Search results for: pharmaceutical wastewater
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1551

Search results for: pharmaceutical wastewater

201 Highly Efficient in Vitro Regeneration of Swertia chirayita (Roxb. ex Fleming) Karsten: A Critically Endangered Medicinal Plant

Authors: Mahendran Ganesan, Sanjeet Kumar Verma, Zafar Iqbal, Ashish Chandran, Zakir Husain, Shama Afroz, Sana Shahid, Laiq Ur Rahman

Abstract:

Highly efficient in vitro regeneration system has been developed for Swertia chirayita (Roxb. ex Fleming) H. Karst, a high prized traditional medicinal plant to treat numerous ailments such as liver disorders, malaria and diabetes and are reported to have a wide spectrum of pharmacological properties. Its medicinal usage is well-documented in Indian pharmaceutical codex, the British and the American pharmacopeias, and in different traditional medicine such as the Ayurveda, Unani and Siddha medical systems. Nodal explants were cultured on MS medium supplemented with various phytohormones for multiple shoot induction. The nodal segments failed to respond in growth regulator free medium. All the concentrations of BAP, Kin and TDZ facilitated shoot bud break and multiple shoot induction. Among the various cytokinins tested, BAP was found to be more effective with respect to initiation and subsequent development of shoots. Of the various concentrations BAP tested, BAP at 4.0 mg/L showed the higher average number of shoot regeneration (10.80 shoots per explant). Kin at 4 mg/L and TDZ at 4 mg/L induced 5.70 and 04.5+0 shoots per explant, respectively. Further increase in concentration did not favour an increase in the number of shoots. However, these shoots failed to elongate further. Hence, addition of GA₃ (1 mg/L) was added to the above medium. This treatment resulted in the elongation of shoots (2.50 cm) and a further increase in the number of microshoots (34.20 shoots/explant). Roots were also induced in the same medium containing BAP (4 mg/L) + GA₃ (1 mg/L) + NAA (0.5 mg/L). In vitro derived plantlets with well-developed roots were transferred to the potting media containing garden soil: sand: vermicompost (2:1:1). Plantlets were covered with a polyethylene bag and irrigated with water. The pots were maintained at 25 ± 2ºC, and then the polyethylene cover was gradually loosened, thus dropping the humidity (65–70%). This procedure subsequently resulted in in vitro hardening of the plantlet.

Keywords: micropropagation, nodal explant, plant growth regulators, Swertia chirayita

Procedia PDF Downloads 114
200 Solar-Powered Smart Irrigation System as an Adaptation Strategy under Climate Change: A Case Study to Develop Medicinal Security Based on Ancestral Knowledge

Authors: Luisa Cabezas, Karol Leal, Harold Mendoza, Fabio Trochez, Angel Lozada

Abstract:

According to the 2030 Agenda for Sustainable Development Goals (SDG) in which equal importance is given to economic, social, and environmental dimensions where the equality and dignity of each human person is placed at the center of discussion, changing the development concept for one with more responsibility with the environment. It can be found that the energy and food systems are deeply entangled, and they are transversal to the 17 proposed SDG. In this order of ideas, a research project is carried out at Unidad Central del Valle del Cauca (UCEVA) with these two systems in mind, on one hand the energy transition and, on the other hand the transformation of agri-food systems. This project it could be achieved by automation and control irrigation system of medicinal, aromatic, and condimentary plants (MACP) area within the UCEVA Agroecological Farm and located in rural area of Tulua municipality (Valle del Cauca Department, Colombia). This system have allowed to stablish a remote monitoring of MACP area, including MACP moisture measurement, and execute the required system actions. In addition, the electrical system of irrigation control system is powered by a scalable photovoltaic solar energy system based on its specifications. Thus, the developed system automates and control de irrigation system, which is energetically self-sustainable and allows to satisfy the MACP area requirements. Is important to highlight that at MACP area, several medicinal, aromatic, and condimentary plants species are preserved to become primary sources for the pharmaceutical industry and, in many occasions, the only medicines for many communities. Therefore, preserve medicinal plants area would generates medicinal security and preserve cultural heritage as these plants are part of ancestral knowledge that penetrate academic and research communities at UCEVA campus to other society sectors.

Keywords: ancestral knowledge, climate change, medicinal plants, solar energy

Procedia PDF Downloads 228
199 Application of Nanoparticles on Surface of Commercial Carbon-Based Adsorbent for Removal of Contaminants from Water

Authors: Ahmad Kayvani Fard, Gordon Mckay, Muataz Hussien

Abstract:

Adsorption/sorption is believed to be one of the optimal processes for the removal of heavy metals from water due to its low operational and capital cost as well as its high removal efficiency. Different materials have been reported in literature as adsorbent for heavy metal removal in waste water such as natural sorbents, organic polymers (synthetic) and mineral materials (inorganic). The selection of adsorbents and development of new functional materials that can achieve good removal of heavy metals from water is an important practice and depends on many factors, such as the availability of the material, cost of material, and material safety and etc. In this study we reported the synthesis of doped Activated carbon and Carbon nanotube (CNT) with different loading of metal oxide nanoparticles such as Fe2O3, Fe3O4, Al2O3, TiO2, SiO2 and Ag nanoparticles and their application in removal of heavy metals, hydrocarbon, and organics from waste water. Commercial AC and CNT with different loadings of mentioned nanoparticle were prepared and effect of pH, adsorbent dosage, sorption kinetic, and concentration effects are studied and optimum condition for removal of heavy metals from water is reported. The prepared composite sorbent is characterized using field emission scanning electron microscopy (FE-SEM), high transmission electron microscopy (HR-TEM), thermogravimetric analysis (TGA), X-ray diffractometer (XRD), the Brunauer, Emmett and Teller (BET) nitrogen adsorption technique, and Zeta potential. The composite materials showed higher removal efficiency and superior adsorption capacity compared to commercially available carbon based adsorbent. The specific surface area of AC increased by 50% reaching up to 2000 m2/g while the CNT specific surface area of CNT increased by more than 8 times reaching value of 890 m2/g. The increased surface area is one of the key parameters along with surface charge of the material determining the removal efficiency and removal efficiency. Moreover, the surface charge density of the impregnated CNT and AC have enhanced significantly where can benefit the adsorption process. The nanoparticles also enhance the catalytic activity of material and reduce the agglomeration and aggregation of material which provides more active site for adsorbing the contaminant from water. Some of the results for treating wastewater includes 100% removal of BTEX, arsenic, strontium, barium, phenolic compounds, and oil from water. The results obtained are promising for the use of AC and CNT loaded with metal oxide nanoparticle in treatment and pretreatment of waste water and produced water before desalination process. Adsorption can be very efficient with low energy consumption and economic feasibility.

