Search results for: green power market
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11195

Search results for: green power market

9815 The Evaluation of Electricity Generation and Consumption from Solar Generator: A Case Study at Rajabhat Suan Sunandha’s Learning Center in Samutsongkram

Authors: Chonmapat Torasa

Abstract:

This paper presents the performance of electricity generation and consumption from solar generator installed at Rajabhat Suan Sunandha’s learning center in Samutsongkram. The result from the experiment showed that solar cell began to work and distribute the current into the system when the solar energy intensity was 340 w/m2, starting from 8:00 am to 4:00 pm (duration of 8 hours). The highest intensity read during the experiment was 1,051.64w/m2. The solar power was 38.74kWh/day. The electromotive force from solar cell averagely was 93.6V. However, when connecting solar cell with the battery charge controller system, the voltage was dropped to 69.07V. After evaluating the power distribution ability and electricity load of tested solar cell, the result showed that it could generate power to 11 units of 36-wattfluorescent lamp bulbs, which was altogether 396W. In the meantime, the AC to DC power converter generated 3.55A to the load, and gave 781VA.

Keywords: solar cell, solar-cell power generating system, computer, systems engineering

Procedia PDF Downloads 326
9814 Technical Evaluation of Upgrading a Simple Gas Turbine Fired by Diesel to a Combined Cycle Power Plant in Kingdom of Suadi Arabistan Using WinSim Design II Software

Authors: Salman Obaidoon, Mohamed Hassan, Omer Bakather

Abstract:

As environmental regulations increase, the need for a clean and inexpensive energy is becoming necessary these days using an available raw material with high efficiency and low emissions of toxic gases. This paper presents a study on modifying a gas turbine power plant fired by diesel, which is located in Saudi Arabia in order to increase the efficiency and capacity of the station as well as decrease the rate of emissions. The studied power plant consists of 30 units with different capacities and total net power is 1470 MW. The study was conducted on unit number 25 (GT-25) which produces 72.3 MW with 29.5% efficiency. In the beginning, the unit was modeled and simulated by using WinSim Design II software. In this step, actual unit data were used in order to test the validity of the model. The net power and efficiency obtained from software were 76.4 MW and 32.2% respectively. A difference of about 6% was found in the simulated power plant compared to the actual station which means that the model is valid. After the validation of the model, the simple gas turbine power plant was converted to a combined cycle power plant (CCPP). In this case, the exhausted gas released from the gas turbine was introduced to a heat recovery steam generator (HRSG), which consists of three heat exchangers: an economizer, an evaporator and a superheater. In this proposed model, many scenarios were conducted in order to get the optimal operating conditions. The net power of CCPP was increased to 116.4 MW while the overall efficiency of the unit was reached to 49.02%, consuming the same amount of fuel for the gas turbine power plant. For the purpose of comparing the rate of emissions of carbon dioxide on each model. It was found that the rate of CO₂ emissions was decreased from 15.94 kg/s to 9.22 kg/s by using the combined cycle power model as a result of reducing of the amount of diesel from 5.08 kg/s to 2.94 kg/s needed to produce 76.5 MW. The results indicate that the rate of emissions of carbon dioxide was decreased by 42.133% in CCPP compared to the simple gas turbine power plant.

Keywords: combined cycle power plant, efficiency, heat recovery steam generator, simulation, validation, WinSim design II software

Procedia PDF Downloads 275
9813 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy

Authors: Mehtab Alam

Abstract:

Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.

Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy

Procedia PDF Downloads 124
9812 Performance of Nine Different Types of PV Modules in the Tropical Region

Authors: Jiang Fan

Abstract:

With growth of PV market in tropical region, it is necessary to investigate the performance of different types of PV technology under the tropical weather conditions. Singapore Polytechnic was funded by Economic Development Board (EDB) to set up a solar PV test-bed for the research on performance of different types of PV modules in the country. The PV test-bed installed the nine different types of PV systems that are integrated to power utility grid for monitoring and analyzing their operating performances. This paper presents the 12 months operational data of nine different PV systems and analyses on performances of installed PV systems using energy yield and performance ratio. The nine types of PV systems under test have shown their energy yields ranging from 2.67 to 3.36 kWh/kWp and their performance ratios (PRs) ranging from 70% to 88%.

