The full width at half-maximum in XRD profiles can be used to measure the grain size. Numerical results and experimental measurements of grain refinement illustrate good agreement and show the capability of established FE model to predict the gradient microstructure in SMA treatment.

Keywords: dislocation density, grain refinement, severe plastic deformation, simulation, surface mechanical attrition treatment

Procedia PDF Downloads 136
16991 Factors Affecting Nutritional Status of Elderly People of Rural Nepal: A Community-Based Cross-Sectional Study

Authors: Man Kumar Tamang, Uday Narayan Yadav

Abstract:

Background and objectives: Every country in the world is facing a demographic challenge due to drastic growth of population over 60 years. Adequate diet and nutritional status are important determinants of health in elderly populations. This study aimed to assess the nutritional status among the elderly population and factors associated with malnutrition at the community setting in rural Nepal. Methods: This is a community-based cross-sectional study among elderly of age 60 years or above in the three randomly selected VDCs of Morang district in eastern Nepal, between August and November, 2016. A multi stage cluster sampling was adopted with sample size of 345 of which 339 participated in the study. Nutritional status was assessed by MNA tool and associated socio-economic, demographic, psychological and nutritional factors were checked by binary logistic regression analysis. Results: Among 339 participants, 24.8% were found to be within normal nutritional status, 49.6% were at risk of malnutrition and 24.8% were malnourished. Independent factors associated with malnutrition status among the elderly people after controlling the cofounders in the bivariate analysis were: elderly who were malnourished were those who belonged to backward caste according to traditional Hindu caste system [OR=2.69, 95% CI: 1.17-6.21), being unemployed (OR=3.23, 95% CI: 1.63-6.41),who experienced any mistreatment from caregivers (OR=4.05, 95% CI: 1.90-8.60), being not involved in physical activity (OR=4.67, 95% CI: 1.87-11.66) and those taking medication for any co-morbidities. Conclusion: Many socio-economic, psychological and physiological factors affect nutritional status in our sample population and these issues need to be addressed for bringing improvement in elderly nutrition and health status.

Keywords: elderly, eastern Nepal, malnutrition, nutritional status

Procedia PDF Downloads 298
16990 The Grand Unified Theory of Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow Model

Authors: Tory Erickson

Abstract:

The "Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model introduces a framework aimed at unifying general relativity (GR) and quantum mechanics (QM). By proposing a concept of bidirectional spacetime, this model suggests that time can flow in more than one direction, thus offering a perspective on temporal dynamics. Integrated with spatial covariance and wave-particle duality in spacetime flow, the BST-SCWPDF Model resolves long-standing discrepancies between GR and QM. This unified theory has profound implications for quantum gravity, potentially offering insights into quantum entanglement, the collapse of the wave function, and the fabric of spacetime itself. The Bidirectional Spacetime with Spatial Covariance and Wave-Particle Duality in Spacetime Flow" (BST-SCWPDF) Model offers researchers a framework for a better understanding of theoretical physics.

Keywords: astrophysics, quantum mechanics, general relativity, unification theory, theoretical physics

Procedia PDF Downloads 87
16989 Generalized Additive Model for Estimating Propensity Score

Authors: Tahmidul Islam

Abstract:

Propensity Score Matching (PSM) technique has been widely used for estimating causal effect of treatment in observational studies. One major step of implementing PSM is estimating the propensity score (PS). Logistic regression model with additive linear terms of covariates is most used technique in many studies. Logistics regression model is also used with cubic splines for retaining flexibility in the model. However, choosing the functional form of the logistic regression model has been a question since the effectiveness of PSM depends on how accurately the PS been estimated. In many situations, the linearity assumption of linear logistic regression may not hold and non-linear relation between the logit and the covariates may be appropriate. One can estimate PS using machine learning techniques such as random forest, neural network etc for more accuracy in non-linear situation. In this study, an attempt has been made to compare the efficacy of Generalized Additive Model (GAM) in various linear and non-linear settings and compare its performance with usual logistic regression. GAM is a non-parametric technique where functional form of the covariates can be unspecified and a flexible regression model can be fitted. In this study various simple and complex models have been considered for treatment under several situations (small/large sample, low/high number of treatment units) and examined which method leads to more covariate balance in the matched dataset. It is found that logistic regression model is impressively robust against inclusion quadratic and interaction terms and reduces mean difference in treatment and control set equally efficiently as GAM does. GAM provided no significantly better covariate balance than logistic regression in both simple and complex models. The analysis also suggests that larger proportion of controls than treatment units leads to better balance for both of the methods.