Keywords: carbon nanotube, activated carbon, adsorption, heavy metal, water treatment

Procedia PDF Downloads 226
198 Spray Drying and Physico-Chemical Microbiological Evaluation of Ethanolic Extracts of Propolis

Authors: David Guillermo Piedrahita Marquez, Hector Suarez Mahecha, Jairo Humberto Lopez

Abstract:

The propolis are substances obtained from the beehive have an action against pathogens, prooxidant substances and free radicals because of its polyphenols content, this has motivated the use of these compounds in the food and pharmaceutical industries. However, due to their organoleptic properties and their ability to react with other compounds, their application has been limited; therefore, the objective of this research was to propose a mechanism to protect propolis and mitigate side effects granted by its components. To achieve the stated purpose ethanolic extracts of propolis (EEP) from three samples from Santander were obtained and their antioxidant and antimicrobial activity were evaluated in order to choose the extract with the biggest potential. Subsequently mixtures of the extract with maltodextrin were prepared by spray drying varying concentration and temperature, finally the yield, the physicochemical, and antioxidant properties of the products were measured. It was concluded that Socorro propolis was the best for the production of microencapsulated due to their activity against pathogenic strains, for its large percentage of DPPH radical inactivation and for its high phenolic content. In spray drying, the concentration of bioactive had a greater impact than temperature and the conditions set allowed a good performance and the production of particles with high antioxidant potential and little chance of proliferation of microorganisms. Also, it was concluded that the best conditions that allowed us to obtain the best particles were obtained after drying a mixture 1:2 ( EEP: Maltodextrin), besides the concentration is the most important variable in the spray drying process, at the end we obtained particles of different sizes and shape and the uniformity of the surface depend on the temperature. After watching the previously mentioned microparticles by scanning electron microscopy (SEM) it was concluded that most of the particles produced during the spray dry process had a spherical shape and presented agglomerations due to the moisture content of the ethanolic extracts of propolis (EEP), the morphology of the microparticles contributed to the stability of the final product and reduce the loss of total phenolic content.

Keywords: spray drying, propolis, maltodextrin, encapsulation, scanning electron microscopy

Procedia PDF Downloads 285
197 Development of Composition and Technology of Vincristine Nanoparticles Using High-Molecular Carbohydrates of Plant Origin

Authors: L. Ebralidze, A. Tsertsvadze, D. Berashvili, A. Bakuridze

Abstract:

Current cancer therapy strategies are based on surgery, radiotherapy and chemotherapy. The problems associated with chemotherapy are one of the biggest challenges for clinical medicine. These include: low specificity, broad spectrum of side effects, toxicity and development of cellular resistance. Therefore, anti-cance drugs need to be develop urgently. Particularly, in order to increase efficiency of anti-cancer drugs and reduce their side effects, scientists work on formulation of nano-drugs. The objective of this study was to develop composition and technology of vincristine nanoparticles using high-molecular carbohydrates of plant origin. Plant polysacharides, particularly, soy bean seed polysaccharides, flaxseed polysaccharides, citrus pectin, gum arabic, sodium alginate were used as objects. Based on biopharmaceutical research, vincristine containing nanoparticle formulations were prepared. High-energy emulsification and solvent evaporation methods were used for preparation of nanosystems. Polysorbat 80, polysorbat 60, sodium dodecyl sulfate, glycerol, polyvinyl alcohol were used in formulation as emulsifying agent and stabilizer of the system. The ratio of API and polysacharides, also the type of the stabilizing and emulsifying agents are very effective on the particle size of the final product. The influence of preparation technology, type and concentration of stabilizing agents on the properties of nanoparticles were evaluated. For the next stage of research, nanosystems were characterized. Physiochemical characterization of nanoparticles: their size, shape, distribution was performed using Atomic force microscope and Scanning electron microscope. The present study explored the possibility of production of NPs using plant polysaccharides. Optimal ratio of active pharmaceutical ingredient and plant polysacharids, the best stabilizer and emulsifying agent was determined. The average range of nanoparticles size and shape was visualized by SEM.