Keywords: monocrystalline, multicrystalline, amorphous silicon, cadmium telluride, thin film PV

Procedia PDF Downloads 506
9811 Agro-Insurance and Farming Development Opportunities in Georgia

Authors: Tamar Lazariashvili

Abstract:

Introduction: The agro-insurance has great importance for agricultural development in the country. In the article, the insurance market of the Georgian agricultural sector has been studied, the level of interest of farmers with insurance products and the trend of demand for those products are revealed; also, the importance of insurance is substantiated. Methodology: The following research methods are applied in the presented paper: statistical (selection, grouping, observation, trend) and qualitative research (in-depth interview with farmers). They claim that the main reason for aggravation is the low level of trust, less awareness about the conditions of the insurance contract. In order to eradicate distrust towards agro-insurance, it is recommended to increase awareness of insured farmers in terms of an insurance agreement. In the case of disputable issues between insurance companies and the customers (farmers), it is advisable to enact the Mediation Service, which will be able to protect the rights of insured farmers. Main Findings: Insurance companies prefer to deal with large farmers, the number of them is very small in Georgia as the credit market. The government interference in this sector is also a very cautious topic. However, the government can strengthen the awareness of farmers about the characteristics and advantages of the insurance system in order to increase the number of insured and reduce insurance premiums for farmers. Conclusion: Enactment of agro-insurance will increase the interest and confidence of financial institutions in the farming sector, financial resources will be accessible to the farmers that will facilitate the stable development of the sector in the country. The size of the agro-insurance market in the country should be increased, and the new territories should be covered. The State must have an obligation to ensure the risk of farmers and subsidize insurance companies. Based on the analysis of the insurance market, the conclusions on agro-insurance issues and the relevant recommendations are proposed.

Keywords: Agro-insurance, agricultural product, Agro-market, farming

Procedia PDF Downloads 123
9810 An Experimental Study on Greywater Reuse for Irrigating a Green Wall System

Authors: Mishadi Herath, Amin Talei, Andreas Hermawan, Clarina Chua

Abstract:

Green walls are vegetated structures on building’s wall that are considered as part of sustainable urban design. They are proved to have many micro-climate benefits such as reduction in indoor temperature, noise attenuation, and improvement in air quality. On the other hand, several studies have also been conducted on potential reuse of greywater in urban water management. Greywater is relatively clean when compared to blackwater; therefore, this study was aimed to assess the potential reuse of it for irrigating a green wall system. In this study, the campus of Monash University Malaysia located in Selangor state was considered as the study site where total 48 samples of greywater were collected from 7 toilets hand-wash and 5 pantries during 3 months period. The samples were tested to characterize the quality of greywater in the study site and compare it with local standard for irrigation water. PH and concentration of heavy metals, nutrients, Total Suspended Solids (TSS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand (COD), total Coliform and E.coli were measured. Results showed that greywater could be directly used for irrigation with minimal treatment. Since the effluent of the system was supposed to be drained to stormwater drainage system, the effluent needed to meet certain quality requirement. Therefore, a biofiltration system was proposed to host the green wall plants and also treat the greywater (which is used as irrigation water) to the required level. To assess the performance of the proposed system, an experimental setup consisting of Polyvinyl Chloride (PVC) soil columns with sand-based filter media were prepared. Two different local creeper plants were chosen considering several factors including fast growth, low maintenance requirement, and aesthetic aspects. Three replicates of each plants were used to ensure the validity of the findings. The growth of creeping plants and their survivability was monitored for 6 months while monthly sampling and testing of effluent was conducted to evaluate effluent quality. An analysis was also conducted to estimate the potential cost and benefit of such system considering water and energy saving in the system. Results showed that the proposed system can work efficiently throughout a long period of time with minimal maintenance requirement. Moreover, the biofiltration-green wall system was found to be successful in reusing greywater as irrigating water while the effluent was meeting all the requirements for being drained to stormwater drainage system.

Keywords: biofiltration, green wall, greywater, sustainability

Procedia PDF Downloads 214
9809 Maximisation of Consumer Welfare in the Enforcement of Intellectual Property Rights in Competition Guidelines: The Malaysian Experience

Authors: Ida Madieha Abdul Ghani Azmi, Heng Gee Lim, Adlan Abdul Razak, Nasaruddin Abdul Rahman

Abstract:

The objective of competition law is to maximise consumer welfare through the regulation of anti-competitive behaviour that results in the distortion of the market. Intellectual property law also seeks to enhance consumer welfare in the long run by encouraging the development of useful devices and processes. Nevertheless, in some circumstances, the IP owners behave in such a way that makes it difficult for rival companies to sell substitute products and technology in the market. Intellectual property owners may also reach a dominant position in the market such that they are able to dictate unfair terms and conditions on other market players. Among the two major categories of anti-competitive behavior is the use of horizontal and vertical agreement to constrain effective competition and abuse of dominant position. As a result, many countries have regulated the conduct of the IP owners that are considered as anti-competitive including the US, Canada, and Singapore. This paper visits the proposed IP Guidelines recently drafted by the Malaysian Competition Commission and investigates to what extent it resolves most of the anti-competitive behavior of the IP owners. The paper concludes by suggesting some of the rules that could be prescribed by the Competition Commission in order to maintain the relevancy of competition law as the main check against the abuse of rights by the intellectual property owners.