Keywords: accuracy, covariate balances, generalized additive model, logistic regression, non-linearity, propensity score matching

Procedia PDF Downloads 367
16988 Job Resource, Personal Resource, Engagement and Performance with Balanced Score Card in the Integrated Textile Companies in Indonesia

Authors: Nurlaila Effendy

Abstract:

Companies in Asia face a number of constraints in tight competitiveness in ASEAN Economic Community 2015 and globalization. An economic capitalism system as an integral part of globalization processing brings broad impacts. They need to improve business performance in globalization and ASEAN Economic Community. Organizational development has quite clearly demonstrated that aligning individual’s personal goals with the goals of the organization translates into measurable and sustained performance improvement. Human capital is a key to achieve company performance. Employee Engagement (EE) creates and expresses themselves physically, cognitively and emotionally to achieve company goals and individual goals. One will experience a total involvement when they undertake their jobs and feel a self integration to their job and organization. A leader plays key role in attaining the goals and objectives of a company/organization. Any Manager in a company needs to have leadership competence and global mindset. As one the of positive organizational behavior developments, psychological capital (PsyCap) is assumed to be one of the most important capitals in the global mindset, in addition to intellectual capital and social capital. Textile companies also need to face a number of constraints in tight competitiveness in regional and global. This research involved 42 managers in two textiles and a spinning companies in a group, in Central Java, Indonesia. It is a quantitative research with Partial Least Squares (PLS) studying job resource (Social Support & Organizational Climate) and Personal Resource (4 dimensions of Psychological Capital & Leadership Competence) as prediction of Employee Engagement, also Employee Engagement and leadership competence as prediction of leader’s performance. The performance of a leader is measured by means of achievement on objective strategies in terms of 4 perspectives (financial and non-financial perspectives) in a Balanced Score Card (BSC). It took one year during a business plan of year 2014, from January to December 2014. The result of this research is there is correlation between Job Resource (coefficient value of Social Support is 0.036 & coefficient value of organizational climate is 0.220) and Personal Resource (coefficient value of PsyCap is 0.513 & coefficient value of Leadership Competence is 0.249) with employee engagement. There is correlation between employee engagement (coefficient value is 0.279) and leadership competence (coefficient value is 0.581) with performance.

Keywords: organizational climate, social support, psychological capital leadership competence, employee engagement, performance, integrated textile companies

Procedia PDF Downloads 433
16987 Systematic and Simple Guidance for Feed Forward Design in Model Predictive Control

Authors: Shukri Dughman, Anthony Rossiter

Abstract:

This paper builds on earlier work which demonstrated that Model Predictive Control (MPC) may give a poor choice of default feed forward compensator. By first demonstrating the impact of future information of target changes on the performance, this paper proposes a pragmatic method for identifying the amount of future information on the target that can be utilised effectively in both finite and infinite horizon algorithms. Numerical illustrations in MATLAB give evidence of the efficacy of the proposal.

Keywords: model predictive control, tracking control, advance knowledge, feed forward

Procedia PDF Downloads 547
16986 Research on Detection of Web Page Visual Salience Region Based on Eye Tracker and Spectral Residual Model

Authors: Xiaoying Guo, Xiangyun Wang, Chunhua Jia

Abstract:

Web page has been one of the most important way of knowing the world. Humans catch a lot of information from it everyday. Thus, understanding where human looks when they surfing the web pages is rather important. In normal scenes, the down-top features and top-down tasks significantly affect humans’ eye movement. In this paper, we investigated if the conventional visual salience algorithm can properly predict humans’ visual attractive region when they viewing the web pages. First, we obtained the eye movement data when the participants viewing the web pages using an eye tracker. By the analysis of eye movement data, we studied the influence of visual saliency and thinking way on eye-movement pattern. The analysis result showed that thinking way affect human’ eye-movement pattern much more than visual saliency. Second, we compared the results of web page visual salience region extracted by Itti model and Spectral Residual (SR) model. The results showed that Spectral Residual (SR) model performs superior than Itti model by comparison with the heat map from eye movements. Considering the influence of mind habit on humans’ visual region of interest, we introduced one of the most important cue in mind habit-fixation position to improved the SR model. The result showed that the improved SR model can better predict the human visual region of interest in web pages.

Keywords: web page salience region, eye-tracker, spectral residual, visual salience

Procedia PDF Downloads 276
16985 A Dynamical Study of Fractional Order Obesity Model by a Combined Legendre Wavelet Method

Authors: Hakiki Kheira, Belhamiti Omar

Abstract:

In this paper, we propose a new compartmental fractional order model for the simulation of epidemic obesity dynamics. Using the Legendre wavelet method combined with the decoupling and quasi-linearization technique, we demonstrate the validity and applicability of our model. We also present some fractional differential illustrative examples to demonstrate the applicability and efficiency of the method. The fractional derivative is described in the Caputo sense.

Keywords: Caputo derivative, epidemiology, Legendre wavelet method, obesity

Procedia PDF Downloads 421
16984 An Optimal Approach for Full-Detailed Friction Model Identification of Reaction Wheel

Authors: Ghasem Sharifi, Hamed Shahmohamadi Ousaloo, Milad Azimi, Mehran Mirshams

Abstract:

The ever-increasing use of satellites demands a search for increasingly accurate and reliable pointing systems. Reaction wheels are rotating devices used commonly for the attitude control of the spacecraft since provide a wide range of torque magnitude and high reliability. The numerical modeling of this device can significantly enhance the accuracy of the satellite control in space. Modeling the wheel rotation in the presence of the various frictions is one of the critical parts of this approach. This paper presents a Dynamic Model Control of a Reaction Wheel (DMCR) in the current control mode. In current-mode, the required current is delivered to the coils in order to achieve the desired torque. During this research, all the friction parameters as viscous and coulomb, motor coefficient, resistance and voltage constant are identified. In order to model identification of a reaction wheel, numerous varying current commands apply on the particular wheel to verify the estimated model. All the parameters of DMCR are identified by classical Levenberg-Marquardt (CLM) optimization method. The experimental results demonstrate that the developed model has an appropriate precise and can be used in the satellite control simulation.

Keywords: experimental modeling, friction parameters, model identification, reaction wheel

Procedia PDF Downloads 233
16983 Mental Health and Psychosocial Needs of Palestine Refugees in Lebanon and Syria

Authors: Cosette Maiky

Abstract:

Background: In the context of the Syrian crisis, the past few years have witnessed an exponential growth in the number of refugee mental health studies, which have essentially focused either on the affected Syrian population and/or host communities. However, the Palestinian communities in the region did not receive sufficient that much of attention. Aim: The study aimed at identifying trends and patterns of mental health and and psychosocial conditions among Palestinian refugees in the context of the Syrian crisis, including the recognition of gaps in appropriate services. Methods: The research model comprised a systematic documentary review, a mapping of available contextual analyses, a quantitative survey, focus group discussions as well as key informant interviews (with relevant stakeholders and beneficiaries). Findings: Content analysis revealed multiple effects of transgenerational transmission of trauma among Palestinian refugees in the context of the Syrian crisis, which showed to be neither linear nor one-dimensional occurrence. In addition to highlights on exposure to traumatic events and psychological sequelae, the review outlines the most prevailing coping mechanisms and essential protective factors. Conclusion: Away from a trauma-centered or symptom-focused exercise, practitioners may take account of the present study to better focus research and intervention methodologies.

Keywords: Palestine refugees, Syria crisis, psychosocial, mental health

Procedia PDF Downloads 351
16982 Critical Reflection in Teaching and Learning Mathematics towards Perspective Transformation: Practices in Public and Private Schools

Authors: Arturo Tobias Calizon Jr.