Keywords: nanoparticles, target delivery, natural high molecule carbohydrates, surfactants

Procedia PDF Downloads 265
196 Immobilization of Horseradish Peroxidase onto Bio-Linked Magnetic Particles with Allium Cepa Peel Water Extracts

Authors: Mirjana Petronijević, Sanja Panić, Aleksandra Cvetanović, Branko Kordić, Nenad Grba

Abstract:

Enzyme peroxidases are biological catalysts and play a major role in phenolic wastewater treatments and other environmental applications. The most studied species from the peroxidases family is horseradish peroxidase (HRP). In environmental processes, HRP could be used in its free or immobilized form. Enzyme immobilization onto solid support is performed to improve the enzyme properties, prolong its lifespan and operational stability and allow its reuse in industrial applications. One of the enzyme supports of a newer generation is magnetic particles (MPs). Fe₃O₄ MPs are the most widely pursued immobilization of enzymes owing to their remarkable advantages of biocompatibility and non-toxicity. Also, MPs can be easily separated and recovered from the water by applying an external magnetic field. On the other hand, metals and metal oxides are not suitable for the covalent binding of enzymes, so it is necessary to perform their surface modification. Fe₃O₄ MPs functionalization could be performed during the process of their synthesis if it takes place in the presence of plant extracts. Extracts of plant material, such as wild plants, herbs, even waste materials of the food and agricultural industry (bark, shell, leaves, peel), are rich in various bioactive components such as polyphenols, flavonoids, sugars, etc. When the synthesis of magnetite is performed in the presence of plant extracts, bioactive components are incorporated into the surface of the magnetite, thereby affecting its functionalization. In this paper, the suitability of bio-magnetite as solid support for covalent immobilization of HRP across glutaraldehyde was examined. The activity of immobilized HRP at different pH values (4-9) and temperatures (20-80°C) and reusability were examined. Bio-MP was synthesized by co-precipitation method from Fe(II) and Fe(III) sulfate salts in the presence of water extract of the Allium cepa peel. The water extract showed 81% of antiradical potential (according to DPPH assay), which is connected with the high content of polyphenols. According to the FTIR analysis, the bio-magnetite contains oxygen functional groups (-OH, -COOH, C=O) suitable for binding to glutaraldehyde, after which the enzyme is covalently immobilized. The immobilized enzyme showed high activity at ambient temperature and pH 7 (30 U/g) and retained ≥ 80% of its activity at a wide range of pH (5-8) and temperature (20-50°C). The HRP immobilized onto bio-MPs showed remarkable stability towards temperature and pH variations compared to the free enzyme form. On the other hand, immobilized HRP showed low reusability after the first washing cycle enzyme retains 50% of its activity, while after the third washing cycle retains only 22%.

Keywords: bio-magnetite, enzyme immobilization, water extracts, environmental protection

Procedia PDF Downloads 214
195 Barriers for Appropriate Palliative Symptom Management: A Qualitative Research in Kazakhstan, a Medium-Income Transitional-Economy Country

Authors: Ibragim Issabekov, Byron Crape, Lyazzat Toleubekova

Abstract:

Background: Palliative care substantially improves the quality of life of terminally-ill patients. Symptom control is one of the keystones in the management of patients in palliative care settings, lowering distress as well as improving the quality of life of patients with end-stage diseases. The most common symptoms causing significant distress for patients are pain, nausea and vomiting, increased respiratory secretions and mental health issues like depression. Aims are: 1. to identify best practices in symptom management in palliative patients in accordance with internationally approved guidelines and compare aforementioned with actual practices in Kazakhstan; to evaluate the criteria for assessing symptoms in terminally-ill patients, 2. to review the availability and utilization of pharmaceutical agents for pain control, management of excessive respiratory secretions, nausea, and vomiting, and delirium and 3. to develop recommendations for the systematic approach to end-of-life symptom management in Kazakhstan. Methods: The use of qualitative research methods together with systematic literature review have been employed to provide a rigorous research process to evaluate current approaches for symptom management of palliative patients in Kazakhstan. Qualitative methods include in-depth semi-structured interviews of the healthcare professionals involved in palliative care provision. Results: Obstacles were found in appropriate provision of palliative care. Inadequate education and training to manage severe symptoms, poorly defined laws and regulations for palliative care provision, and a lack of algorithms and guidelines for care were major barriers in the effective provision of palliative care. Conclusion: Assessment of palliative care in this medium-income transitional-economy country is one of the first steps in the initiation of integration of palliative care into the existing health system. Achieving this requires identifying obstacles and resolving these issues.

Keywords: end-of-life care, middle income country, palliative care, symptom control

Procedia PDF Downloads 197
194 Malate Dehydrogenase Enabled ZnO Nanowires as an Optical Tool for Malic Acid Detection in Horticultural Products

Authors: Rana Tabassum, Ravi Kant, Banshi D. Gupta

Abstract:

Malic acid is an extensively distributed organic acid in numerous horticultural products in minute amounts which significantly contributes towards taste determination by balancing sugar and acid fractions. An enhanced concentration of malic acid is utilized as an indicator of fruit maturity. In addition, malic acid is also a crucial constituent of several cosmetics and pharmaceutical products. An efficient detection and quantification protocol for malic acid is thus highly demanded. In this study, we report a novel detection scheme for malic acid by synergistically collaborating fiber optic surface plasmon resonance (FOSPR) and distinctive features of nanomaterials favorable for sensing applications. The design blueprint involves the deposition of an assembly of malate dehydrogenase enzyme entrapped in ZnO nanowires forming the sensing route over silver coated central unclad core region of an optical fiber. The formation and subsequent decomposition of the enzyme-analyte complex on exposure of the sensing layer to malic acid solutions of diverse concentration results in modification of the dielectric function of the sensing layer which is manifested in terms of shift in resonance wavelength. Optimization of experimental variables such as enzyme concentration entrapped in ZnO nanowires, dip time of probe for deposition of sensing layer and working pH range of the sensing probe have been accomplished through SPR measurements. The optimized sensing probe displays high sensitivity, broad working range and a minimum limit of detection value and has been successfully tested for malic acid determination in real samples of fruit juices. The current work presents a novel perspective towards malic acid determination as the unique and cooperative combination of FOSPR and nanomaterials provides myriad advantages such as enhanced sensitivity, specificity, compactness together with the possibility of online monitoring and remote sensing.