Keywords: abuse of dominant position, consumer welfare, intellectual property rights, vertical and horizontal agreements

Procedia PDF Downloads 222
9808 DG Power Plants Placement and Evaluation of its Effect on Improving Voltage Security Margin in Radial Distribution Networks

Authors: Atabak Faramarzpour, Mohsen Mohammadian

Abstract:

In this article, we introduce the stability of power system voltage and state DG power plants placement and its effect on improving voltage security margin in radial distribution networks. For this purpose, first, important definitions in voltage stability area such as small and big voltage disturbances, instability, and voltage collapse, and voltage security definitions are stated. Then, according to voltage collapse time, voltage stability is classified and each one's characteristics are stated.

Keywords: DG power plants, evaluation, voltage security, radial distribution networks

Procedia PDF Downloads 671
9807 A Stochastic Approach to Extreme Wind Speeds Conditions on a Small Axial Wind Turbine

Authors: Nkongho Ayuketang Arreyndip, Ebobenow Joseph

Abstract:

In this paper, to model a real life wind turbine, a probabilistic approach is proposed to model the dynamics of the blade elements of a small axial wind turbine under extreme stochastic wind speeds conditions. It was found that the power and the torque probability density functions even though decreases at these extreme wind speeds but are not infinite. Moreover, we also found that it is possible to stabilize the power coefficient (stabilizing the output power) above rated wind speeds by turning some control parameters. This method helps to explain the effect of turbulence on the quality and quantity of the harness power and aerodynamic torque.

Keywords: probability, probability density function, stochastic, turbulence

Procedia PDF Downloads 587
9806 Hierarchical Control Structure to Control the Power Distribution System Components in Building Systems

Authors: Hamed Sarbazy, Zohre Gholipour Haftkhani, Ali Safari, Pejman Hosseiniun

Abstract:

Scientific and industrial progress in the past two decades has resulted in energy distribution systems based on power electronics, as an enabling technology in various industries and building management systems can be considered. Grading and standardization module power electronics systems and its use in a distributed control system, a strategy for overcoming the limitations of using this system. The purpose of this paper is to investigate strategies for scheduling and control structure of standard modules is a power electronic systems. This paper introduces the classical control methods and disadvantages of these methods will be discussed, The hierarchical control as a mechanism for distributed control structure of the classification module explains. The different levels of control and communication between these levels are fully introduced. Also continue to standardize software distribution system control structure is discussed. Finally, as an example, the control structure will be presented in a DC distribution system.

Keywords: application management, hardware management, power electronics, building blocks

Procedia PDF Downloads 521
9805 Effects of Methods of Confinement during Transportation of Market Pigs on Meat Quality

Authors: Pongchan Na-Lampang

Abstract:

The objective of this study was to compare the results of transport of slaughter pigs to slaughterhouse by 2 methods, i.e. individual confined and group confined on the truck on meat quality. The pigs were transported for 1 h on a distance of 70 km. The stocking densities were 0.35 m2/pig and 0.48 m2 for group and individual crate treatment, respectively. It was found that meat quality of pigs transported by 2 different methods as measured in terms of pH level (at 45 min and 48 hr post mortem), color (brightness, redness and yellowness) and water holding capacity was not significantly different.

Keywords: market pig, transportation, meat quality, confinement

Procedia PDF Downloads 389
9804 Defining the Limits of No Load Test Parameters at Over Excitation to Ensure No Over-Fluxing of Core Based on a Case Study: A Perspective From Utilities

Authors: Pranjal Johri, Misbah Ul-Islam

Abstract:

Power Transformers are one of the most critical and failure prone entities in an electrical power system. It is an established practice that each design of a power transformer has to undergo numerous type tests for design validation and routine tests are performed on each and every power transformer before dispatch from manufacturer’s works. Different countries follow different standards for testing the transformers. Most common and widely followed standard for Power Transformers is IEC 60076 series. Though these standards put up a strict testing requirements for power transformers, however, few aspects of transformer characteristics and guaranteed parameters can be ensured by some additional tests. Based on certain observations during routine test of a transformer and analyzing the data of a large fleet of transformers, three propositions have been discussed and put forward to be included in test schedules and standards. The observations in the routine test raised questions on design flux density of transformer. In order to ensure that flux density in any part of the core & yoke does not exceed 1.9 tesla at 1.1 pu as well, following propositions need to be followed during testing:  From the data studied, it was evident that generally NLC at 1.1 pu is apporx. 3 times of No Load Current at 1 pu voltage.  During testing the power factor at 1.1 pu excitation, it must be comparable to calculated values from the Cold Rolled Grain Oriented steel material curves, including building factor.  A limit of 3 % to be extended for higher than rated voltages on difference in Vavg and Vrms, during no load testing.  Extended over excitation test to be done in case above propositions are observed to be violated during testing.