Abstract:

The study investigated the practices in critical reflection being employed in teaching and learning mathematics in public and private schools for students to achieve perspective transformation in psychological, convictional and behavioral dimensions. There were 1,969 senior high school and college student-respondents selected at random from 33 schools. Process reflection is most commonly practiced in both public and private schools. Convictional dimension of perspective transformation is most frequently achieved. There is no significant difference in practices of process reflection between senior high school and college students. However, there is a significant difference in perspective transformation in behavioral dimension achieved by students from public and private schools. Also, there are significant differences in psychological, convictional and behavioral dimensions of perspective transformation achieved by senior high school and college students. There is a high and significant relationship between critical reflection practices and perspective transformation of students. The researcher concludes that there are teaching strategies that facilitate critical thinking, and there are learning activities that alter perspective of students about mathematics as an abstract field. The researcher further concludes that consistent use of appropriate teaching and learning activities could bring about perspective transformation in students with success.

Keywords: critical reflection, perspective transformation, process reflection, convictional dimension, teaching and learning mathematics

Procedia PDF Downloads 154
16981 A Graph-Based Retrieval Model for Passage Search

Authors: Junjie Zhong, Kai Hong, Lei Wang

Abstract:

Passage Retrieval (PR) plays an important role in many Natural Language Processing (NLP) tasks. Traditional efficient retrieval models relying on exact term-matching, such as TF-IDF or BM25, have nowadays been exceeded by pre-trained language models which match by semantics. Though they gain effectiveness, deep language models often require large memory as well as time cost. To tackle the trade-off between efficiency and effectiveness in PR, this paper proposes Graph Passage Retriever (GraphPR), a graph-based model inspired by the development of graph learning techniques. Different from existing works, GraphPR is end-to-end and integrates both term-matching information and semantics. GraphPR constructs a passage-level graph from BM25 retrieval results and trains a GCN-like model on the graph with graph-based objectives. Passages were regarded as nodes in the constructed graph and were embedded in dense vectors. PR can then be implemented using embeddings and a fast vector-similarity search. Experiments on a variety of real-world retrieval datasets show that the proposed model outperforms related models in several evaluation metrics (e.g., mean reciprocal rank, accuracy, F1-scores) while maintaining a relatively low query latency and memory usage.

Keywords: efficiency, effectiveness, graph learning, language model, passage retrieval, term-matching model

Procedia PDF Downloads 150
16980 Numerical Simulation and Experimental Validation of the Tire-Road Separation in Quarter-car Model

Authors: Quy Dang Nguyen, Reza Nakhaie Jazar

Abstract:

The paper investigates vibration dynamics of tire-road separation for a quarter-car model; this separation model is developed to be close to the real situation considering the tire is able to separate from the ground plane. A set of piecewise linear mathematical models is developed and matches the in-contact and no-contact states to be considered as mother models for further investigations. The bound dynamics are numerically simulated in the time response and phase portraits. The separation analysis may determine which values of suspension parameters can delay and avoid the no-contact phenomenon, which results in improving ride comfort and eliminating the potentially dangerous oscillation. Finally, model verification is carried out in the MSC-ADAMS environment.

Keywords: quarter-car vibrations, tire-road separation, separation analysis, separation dynamics, ride comfort, ADAMS validation

Procedia PDF Downloads 92
16979 On Reliability of a Credit Default Swap Contract during the EMU Debt Crisis

Authors: Petra Buzkova, Milos Kopa

Abstract:

Reliability of the credit default swap market had been questioned repeatedly during the EMU debt crisis. The article examines whether this development influenced sovereign EMU CDS prices in general. We regress the CDS market price on a model risk neutral CDS price obtained from an adopted reduced form valuation model in the 2009-2013 period. We look for a break point in the single-equation and multi-equation econometric models in order to show the changes in relations between CDS market and model prices. Our results differ according to the risk profile of a country. We find that in the case of riskier countries, the relationship between the market and model price changed when market participants started to question the ability of CDS contracts to protect their buyers. Specifically, it weakened after the change. In the case of less risky countries, the change happened earlier and the effect of a weakened relationship is not observed.