Keywords: surface plasmon resonance, optical fiber, sensor, malic acid

Procedia PDF Downloads 376
193 A Systematic Review on Orphan Drugs Pricing, and Prices Challenges

Authors: Seyran Naghdi

Abstract:

Background: Orphan drug development is limited by very high costs attributed to the research and development and small size market. How health policymakers address this challenge to consider both supply and demand sides need to be explored for directing the policies and plans in the right way. The price is an important signal for pharmaceutical companies’ profitability and the patients’ accessibility as well. Objective: This study aims to find out the orphan drugs' price-setting patterns and approaches in health systems through a systematic review of the available evidence. Methods: The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) approach was used. MedLine, Embase, and Web of Sciences were searched via appropriate search strategies. Through Medical Subject Headings (MeSH), the appropriate terms for pricing were 'cost and cost analysis', and it was 'orphan drug production', and 'orphan drug', for orphan drugs. The critical appraisal was performed by the Joanna-Briggs tool. A Cochrane data extraction form was used to obtain the data about the studies' characteristics, results, and conclusions. Results: Totally, 1,197 records were found. It included 640 hits from Embase, 327 from Web of Sciences, and 230 MedLine. After removing the duplicates, 1,056 studies remained. Of them, 924 studies were removed in the primary screening phase. Of them, 26 studies were included for data extraction. The majority of the studies (>75%) are from developed countries, among them, approximately 80% of the studies are from European countries. Approximately 85% of evidence has been produced in the recent decade. Conclusions: There is a huge variation of price-setting among countries, and this is related to the specific pharmacological market structure and the thresholds that governments want to intervene in the process of pricing. On the other hand, there is some evidence on the availability of spaces to reduce the very high costs of orphan drugs development through an early agreement between pharmacological firms and governments. Further studies need to focus on how the governments could incentivize the companies to agree on providing the drugs at lower prices.

Keywords: orphan drugs, orphan drug production, pricing, costs, cost analysis

Procedia PDF Downloads 160
192 The Exposure to Endocrine Disruptors during Pregnancy and Relation to Steroid Hormones

Authors: L. Kolatorova, J. Vitku, K. Adamcova, M. Simkova, M. Hill, A. Parizek, M. Duskova

Abstract:

Endocrine disruptors (EDs) are substances leaching from various industrial products, which are able to interfere with the endocrine system. Their harmful effects on human health are generally well-known, and exposure during fetal development may have lasting effects. Fetal exposure and transplacental transport of bisphenol A (BPA) have been recently studied; however, less is known about alternatives such as bisphenol S (BPS), bisphenol F (BPF) and bisphenol AF (BPAF), which have started to appear in consumer products. The human organism is usually exposed to the mixture of EDs, out of which parabens are otherwise known to transfer placenta. The usage of many cosmetic, pharmaceutical and consumer products during the pregnancy that may contain parabens and bisphenols has led to the need for investigation. The aim of the study was to investigate the transplacental transport of BPA, its alternatives, and parabens, and to study their relation to fetal steroidogenesis. BPA, BPS, BPF, BPAF, methylparaben, ethylparaben, propylparaben, butylparaben, benzylparaben and 15 steroids including estrogens, corticoids, androgens and immunomodulatory ones were determined in 27 maternal (37th week of gestation) and cord plasma samples using liquid chromatography - tandem mass spectrometry methods. The statistical evaluation of the results showed significantly higher levels of BPA (p=0.0455) in cord plasma compared to maternal plasma. The results from multiple regression models investigated that in cord plasma, methylparaben, propylparaben and the sum of all measured parabens were inversely associated with testosterone levels. To our best knowledge, this study is the first attempt to determine the levels of alternative bisphenols in the maternal and cord blood, and also the first study reporting the simultaneous detection of bisphenols, parabens, and steroids in these biological fluids. Our study confirmed the transplacental transport of BPA, with likely accumulation in the fetal compartment. The negative association of cord blood parabens and testosterone levels highlights their possible risks, especially for the development of male fetuses. Acknowledgements: This work was supported by the project MH CR 17-30528 A from the Czech Health Research Council, MH CZ - DRO (Institute of Endocrinology - EÚ, 00023761) and by the MEYS CR (OP RDE, Excellent research - ENDO.CZ).

Keywords: bisphenol, endocrine disruptor, paraben, pregnancy, steroid

Procedia PDF Downloads 173
191 SIPTOX: Spider Toxin Database Information Repository System of Protein Toxins from Spiders by Using MySQL Method

Authors: Iftikhar Tayubi, Tabrej Khan, Rayan Alsulmi, Abdulrahman Labban

Abstract:

Spider produces a special kind of substance. This special kind of substance is called a toxin. The toxin is composed of many types of protein, which differs from species to species. Spider toxin consists of several proteins and non-proteins that include various categories of toxins like myotoxin, neurotoxin, cardiotoxin, dendrotoxin, haemorrhagins, and fibrinolytic enzyme. Protein Sequence information with references of toxins was derived from literature and public databases. From the previous findings, the Spider toxin would be the best choice to treat different types of tumors and cancer. There are many therapeutic regimes, which causes more side effects than treatment hence a different approach must be adopted for the treatment of cancer. The combinations of drugs are being encouraged, and dramatic outcomes are reported. Spider toxin is one of the natural cytotoxic compounds. Hence, it is being used to treat different types of tumors; especially its positive effect on breast cancer is being reported during the last few decades. The efficacy of this database is that it can provide a user-friendly interface for users to retrieve the information about Spiders, toxin and toxin protein of different Spiders species. SPIDTOXD provides a single source information about spider toxins, which will be useful for pharmacologists, neuroscientists, toxicologists, medicinal chemists. The well-ordered and accessible web interface allows users to explore the detail information of Spider and toxin proteins. It includes common name, scientific name, entry id, entry name, protein name and length of the protein sequence. The utility of this database is that it can provide a user-friendly interface for users to retrieve the information about Spider, toxin and toxin protein of different Spider species. The database interfaces will satisfy the demands of the scientific community by providing in-depth knowledge about Spider and its toxin. We have adopted the methodology by using A MySQL and PHP and for designing, we used the Smart Draw. The users can thus navigate from one section to another, depending on the field of interest of the user. This database contains a wealth of information on species, toxins, and clinical data, etc. This database will be useful for the scientific community, basic researchers and those interested in potential pharmaceutical Industry.