Keywords: power transfoemrs, no load current, DGA, power factor

Procedia PDF Downloads 104
9803 A 3kW Grid Connected Residential Energy Storage System with PV and Li-Ion Battery

Authors: Moiz Masood Syed, Seong-Jun Hong, Geun-Hie Rim, Kyung-Ae Cho, Hyoung-Suk Kim

Abstract:

In the near future, energy storage will play a vital role to enhance the present changing technology. Energy storage with power generation becomes necessary when renewable energy sources are connected to the grid which consequently adjoins to the total energy in the system since utilities require more power when peak demand occurs. This paper describes the operational function of a 3 kW grid-connected residential Energy Storage System (ESS) which is connected with Photovoltaic (PV) at its input side. The system can perform bidirectional functions of charging from the grid and discharging to the grid when power demand becomes high and low respectively. It consists of PV module, Power Conditioning System (PCS) containing a bidirectional DC/DC Converter and bidirectional DC/AC inverter and a Lithium-ion battery pack. ESS Configuration, specifications, and control are described. The bidirectional DC/DC converter tracks the maximum power point (MPPT) and maintains the stability of PV array in case of power deficiency to fulfill the load requirements. The bidirectional DC/AC inverter has good voltage regulation properties like low total harmonic distortion (THD), low electromagnetic interference (EMI), faster response and anti-islanding characteristics. Experimental results satisfy the effectiveness of the proposed system.

Keywords: energy storage system, photovoltaic, DC/DC converter, DC/AC inverter

Procedia PDF Downloads 641
9802 Approximation Algorithms for Peak-Demand Reduction

Authors: Zaid Jamal Saeed Almahmoud

Abstract:

Smart grid is emerging as the future power grid, with smart techniques to optimize power consumption and electricity generation. Minimizing peak power consumption under a fixed delay requirement is a significant problem in the smart grid.For this problem, all appliances must be scheduled within a given finite time duration. We consider the problem of minimizing the peak demand under appliances constraints by scheduling power jobs with uniform release dates and deadlines. As the problem is known to be NP-hard, we analyze the performance of a version of the natural greedy heuristic for solving this problem. Our theoretical analysis and experimental results show that the proposed heuristic outperforms existing methods by providing a better approximation to the optimal solution.

Keywords: peak demand scheduling, approximation algorithms, smart grid, heuristics

Procedia PDF Downloads 94
9801 Education, Technology and Geopolitics: The Arab World as an Instance

Authors: Abdulrahman Al Lily

Abstract:

This article spans the domains of education, technology and geo-politics. It uses as an instance the Arab scholarship of education and technology, viewing its scholarly community through the geographical lens of regionalism. It enquires into the power relations among scholars in the Arab region and between scholars in the Arab region and their fellows from outside the region. It addresses the research question: to what extent have region-informed factors affected the scholarly community of education and technology in the Arab region? This question was answered by both qualitative and numerical enquiry, analysing documents, interviews and a survey of native Arabic-speaking scholars. Having analysed the data using the grounded theory approach, two categories of power relations among scholars were identified: power relations within a particular region and power relations across regions. Considering these two categories, a theoretical proposition could be posited that there could be power relationships among scholars that exist on a regional basis. The recommendation is therefore that research should further shed light upon the regionalistic (and thus geographically informed political) dynamics of scholarly communities.

Keywords: education, technology, politics, geography, regionalism, Arab

Procedia PDF Downloads 509
9800 Solar Energy: The Alternative Electric Power Resource in Tropical Nigeria

Authors: Okorowo Cyril Agochi

Abstract:

More than ever human activity relating to uncontrolled greenhouse gas (GHG) and its effects on the earth is gaining greater attention in the global academic and policy discussions. Activities of man has greatly influenced climate change over the years as a result of consistent increase in the use of fossil fuel energy. Scientists and researchers globally are making significant and devoted efforts towards the development and implementation of renewable energy technologies that are harmless to the environment. One of such energy is solar energy with its source from the sun. There are currently two primary ways of harvesting this energy from the sun: through photovoltaic (PV) panels and through thermal collectors. This work discuses solar energy the abundant renewable energy in the tropical Nigeria, processes of harvesting and recommends same as an alternative means of electric power generation in a time the demand for power supersedes supply.