Keywords: chow stability test, credit default swap, debt crisis, reduced form valuation model, seemingly unrelated regression

Procedia PDF Downloads 263
16978 The Evaluation of Child Maltreatment Severity and the Decision-Making Processes in the Child Protection System

Authors: Maria M. Calheiros, Carla Silva, Eunice Magalhães

Abstract:

Professionals working in child protection services (CPS) need to have common and clear criteria to identify cases of maltreatment and to differentiate levels of severity in order to determine when CPS intervention is required, its nature and urgency, and, in most countries, the service that will be in charge of the case (community or specialized CPS). Actually, decision-making process is complex in CPS, and, for that reason, such criteria are particularly important for who significantly contribute to that decision-making in child maltreatment cases. The main objective of this presentation is to describe the Maltreatment Severity Assessment Questionnaire (MSQ), specifically designed to be used by professionals in the CPS, which adopts a multidimensional approach and uses a scale of severity within subtypes. Specifically, we aim to provide evidence of validity and reliability of this tool, in order to improve the quality and validity of assessment processes and, consequently, the decision making in CPS. The total sample was composed of 1000 children and/or adolescents (51.1% boys), aged between 0 and 18 years old (M = 9.47; DP = 4.51). All the participants were referred to official institutions of the children and youth protective system. Children and adolescents maltreatment (abuse, neglect experiences and sexual abuse) were assessed with 21 items of the Maltreatment Severity Questionnaire (MSQ), by professionals of CPS. Each item (sub-type) was composed of four descriptors of increasing severity. Professionals rated the level of severity, using a 4-point scale (1= minimally severe; 2= moderately severe; 3= highly severe; 4= extremely severe). The construct validity of the Maltreatment Severity Questionnaire was assessed with a holdout method, performing an Exploratory Factor Analysis (EFA) followed by a Confirmatory Factor Analysis (CFA). The final solution comprised 18 items organized in three factors 47.3% of variance explained. ‘Physical neglect’ (eight items) was defined by parental omissions concerning the insurance and monitoring of the child’s physical well-being and health, namely in terms of clothing, hygiene, housing conditions and contextual environmental security. ‘Physical and Psychological Abuse’ (four items) described abusive physical and psychological actions, namely, coercive/punitive disciplinary methods, physically violent methods or verbal interactions that offend and denigrate the child, with the potential to disrupt psychological attributes (e.g., self-esteem). ‘Psychological neglect’ (six items) involved omissions related to children emotional development, mental health monitoring, school attendance, development needs, as well as inappropriate relationship patterns with attachment figures. Results indicated a good reliability of all the factors. The assessment of child maltreatment cases with MSQ could have a set of practical and research implications: a) It is a valid and reliable multidimensional instrument to measure child maltreatment, b) It is an instrument integrating the co-occurrence of various types of maltreatment and a within-subtypes scale of severity; c) Specifically designed for professionals, it may assist them in decision-making processes; d) More than using case file reports to evaluate maltreatment experiences, researchers could guide more appropriately their research about determinants and consequences of maltreatment.

Keywords: assessment, maltreatment, children and youth, decision-making

Procedia PDF Downloads 290
16977 Application of a Generalized Additive Model to Reveal the Relations between the Density of Zooplankton with Other Variables in the West Daya Bay, China

Authors: Weiwen Li, Hao Huang, Chengmao You, Jianji Liao, Lei Wang, Lina An

Abstract:

Zooplankton are a central issue in the ecology which makes a great contribution to maintaining the balance of an ecosystem. It is critical in promoting the material cycle and energy flow within the ecosystems. A generalized additive model (GAM) was applied to analyze the relationships between the density (individuals per m³) of zooplankton and other variables in West Daya Bay. All data used in this analysis (the survey month, survey station (longitude and latitude), the depth of the water column, the superficial concentration of chlorophyll a, the benthonic concentration of chlorophyll a, the number of zooplankton species and the number of zooplankton species) were collected through monthly scientific surveys during January to December 2016. GLM model (generalized linear model) was used to choose the significant variables’ impact on the density of zooplankton, and the GAM was employed to analyze the relationship between the density of zooplankton and the significant variables. The results showed that the density of zooplankton increased with an increase of the benthonic concentration of chlorophyll a, but decreased with a decrease in the depth of the water column. Both high numbers of zooplankton species and the overall total number of zooplankton individuals led to a higher density of zooplankton.