Keywords: siptoxd, php, mysql, toxin

Procedia PDF Downloads 172
190 Malignant Ovarian Cancer Ascites Confers Platinum Chemoresistance to Ovarian Cancer Cells: A Combination Treatment with Crizotinib and 2 Hydroxyestradiol Restore Platinum Sensitivity

Authors: Yifat Koren Carmi, Abed Agbarya, Hazem Khamaisi, Raymond Farah, Yelena Shechtman, Roman Korobochka, Jacob Gopas, Jamal Mahajna

Abstract:

Ovarian cancer (OC), the second most common form of gynecological malignancy, has a poor prognosis and is frequently identified in its late stages. The recommended treatment for OC typically includes a platinum-based chemotherapy, like carboplatin. Nonetheless, OC treatment has proven challenging due to toxicity and development of acquired resistance to therapy. Chemoresistance is a significant obstacle to a long-lasting response in OC patients, believed to arise from alterations within the cancer cells as well as within the tumor microenvironments (TME). Malignant ascites is a presenting feature in more than one-third of OC patients. It serves as a reservoir for a complex mixture of soluble factors, metabolites, and cellular components, providing a pro-inflammatory and tumor-promoting microenvironment for the OC cells. Malignant ascites is also associated with metastasis and chemoresistance. In an attempt to elucidate the role of TME in chemoresistance of OC, we monitored the ability of soluble factors derived from ascites fluids to affect platinum sensitivity of OC cells. This research, compared ascites fluids from non-malignant cirrhotic patients to those from OC patients in terms of their ability to alter the platinum sensitivity of OC cells. Our findings indicated that exposure to OC ascites induces platinum chemoresistance on OC cells in 11 out of 13 cases (85%). In contrast, 75% of cirrhosis ascites (3 out of 4) failed to confer platinum chemoresistance to OC cells. Cytokine array analysis revealed that IL-6, and to a lesser extent HGF were enriched in OC ascites, whereas IL-22 was enriched in cirrhosis ascites. Pharmaceutical inhibitors that target the IL-6/JAK signaling pathway were mildly effective in overcoming the platinum chemoresistance induced by malignant ascites. In contrast, Crizotinib an HGF/c-MET inhibitor, and 2-hydroxyestradiol (2HE2) were effective in restoring platinum chemoresistance to OC. Our findings demonstrate the importance of OC ascites in supporting platinum chemoresistance as well as the potential of a combination therapy with Crizotinib and the estradiol metabolite 2HE2 to regain OC cells chemosensitivity.

Keywords: ovarian cancer, platinum chemoresistance, malignant ascites, tumor microenvironment, IL-6, 2-hydroxyestradiol, HGF, crizotinib

Procedia PDF Downloads 56
189 Possibility of Membrane Filtration to Treatment of Effluent from Digestate

Authors: Marcin Debowski, Marcin Zielinski, Magdalena Zielinska, Paulina Rusanowska

Abstract:

The problem with digestate management is one of the most important factors influencing on the development and operation of biogas plant. Turbidity and bacterial contamination negatively affect the growth of algae, which can limit the use of the effluent in the production of algae biomass on a large scale. These problems can be overcome by cultivating of algae species resistant to environmental factors, such as Chlorella sp., Scenedesmus sp., or reducing load of organic compounds to prevent bacterial contamination. The effluent requires dilution and/or purification. One of the methods of effluent treatment is the use of a membrane technology such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF) and reverse osmosis (RO), depending on the membrane pore size and the cut off point. Membranes are a physical barrier to solids and particles larger than the size of the pores. MF membranes have the largest pores and are used to remove turbidity, suspensions, bacteria and some viruses. UF membranes remove also color, odor and organic compounds with high molecular weight. In treatment of wastewater or other waste streams, MF and UF can provide a sufficient degree of purification. NF membranes are used to remove natural organic matter from waters, water disinfection products and sulfates. RO membranes are applied to remove monovalent ions such as Na⁺ or K⁺. The effluent was used in UF for medium to cultivation of two microalgae: Chlorella sp. and Phaeodactylum tricornutum. Growth rates of Chlorella sp. and P. tricornutum were similar: 0.216 d⁻¹ and 0.200 d⁻¹ (Chlorella sp.); 0.128 d⁻¹ and 0.126 d⁻¹ (P. tricornutum), on synthetic medium and permeate from UF, respectively. The final biomass composition was also similar, regardless of the medium. Removal of nitrogen was 92% and 71% by Chlorella sp. and P. tricornutum, respectively. The fermentation effluents after UF and dilution were also used for cultivation of algae Scenedesmus sp. that is resistant to environmental conditions. The authors recommended the development of biorafinery based on the production of algae for the biogas production. There are examples of using a multi-stage membrane system to purify the liquid fraction from digestate. After the initial UF, RO is used to remove ammonium nitrogen and COD. To obtain a permeate with a concentration of ammonium nitrogen allowing to discharge it into the environment, it was necessary to apply three-stage RO. The composition of the permeate after two-stage RO was: COD 50–60 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 300–320 mg/dm³, total nitrogen 320–340 mg/dm³, total phosphorus 53 mg/dm³. However compostion of permeate after three-stage RO was: COD < 5 mg/dm³, dry solids 0 mg/dm³, ammonium nitrogen 0 mg/dm³, total nitrogen 3.5 mg/dm³, total phosphorus < 0,05 mg/dm³. Last stage of RO might be replaced by ion exchange process. The negative aspect of membrane filtration systems is the fact that the permeate is about 50% of the introduced volume, the remainder is the retentate. The management of a retentate might involve recirculation to a biogas plant.