Keywords: electric, power, renewable energy, solar energy, sun, tropical

Procedia PDF Downloads 543
9799 Bridging the Gap Between Student Needs and Labor Market Requirements in the Translation Industry in Saudi Arabia

Authors: Sultan Samah A Almjlad

Abstract:

The translation industry in Saudi Arabia is experiencing significant shifts driven by Vision 2030, which aims to diversify the economy and enhance international engagement. This change highlights the need for translators who are skilled in various languages and cultures, playing a crucial role in the nation's global integration efforts. However, there's a notable gap between the skills taught in academic institutions and what the job market demands. Many translation programs in Saudi universities don't align well with industry needs, resulting in graduates who may not meet employer expectations. To tackle this challenge, it's essential to thoroughly analyze the market to identify the key skills required, especially in sectors like legal, medical, technical, and audiovisual translation. At the same time, existing translation programs need to be evaluated to see if they cover necessary topics and provide practical training. Involving stakeholders such as translation agencies, professionals, and students is crucial to gather diverse perspectives. Identifying discrepancies between academic offerings and market demands will guide the development of targeted strategies. These strategies may include enriching curricula with industry-specific content, integrating emerging technologies like machine translation and CAT tools, and establishing partnerships with industry players to offer practical training opportunities and internships. Industry-led workshops and seminars can provide students with valuable insights, and certification programs can validate their skills. By aligning academic programs with industry needs, Saudi Arabia can build a skilled workforce of translators, supporting its economic diversification goals under Vision 2030. This alignment benefits both students and the industry, contributing to the growth of the translation sector and the overall development of the country.

Keywords: translation industry, briging gap, labor market, requirements

Procedia PDF Downloads 37
9798 A Firefly Based Optimization Technique for Optimal Planning of Voltage Controlled Distributed Generators

Authors: M. M. Othman, Walid El-Khattam, Y. G. Hegazy, A. Y. Abdelaziz

Abstract:

This paper presents a method for finding the optimal location and capacity of dispatchable DGs connected to the distribution feeders for optimal planning for a specified power loss without violating the system practical constraints. The distributed generation units in the proposed algorithm is modeled as voltage controlled node with the flexibility to be converted to constant power node in case of reactive power limit violation. The proposed algorithm is implemented in MATLAB and tested on the IEEE 37-nodes feeder. The results that are validated by comparing it with results obtained from other competing methods show the effectiveness, accuracy and speed of the proposed method.

Keywords: distributed generators, firefly technique, optimization, power loss

Procedia PDF Downloads 533
9797 Wind Power Forecasting Using Echo State Networks Optimized by Big Bang-Big Crunch Algorithm

Authors: Amir Hossein Hejazi, Nima Amjady

Abstract:

In recent years, due to environmental issues traditional energy sources had been replaced by renewable ones. Wind energy as the fastest growing renewable energy shares a considerable percent of energy in power electricity markets. With this fast growth of wind energy worldwide, owners and operators of wind farms, transmission system operators, and energy traders need reliable and secure forecasts of wind energy production. In this paper, a new forecasting strategy is proposed for short-term wind power prediction based on Echo State Networks (ESN). The forecast engine utilizes state-of-the-art training process including dynamical reservoir with high capability to learn complex dynamics of wind power or wind vector signals. The study becomes more interesting by incorporating prediction of wind direction into forecast strategy. The Big Bang-Big Crunch (BB-BC) evolutionary optimization algorithm is adopted for adjusting free parameters of ESN-based forecaster. The proposed method is tested by real-world hourly data to show the efficiency of the forecasting engine for prediction of both wind vector and wind power output of aggregated wind power production.

Keywords: wind power forecasting, echo state network, big bang-big crunch, evolutionary optimization algorithm

Procedia PDF Downloads 572
9796 Nighttime Power Generation Using Thermoelectric Devices

Authors: Abdulrahman Alajlan

Abstract:

While the sun serves as a robust energy source, the frigid conditions of outer space present promising prospects for nocturnal power generation due to its continuous accessibility during nighttime hours. This investigation illustrates a proficient methodology facilitating uninterrupted energy capture throughout the day. This method involves the utilization of water-based heat storage systems and radiative thermal emitters implemented across thermometric devices. Remarkably, this approach permits an enhancement of nighttime power generation that exceeds the level of 1 Wm-2, which is unattainable by alternative methodologies. Outdoor experiments conducted at the King Abdulaziz City for Science and Technology (KACST) have demonstrated unparalleled performance, surpassing prior experimental benchmarks by nearly an order of magnitude. Furthermore, the developed device exhibits the capacity to concurrently supply power to multiple light-emitting diodes, thereby showcasing practical applications for nighttime power generation. This research unveils opportunities for the creation of scalable and efficient 24-hour power generation systems based on thermoelectric devices. Central findings from this study encompass the realization of continuous 24-hour power generation from clean and sustainable energy sources. Theoretical analyses indicate the potential for nighttime power generation reaching up to 1 Wm-2, while experimental results have reached nighttime power generation at a density of 0.5 Wm-2. Additionally, the efficiency of multiple light-emitting diodes (LEDs) has been evaluated when powered by the nighttime output of the integrated thermoelectric generator (TEG). Therefore, this methodology exhibits promise for practical applications, particularly in lighting, marking a pivotal advancement in the utilization of renewable energy for both on-grid and off-grid scenarios.