Keywords: density, generalized linear model, generalized additive model, the West Daya Bay, zooplankton

Procedia PDF Downloads 151
16976 Construction of a Dynamic Model of Cerebral Blood Circulation for Future Integrated Control of Brain State

Authors: Tomohiko Utsuki

Abstract:

Currently, brain resuscitation becomes increasingly important due to revising various clinical guidelines pertinent to emergency care. In brain resuscitation, the control of brain temperature (BT), intracranial pressure (ICP), and cerebral blood flow (CBF) is required for stabilizing physiological state of brain, and is described as the essential treatment points in many guidelines of disorder and/or disease such as brain injury, stroke, and encephalopathy. Thus, an integrated control system of BT, ICP, and CBF will greatly contribute to alleviating the burden on medical staff and improving treatment effect in brain resuscitation. In order to develop such a control system, models related to BT, ICP, and CBF are required for control simulation, because trial and error experiments using patients are not ethically allowed. A static model of cerebral blood circulation from intracranial arteries and vertebral artery to jugular veins has already constructed and verified. However, it is impossible to represent the pooling of blood in blood vessels, which is one cause of cerebral hypertension in this model. And, it is also impossible to represent the pulsing motion of blood vessels caused by blood pressure change which can have an affect on the change of cerebral tissue pressure. Thus, a dynamic model of cerebral blood circulation is constructed in consideration of the elasticity of the blood vessel and the inertia of the blood vessel wall. The constructed dynamic model was numerically analyzed using the normal data, in which each arterial blood flow in cerebral blood circulation, the distribution of blood pressure in the Circle of Willis, and the change of blood pressure along blood flow were calculated for verifying against physiological knowledge. As the result, because each calculated numerical value falling within the generally known normal range, this model has no problem in representing at least the normal physiological state of the brain. It is the next task to verify the accuracy of the present model in the case of disease or disorder. Currently, the construction of a migration model of extracellular fluid and a model of heat transfer in cerebral tissue are in progress for making them parts of an integrated model of brain physiological state, which is necessary for developing an future integrated control system of BT, ICP and CBF. The present model is applicable to constructing the integrated model representing at least the normal condition of brain physiological state by uniting with such models.

Keywords: dynamic model, cerebral blood circulation, brain resuscitation, automatic control

Procedia PDF Downloads 153
16975 Effect of Different Porous Media Models on Drug Delivery to Solid Tumors: Mathematical Approach

Authors: Mostafa Sefidgar, Sohrab Zendehboudi, Hossein Bazmara, Madjid Soltani

Abstract:

Based on findings from clinical applications, most drug treatments fail to eliminate malignant tumors completely even though drug delivery through systemic administration may inhibit their growth. Therefore, better understanding of tumor formation is crucial in developing more effective therapeutics. For this purpose, nowadays, solid tumor modeling and simulation results are used to predict how therapeutic drugs are transported to tumor cells by blood flow through capillaries and tissues. A solid tumor is investigated as a porous media for fluid flow simulation. Most of the studies use Darcy model for porous media. In Darcy model, the fluid friction is neglected and a few simplified assumptions are implemented. In this study, the effect of these assumptions is studied by considering Brinkman model. A multi scale mathematical method which calculates fluid flow to a solid tumor is used in this study to investigate how neglecting fluid friction affects the solid tumor simulation. In this work, the mathematical model in our previous studies is developed by considering two model of momentum equation for porous media: Darcy and Brinkman. The mathematical method involves processes such as fluid flow through solid tumor as porous media, extravasation of blood flow from vessels, blood flow through vessels and solute diffusion, convective transport in extracellular matrix. The sprouting angiogenesis model is used for generating capillary network and then fluid flow governing equations are implemented to calculate blood flow through the tumor-induced capillary network. Finally, the two models of porous media are used for modeling fluid flow in normal and tumor tissues in three different shapes of tumors. Simulations of interstitial fluid transport in a solid tumor demonstrate that the simplifications used in Darcy model affect the interstitial velocity and Brinkman model predicts a lower value for interstitial velocity than the values that Darcy model does.