Keywords: digestate, membrane filtration, microalgae cultivation, Chlorella sp.

Procedia PDF Downloads 348
188 Ultrasound/Microwave Assisted Extraction Recovery and Identification of Bioactive Compounds (Polyphenols) from Tarbush (Fluorensia cernua)

Authors: Marisol Rodriguez-Duarte, Aide Saenz-Galindo, Carolina Flores-Gallegos, Raul Rodriguez-Herrera, Juan Ascacio-Valdes

Abstract:

The plant known as tarbush (Fluorensia cernua) is a plant originating in northern Mexico, mainly in the states of Coahuila, Durango, San Luis Potosí, Zacatecas and Chihuahua. It is a branched shrub that belongs to the family Asteraceae, has oval leaves of 6 to 11 cm in length and also has small yellow flowers. In Mexico, the tarbush is a very appreciated plant because it has been used as a traditional medicinal agent, for the treatment of gastrointestinal diseases, skin infections and as a healing agent. This plant has been used mainly as an infusion. Due to its traditional use, the content and type of phytochemicals present in the plant are currently unknown and are responsible for its biological properties, so its recovery and identification is very important because the compounds that it contains have relevant applications in the field of food, pharmaceuticals and medicine. The objective of this work was to determine the best extraction condition of phytochemical compounds (mainly polyphenolic compounds) from the leaf using ultrasound/microwave assisted extraction (U/M-AE). To reach the objective, U/M-AE extractions were performed evaluating three mass/volume ratios (1:8, 1:12, 1:16), three ethanol/water solvent concentrations (0%, 30% and 70%), ultrasound extraction time of 20 min and 5 min at 70°C of microwave treatment. All experiments were performed using a fractional factorial experimental design. Once the best extraction condition was defined, the compounds were recovered by liquid column chromatography using Amberlite XAD-16, the polyphenolic fraction was recovered with ethanol and then evaporated. The recovered polyphenolic compounds were quantified by spectrophotometric techniques and identified by HPLC/ESI/MS. The results obtained showed that the best extraction condition of the compounds was using a mass/volume ratio of 1:8 and solvent ethanol/water concentration of 70%. The concentration obtained from polyphenolic compounds using this condition was 22.74 mg/g and finally, 16 compounds of polyphenolic origin were identified. The results obtained in this work allow us to postulate the Mexican plant known as tarbush as a relevant source of bioactive polyphenolic compounds of food, pharmaceutical and medicinal interest.

Keywords: U/M-AE, tarbush, polyphenols, identification

Procedia PDF Downloads 158
187 Phenolic Rich Dry Extracts and Their Antioxidant Activity

Authors: R. Raudonis, L. Raudonė, V. Janulis, P. Viškelis

Abstract:

Pharmacological and clinical studies demonstrated that phenolic compounds particularly flavonoids and phenolic acids are responsible for a wide spectrum of therapeutic activities. Flavonoids and phenolic acids are regarded as natural antioxidants that play an important role in protecting cells from oxidative stress. Qualitatively prepared dry extracts possess high stability and concentration of bio active compounds, facility of standardization and quality control. The aim of this work was to determine the phenolic and antioxidant profiles of Hippophaë rhamnoides L., Betula pendula Roth., Tilia cordata Mill., Sorbus aucuparia L. leaves dry extracts and to identify markers of antioxidant activity. Extracts were analyzed using high-performance liquid chromatography (HPLC) with FRAP post-column assay. Dry extracts are versatile forms possessing wide area of applications, final product ensure consistent phytochemical and functional properties. Seven flavonoids: rutin, hyperoside, isorhamnetin 3-O-rutinoside, isorhamnetin 3-O-glucoside, quercetin, kaempferol, isorhamnetin were identified in dry extract of Hippophaë rhamnoides L. leaves. Predominant compounds were flavonol glycosides which were chosen as markers for quantitative control of dry extracts. Chlorogenic acid, hyperoside, rutin, quercetin, isorhamnetin were prevailing compounds in Betula pendula Roth. leaves extract, whereas strongest ferric reducing activity was determined for chlorogenic acid and hyperoside. Notable amounts of protocatechuic acid and flavonol glycosides, rutin, hyperoside, quercitrin, isoquercitrin were identified in the chromatographic profile of Tilia cordata Mill. Neochlorogenic and chlorogenic acids were significantly dominant compounds in antioxidant profile in dry extract of Sorbus aucuparia L. leaves. Predominant compounds of antioxidant profiles could be proposed as functional markers of quality of phenolic rich raw materials. Dry extracts could be further used for manufacturing of pharmaceutical and nutraceuticals.

Keywords: dry extract, FRAP, antioxidant activity, phenolic

Procedia PDF Downloads 496
186 Study on the Rapid Start-up and Functional Microorganisms of the Coupled Process of Short-range Nitrification and Anammox in Landfill Leachate Treatment

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and poses a threat to water quality. Nitrogen pollution control has become a global concern. Currently, the problem of water pollution in China is still not optimistic. As a typical high ammonia nitrogen organic wastewater, landfill leachate is more difficult to treat than domestic sewage because of its complex water quality, high toxicity, and high concentration.Many studies have shown that the autotrophic anammox bacteria in nature can combine nitrous and ammonia nitrogen without carbon source through functional genes to achieve total nitrogen removal, which is very suitable for the removal of nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The process composed of short-range nitrification and denitrification coupled an ammo ensures the removal of total nitrogen and improves the removal efficiency, meeting the needs of the society for an ecologically friendly and cost-effective nutrient removal treatment technology. Continuous flow process for treating late leachate [an up-flow anaerobic sludge blanket reactor (UASB), anoxic/oxic (A/O)–anaerobic ammonia oxidation reactor (ANAOR or anammox reactor)] has been developed to achieve autotrophic deep nitrogen removal. In this process, the optimal process parameters such as hydraulic retention time and nitrification flow rate have been obtained, and have been applied to the rapid start-up and stable operation of the process system and high removal efficiency. Besides, finding the characteristics of microbial community during the start-up of anammox process system and analyzing its microbial ecological mechanism provide a basis for the enrichment of anammox microbial community under high environmental stress. One research developed partial nitrification-Anammox (PN/A) using an internal circulation (IC) system and a biological aerated filter (BAF) biofilm reactor (IBBR), where the amount of water treated is closer to that of landfill leachate. However, new high-throughput sequencing technology is still required to be utilized to analyze the changes of microbial diversity of this system, related functional genera and functional genes under optimal conditions, providing theoretical and further practical basis for the engineering application of novel anammox system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, partial nitrification