Keywords: nighttime power generation, thermoelectric devices, radiative cooling, thermal management

Procedia PDF Downloads 60
9795 Contractors Perspective on Causes of Delays in Power Transmission Projects

Authors: Goutom K. Pall

Abstract:

At the very heart of the power system, power transmission (PT) acts as an essential link between power generation and distribution. Timely completion of PT infrastructures is therefore crucial to support the development of power system as a whole. Yet despite the importance, studies on PT infrastructure development projects are embryonic and, hence, PT projects undergoing widespread delays worldwide. These delay factors are idiosyncratic and identifying the critical delay factors is essential if the PT industry professionals are to complete their projects efficiently and within the expected timeframes. This study identifies and categorizes 46 causes of PT project delay under ten major groups using six sector expert’s recommendations studied by a preliminary questionnaire survey. Based on the experts’ strong recommendations, two new groups are introduced in the final questionnaire survey: sector specific factors (SSF) and general factors (GF). SSF pertain to delay factors applicable only to the PT projects, while GF represents less biased samples with shared responsibilities of all project parties involved in a project. The study then uses 112 data samples from the contractors to rank the delay factors using relative importance index (RII). The results reveal that SSF, GF and external factors are the most critical groups, while the highest ranked delay factors include the right of way (RoW) problems of transmission lines (TL), delay in payments, frequent changes in TL routes, poor communication and coordination among the project parties and accessibility to TL tower locations. Finally, recommendations are made to minimize the identified delay. The findings are expected to be of substantial benefit to professionals in minimizing time overrun in PT projects implementation, as well as power generation, power distribution, and non-power linear construction projects worldwide.

Keywords: delay, project delay, power transmission projects, time-overruns

Procedia PDF Downloads 178
9794 Evaluation of Low Power Wi-Fi Modules in Simulated Ocean Environments

Authors: Gabriel Chenevert, Abhilash Arora, Zeljko Pantic

Abstract:

The major problem underwater acoustic communication faces is the low data rate due to low signal frequency. By contrast, the Wi-Fi communication protocol offers high throughput but limited operating range due to the attenuation effect of the sea and ocean medium. However, short-range near-field underwater wireless power transfer systems offer an environment where Wi-Fi communication can be effectively integrated to collect data and deliver instructions to sensors in underwater sensor networks. In this paper, low-power, low-cost off-the-shelf Wi-Fi modules are explored experimentally for four selected parameters for different distances between units and water salinities. The results reveal a shorter operating range and stronger dependence on water salinity than reported so far for high-end Wi-Fi modules.

Keywords: Wi-Fi, wireless power transfer, underwater communications, ESP

Procedia PDF Downloads 116
9793 A New Approach to the Digital Implementation of Analog Controllers for a Power System Control

Authors: G. Shabib, Esam H. Abd-Elhameed, G. Magdy

Abstract:

In this paper, a comparison of discrete time PID, PSS controllers is presented through small signal stability of power system comprising of one machine connected to infinite bus system. This comparison achieved by using a new approach of discretization which converts the S-domain model of analog controllers to a Z-domain model to enhance the damping of a single machine power system. The new method utilizes the Plant Input Mapping (PIM) algorithm. The proposed algorithm is stable for any sampling rate, as well as it takes the closed loop characteristic into consideration. On the other hand, the traditional discretization methods such as Tustin’s method is produce satisfactory results only; when the sampling period is sufficiently low.

Keywords: PSS, power system stabilizer PID, proportional-integral-derivative PIM, plant input mapping

Procedia PDF Downloads 505
9792 A Single Phase ZVT-ZCT Power Factor Correction Boost Converter

Authors: Yakup Sahin, Naim Suleyman Ting, Ismail Aksoy

Abstract:

In this paper, a single phase soft switched Zero Voltage Transition and Zero Current Transition (ZVT-ZCT) Power Factor Correction (PFC) boost converter is proposed. In the proposed PFC converter, the main switch turns on with ZVT and turns off with ZCT without any additional voltage or current stresses. Auxiliary switch turns on and off with zero current switching (ZCS). Also, the main diode turns on with zero voltage switching (ZVS) and turns off with ZCS. The proposed converter has features like low cost, simple control and structure. The output current and voltage are controlled by the proposed PFC converter in wide line and load range. The theoretical analysis of converter is clarified and the operating steps are given in detail. The simulation results of converter are obtained for 500 W and 100 kHz. It is observed that the semiconductor devices operate with soft switching (SS) perfectly. So, the switching power losses are minimum. Also, the proposed converter has 0.99 power factor with sinusoidal current shape.