Keywords: solid tumor, porous media, Darcy model, Brinkman model, drug delivery

Procedia PDF Downloads 307
16974 Synthesis and Characterization of Model Amines for Corrosion Applications

Authors: John Vergara, Giuseppe Palmese

Abstract:

Fundamental studies aimed at elucidating the key contributions to corrosion performance are needed to make progress toward effective and environmentally compliant corrosion control. Epoxy/amine systems are typically employed as barrier coatings for corrosion control. However, the hardening agents used for coating applications can be very complex, making fundamental studies of water and oxygen permeability challenging to carry out. Creating model building blocks for epoxy/amine coatings is the first step in carrying out these studies. We will demonstrate the synthesis and characterization of model amine building blocks from saturated fatty acids and simple amines such as diethylenetriamine (DETA) and Bis(3-aminopropyl)amine. The structure-property relationship of thermosets made from these model amines and Diglycidyl ether of bisphenol A (DGBEA) will be discussed.

Keywords: building block, amine, synthesis, characterization

Procedia PDF Downloads 540
16973 Estimation of Transition and Emission Probabilities

Authors: Aakansha Gupta, Neha Vadnere, Tapasvi Soni, M. Anbarsi

Abstract:

Protein secondary structure prediction is one of the most important goals pursued by bioinformatics and theoretical chemistry; it is highly important in medicine and biotechnology. Some aspects of protein functions and genome analysis can be predicted by secondary structure prediction. This is used to help annotate sequences, classify proteins, identify domains, and recognize functional motifs. In this paper, we represent protein secondary structure as a mathematical model. To extract and predict the protein secondary structure from the primary structure, we require a set of parameters. Any constants appearing in the model are specified by these parameters, which also provide a mechanism for efficient and accurate use of data. To estimate these model parameters there are many algorithms out of which the most popular one is the EM algorithm or called the Expectation Maximization Algorithm. These model parameters are estimated with the use of protein datasets like RS126 by using the Bayesian Probabilistic method (data set being categorical). This paper can then be extended into comparing the efficiency of EM algorithm to the other algorithms for estimating the model parameters, which will in turn lead to an efficient component for the Protein Secondary Structure Prediction. Further this paper provides a scope to use these parameters for predicting secondary structure of proteins using machine learning techniques like neural networks and fuzzy logic. The ultimate objective will be to obtain greater accuracy better than the previously achieved.

Keywords: model parameters, expectation maximization algorithm, protein secondary structure prediction, bioinformatics

Procedia PDF Downloads 481
16972 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 113
16971 Optimizing the Capacity of a Convolutional Neural Network for Image Segmentation and Pattern Recognition

Authors: Yalong Jiang, Zheru Chi

Abstract:

In this paper, we study the factors which determine the capacity of a Convolutional Neural Network (CNN) model and propose the ways to evaluate and adjust the capacity of a CNN model for best matching to a specific pattern recognition task. Firstly, a scheme is proposed to adjust the number of independent functional units within a CNN model to make it be better fitted to a task. Secondly, the number of independent functional units in the capsule network is adjusted to fit it to the training dataset. Thirdly, a method based on Bayesian GAN is proposed to enrich the variances in the current dataset to increase its complexity. Experimental results on the PASCAL VOC 2010 Person Part dataset and the MNIST dataset show that, in both conventional CNN models and capsule networks, the number of independent functional units is an important factor that determines the capacity of a network model. By adjusting the number of functional units, the capacity of a model can better match the complexity of a dataset.

Keywords: CNN, convolutional neural network, capsule network, capacity optimization, character recognition, data augmentation, semantic segmentation

Procedia PDF Downloads 153