Procedia PDF Downloads 45
185 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment

Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos

Abstract:

Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.

Keywords: acid pretreatment, alginate, brown seaweed, microwave-assisted extraction, response surface methodology

Procedia PDF Downloads 366
184 Drug and Poison Information Centers: An Emergent Need of Health Care Professionals in Pakistan

Authors: Asif Khaliq, Sayeeda A. Sayed

Abstract:

The drug information centers provide drug related information to the requesters that include physicians, pharmacist, nurses and other allied health care professionals. The International Pharmacist Federation (FIP) describes basic functions of a drug and poison information centers as drug evaluation, therapeutic counseling, pharmaceutical advice, research, pharmaco-vigilence and toxicology. Continuous advancement in the field of medicine has expanded the medical literature, which has increased demand of a drug and poison information center for the guidance, support and facilitation of physicians. The objective of the study is to determine the need of drug and poison information centers in public and private hospitals of Karachi, Pakistan. A cross sectional study was conducted during July 2013 to April 2014 using a self-administered, multi-itemed questionnaire. Non Probability Convenient sampling was used to select the study participants. A total of 307 physicians from public and private hospitals of Karachi participated in the study. The need for 24/7 Drug and poison information center was highlighted by 92 % of physicians and 67% physicians suggested opening a drug information center at the hospital. It was reported that 70% physicians take at least 15 minutes for searching the information about the drug while managing a case. Regarding the poisoning case management, 52% physicians complaint about the unavailability of medicines in hospitals; and mentioned the importance of medicines for safe and timely management of patients. Although 73% physicians attended continued medical education (CME) sessions, 92 % physicians insisted on the need of 24/7 Drug and poison information center. The scarcity of organized channel for obtaining the information about drug and poisons is one of the most crucial problems for healthcare workers in Pakistan. The drug and poison information center is an advisory body that assists health care professional and patients in provision of appropriate drug and hazardous substance information. Drug and poison information center is one of the integral needs for running an effective health care system. Provision of a 24 /7 drug information centers with specialized staff offer multiple benefits to the hospitals while reducing treatment delays, addressing awareness gaps of all stakeholders and ensuring provision of quality health care.

Keywords: drug and poison information centers, Pakistan, physicians, public and private hospitals

Procedia PDF Downloads 323
183 Nanostructured Pt/MnO2 Catalysts and Their Performance for Oxygen Reduction Reaction in Air Cathode Microbial Fuel Cell

Authors: Maksudur Rahman Khan, Kar Min Chan, Huei Ruey Ong, Chin Kui Cheng, Wasikur Rahman

Abstract:

Microbial fuel cells (MFCs) represent a promising technology for simultaneous bioelectricity generation and wastewater treatment. Catalysts are significant portions of the cost of microbial fuel cell cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. The sluggish oxygen reduction reaction (ORR) rate at air cathode necessitates efficient electrocatalyst such as carbon supported platinum catalyst (Pt/C) which is very costly. Manganese oxide (MnO2) was a representative metal oxide which has been studied as a promising alternative electrocatalyst for ORR and has been tested in air-cathode MFCs. However, the single MnO2 has poor electric conductivity and low stability. In the present work, the MnO2 catalyst has been modified by doping Pt nanoparticle. The goal of the work was to improve the performance of the MFC with minimum Pt loading. MnO2 and Pt nanoparticles were prepared by hydrothermal and sol-gel methods, respectively. Wet impregnation method was used to synthesize Pt/MnO2 catalyst. The catalysts were further used as cathode catalysts in air-cathode cubic MFCs, in which anaerobic sludge was inoculated as biocatalysts and palm oil mill effluent (POME) was used as the substrate in the anode chamber. The as-prepared Pt/MnO2 was characterized comprehensively through field emission scanning electron microscope (FESEM), X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) where its surface morphology, crystallinity, oxidation state and electrochemical activity were examined, respectively. XPS revealed Mn (IV) oxidation state and Pt (0) nanoparticle metal, indicating the presence of MnO2 and Pt. Morphology of Pt/MnO2 observed from FESEM shows that the doping of Pt did not cause change in needle-like shape of MnO2 which provides large contacting surface area. The electrochemical active area of the Pt/MnO2 catalysts has been increased from 276 to 617 m2/g with the increase in Pt loading from 0.2 to 0.8 wt%. The CV results in O2 saturated neutral Na2SO4 solution showed that MnO2 and Pt/MnO2 catalysts could catalyze ORR with different catalytic activities. MFC with Pt/MnO2 (0.4 wt% Pt) as air cathode catalyst generates a maximum power density of 165 mW/m3, which is higher than that of MFC with MnO2 catalyst (95 mW/m3). The open circuit voltage (OCV) of the MFC operated with MnO2 cathode gradually decreased during 14 days of operation, whereas the MFC with Pt/MnO2 cathode remained almost constant throughout the operation suggesting the higher stability of the Pt/MnO2 catalyst. Therefore, Pt/MnO2 with 0.4 wt% Pt successfully demonstrated as an efficient and low cost electrocatalyst for ORR in air cathode MFC with higher electrochemical activity, stability and hence enhanced performance.