Keywords: power factor correction, zero-voltage transition, zero-current transition, soft switching

Procedia PDF Downloads 803
9791 Optimizing Power in Sequential Circuits by Reducing Leakage Current Using Enhanced Multi Threshold CMOS

Authors: Patikineti Sreenivasulu, K. srinivasa Rao, A. Vinaya Babu

Abstract:

The demand for portability, performance and high functional integration density of digital devices leads to the scaling of complementary metal oxide semiconductor (CMOS) devices inevitable. The increase in power consumption, coupled with the increasing demand for portable/hand-held electronics, has made power consumption a dominant concern in the design of VLSI circuits today. MTCMOS technology provides low leakage and high performance operation by utilizing high speed, low Vt (LVT) transistors for logic cells and low leakage, high Vt (HVT) devices as sleep transistors. Sleep transistors disconnect logic cells from the supply and/or ground to reduce the leakage in the sleep mode. In this technology, energy consumption while doing the mode transition and minimum time required to turn ON the circuit upon receiving the wake up signal are issues to be considered because these can adversely impact the performance of VLSI circuit. In this paper we are introducing an enhancing method of MTCMOS technology to optimize the power in MTCMOS sequential circuits.

Keywords: power consumption, ultra-low power, leakage, sub threshold, MTCMOS

Procedia PDF Downloads 408
9790 Ultraviolet Visible Spectroscopy Analysis on Transformer Oil by Correlating It with Various Oil Parameters

Authors: Rajnish Shrivastava, Y. R. Sood, Priti Pundir, Rahul Srivastava

Abstract:

Power transformer is one of the most important devices that are used in power station. Due to several fault impending upon it or due to ageing, etc its life gets lowered. So, it becomes necessary to have diagnosis of oil for fault analysis. Due to the chemical, electrical, thermal and mechanical stress the insulating material in the power transformer degraded. It is important to regularly assess the condition of oil and the remaining life of the power transformer. In this paper UV-VIS absorption graph area is correlated with moisture content, Flash point, IFT and Density of Transformer oil. Since UV-VIS absorption graph area varies accordingly with the variation in different transformer parameters. So by obtaining the correlation among different oil parameters for oil with respect to UV-VIS absorption area, decay contents of transformer oil can be predicted

Keywords: breakdown voltage (BDV), interfacial Tension (IFT), moisture content, ultra violet-visible rays spectroscopy (UV-VIS)

Procedia PDF Downloads 642
9789 Anti-Diabetic Effect of High Purity Epigallocatechin Gallate from Green Tea

Authors: Hye Jin Choi, Mirim Jin, Jeong June Choi

Abstract:

Green tea, which is one of the most popular of tea, contains various ingredients that help health. Epigallocatechin gallate (EGCG) is one of the main active polyphenolic compound possessing diverse biologically beneficial effects such as anti-oxidation, anti-cancer founding in green tea. This study was performed to investigate the anti-diabetic effect of high-purity EGCG ( > 98%) in a spontaneous diabetic mellitus animal model, db/db mouse. Four-week-old male db/db mice, which was induced to diabetic mellitus by the high-fat diet, were orally administered with high-purity EGCG (10, 50 and 100 mg/kg) for 4 weeks. Daily weight and diet efficiency were examined, and blood glucose level was assessed once a week. After 4 weeks of EGCG administration, fasting blood glucose level was measured. Then, the mice were sacrificed and total abdominal fat was sampled to examine the change in fat weight. Plasma was separated from the blood and the levels of aspartate amino-transferase (ALT) and alanine amino-transferase (AST) were investigated. As results, blood glucose and body weight were significantly decreased by EGCG treatment compared to the control group. Also, the amount of abdominal fat was down-regulated by EGCG. However, ALT and AST levels, which are indicators of liver function, were similar to those of control group. Taken together, our study suggests that high purity EGCG is capable of treating diabetes mellitus based in db / db mice with safety and has a potent to develop a therapeutics for metabolic disorders. This work was supported by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry (IPET) through High Value-added Food Technology Development Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (317034-03-2-HD030)

Keywords: anti-diabetic effect, db/db mouse, diabetes mellitus, green tea, epigallocatechin gallate

Procedia PDF Downloads 187
9788 Maximaxing the Usage of Solar Energy in an Area of Low Peak Sunlight Hours

Authors: Ohabuiro John Uwabunkeonye

Abstract:

Source of green energy is becoming a concern in developing countries where most energy source in use emits high level of carbon (IV) oxide which contributes to global warming. More so, even with the generation of energy from fossil fuel, the electricity supply is still very inadequate. Therefore, this paper examines different ways of designing and installing photovoltaic (PV) system in terms of optimal sizing of PV array and battery storage in an area of very low peak sunlight hours (PSH) and inadequate supply of electricity from utility companies. Different sample of Peak sunlight hour for selected areas in Nigeria are considered and the lowest of it all is taken. Some means of ensuring that the available solar energy is harnessed properly and converted into electrical energy are discussed for usage in such areas as mentioned above.

Keywords: green energy, fossil fuel, peak sunlight hour, photovoltaic

Procedia PDF Downloads 642
9787 Economic Analysis of a Carbon Abatement Technology

Authors: Hameed Rukayat Opeyemi, Pericles Pilidis Pagone Emmanuele, Agbadede Roupa, Allison Isaiah

Abstract:

Climate change represents one of the single most challenging problems facing the world today. According to the National Oceanic and Administrative Association, Atmospheric temperature rose almost 25% since 1958, Artic sea ice has shrunk 40% since 1959 and global sea levels have risen more than 5.5cm since 1990. Power plants are the major culprits of GHG emission to the atmosphere. Several technologies have been proposed to reduce the amount of GHG emitted to the atmosphere from power plant, one of which is the less researched Advanced zero-emission power plant. The advanced zero emission power plants make use of mixed conductive membrane (MCM) reactor also known as oxygen transfer membrane (OTM) for oxygen transfer. The MCM employs membrane separation process. The membrane separation process was first introduced in 1899 when Walter Hermann Nernst investigated electric current between metals and solutions. He found that when a dense ceramic is heated, the current of oxygen molecules move through it. In the bid to curb the amount of GHG emitted to the atmosphere, the membrane separation process was applied to the field of power engineering in the low carbon cycle known as the Advanced zero emission power plant (AZEP cycle). The AZEP cycle was originally invented by Norsk Hydro, Norway and ABB Alstom power (now known as Demag Delaval Industrial turbomachinery AB), Sweden. The AZEP drew a lot of attention because its ability to capture ~100% CO2 and also boasts of about 30-50% cost reduction compared to other carbon abatement technologies, the penalty in efficiency is also not as much as its counterparts and crowns it with almost zero NOx emissions due to very low nitrogen concentrations in the working fluid. The advanced zero emission power plants differ from a conventional gas turbine in the sense that its combustor is substituted with the mixed conductive membrane (MCM-reactor). The MCM-reactor is made up of the combustor, low-temperature heat exchanger LTHX (referred to by some authors as air preheater the mixed conductive membrane responsible for oxygen transfer and the high-temperature heat exchanger and in some layouts, the bleed gas heat exchanger. Air is taken in by the compressor and compressed to a temperature of about 723 Kelvin and pressure of 2 Mega-Pascals. The membrane area needed for oxygen transfer is reduced by increasing the temperature of 90% of the air using the LTHX; the temperature is also increased to facilitate oxygen transfer through the membrane. The air stream enters the LTHX through the transition duct leading to inlet of the LTHX. The temperature of the air stream is then increased to about 1150 K depending on the design point specification of the plant and the efficiency of the heat exchanging system. The amount of oxygen transported through the membrane is directly proportional to the temperature of air going through the membrane. The AZEP cycle was developed using the Fortran software and economic analysis was conducted using excel and Matlab followed by optimization case study. The Simple bleed gas heat exchange layout (100 % CO2 capture), Bleed gas heat exchanger layout with flue gas turbine (100 % CO2 capture), Pre-expansion reheating layout (Sequential burning layout)–AZEP 85% (85% CO2 capture) and Pre-expansion reheating layout (Sequential burning layout) with flue gas turbine–AZEP 85% (85% CO2 capture). This paper discusses monte carlo risk analysis of four possible layouts of the AZEP cycle.

Keywords: gas turbine, global warming, green house gas, fossil fuel power plants

Procedia PDF Downloads 397
9786 Analysis of Lightweight Register Hardware Threat

Authors: Yang Luo, Beibei Wang

Abstract:

In this paper, we present a design methodology of lightweight register transfer level (RTL) hardware threat implemented based on a MAX II FPGA platform. The dynamic power consumed by the toggling of the various bit of registers as well as the dynamic power consumed per unit of logic circuits were analyzed. The hardware threat was designed taking advantage of the differences in dynamic power consumed per unit of logic circuits to hide the transfer information. The experiment result shows that the register hardware threat was successfully implemented by using different dynamic power consumed per unit of logic circuits to hide the key information of DES encryption module. It needs more than 100000 sample curves to reduce the background noise by comparing the sample space when it completely meets the time alignment requirement. In additional, an external trigger signal is playing a very important role to detect the hardware threat in this experiment.

Keywords: side-channel analysis, hardware Trojan, register transfer level, dynamic power

Procedia PDF Downloads 279