Keywords: microbial fuel cell, oxygen reduction reaction, Pt/MnO2, palm oil mill effluent, polarization curve

Procedia PDF Downloads 548
182 Investigating the Effects of Density and Different Nitrogen Nutritional Systems on Yield, Yield Components and Essential Oil of Fennel (Foeniculum Vulgare Mill.)

Authors: Mohammadreza Delfieh, Seyed Ali Mohammad Modarres Sanavy, Rouzbeh Farhoudi

Abstract:

Fennel is of most important medicinal plants which is widely used in food and pharmaceutical industries. In order to investigate the effect of different nitrogen nutritional systems including chemical, organic and biologic ones at different plant densities on yield, yield components and seed essential oil content and yield of this valuable medicinal plant, a field experiment was carried out in 2013-2014 agricultural season at Islamic Azad University of Shoushtar agricultural college in split plot design with 18 treatments and based on completely randomized blocks design. Different nitrogen system treatments consisting of: 1. N1 or control (Uniformly spreading urea fertilizer in the plot, 50% at planting time and 50% at stem elongation), 2. N2 (Uniformly spreading 50% of urea fertilizer in the plot at planting time and spraying the other 50% of urea fertilizer at stem elongation on fennel foliage), 3. N3 or cow manure, 4. N4 or biofertilizer (Inoculation of fennel seeds with Azotobacter and Azospirillum), 5. N5 or Integrated-1 (Cow manure + uniformly spreading urea fertilizer in the plot at stem elongation), 6. N6 or Integrated-2 (Cow manure + Inoculation of fennel seeds with Azotobacter and Azospirillum) were applied to the main plots. Three fennel densities consisting of: 1. FD1 (60 plant/m2), 2. FD2 (80 plant/m2) and 3. FD3 (100 plant/m2) were applied to subplots. Results showed that all of the traits were significantly affected by applied treatments (P 0.01). The interaction between treatments also were significant at 5 percent level for shoot dry weight and at 1 percent level for other traits. Based on the results, using the Integrated-1 treatment at 100 plant per m2 produced 94.575 g/m2 seed yield containing 3.375 percent of essential oil. Utilization of such combination not only could lead to a desirable fennel quantity and quality, but also is more consistent with environment.

Keywords: fennel (foeniculum vulgare mill.), nutritional system, nitrogen, biofertilizer, organic fertilizer, chemical fertilizer, density

Procedia PDF Downloads 452
181 Assessing Sydney Tar Ponds Remediation and Natural Sediment Recovery in Nova Scotia, Canada

Authors: Tony R. Walker, N. Devin MacAskill, Andrew Thalhiemer

Abstract:

Sydney Harbour, Nova Scotia has long been subject to effluent and atmospheric inputs of metals, polycyclic aromatic hydrocarbons (PAHs), and polychlorinated biphenyls (PCBs) from a large coking operation and steel plant that operated in Sydney for nearly a century until closure in 1988. Contaminated effluents from the industrial site resulted in the creation of the Sydney Tar Ponds, one of Canada’s largest contaminated sites. Since its closure, there have been several attempts to remediate this former industrial site and finally, in 2004, the governments of Canada and Nova Scotia committed to remediate the site to reduce potential ecological and human health risks to the environment. The Sydney Tar Ponds and Coke Ovens cleanup project has become the most prominent remediation project in Canada today. As an integral part of remediation of the site (i.e., which consisted of solidification/stabilization and associated capping of the Tar Ponds), an extensive multiple media environmental effects program was implemented to assess what effects remediation had on the surrounding environment, and, in particular, harbour sediments. Additionally, longer-term natural sediment recovery rates of select contaminants predicted for the harbour sediments were compared to current conditions. During remediation, potential contributions to sediment quality, in addition to remedial efforts, were evaluated which included a significant harbour dredging project, propeller wash from harbour traffic, storm events, adjacent loading/unloading of coal and municipal wastewater treatment discharges. Two sediment sampling methodologies, sediment grab and gravity corer, were also compared to evaluate the detection of subtle changes in sediment quality. Results indicated that overall spatial distribution pattern of historical contaminants remains unchanged, although at much lower concentrations than previously reported, due to natural recovery. Measurements of sediment indicator parameter concentrations confirmed that natural recovery rates of Sydney Harbour sediments were in broad agreement with predicted concentrations, in spite of ongoing remediation activities. Overall, most measured parameters in sediments showed little temporal variability even when using different sampling methodologies, during three years of remediation compared to baseline, except for the detection of significant increases in total PAH concentrations noted during one year of remediation monitoring. The data confirmed the effectiveness of mitigation measures implemented during construction relative to harbour sediment quality, despite other anthropogenic activities and the dynamic nature of the harbour.

Keywords: contaminated sediment, monitoring, recovery, remediation

Procedia PDF Downloads 234
180 Managed Aquifer Recharge (MAR) for the Management of Stormwater on the Cape Flats, Cape Town

Authors: Benjamin Mauck, Kevin Winter

Abstract:

The city of Cape Town in South Africa, has shown consistent economic and population growth in the last few decades and that growth is expected to continue to increase into the future. These projected economic and population growth rates are set to place additional pressure on the city’s already strained water supply system. Thus, given Cape Town’s water scarcity, increasing water demands and stressed water supply system, coupled with global awareness around the issues of sustainable development, environmental protection and climate change, alternative water management strategies are required to ensure water is sustainably managed. Water Sensitive Urban Design (WSUD) is an approach to sustainable urban water management that attempts to assign a resource value to all forms of water in the urban context, viz. stormwater, wastewater, potable water and groundwater. WSUD employs a wide range of strategies to improve the sustainable management of urban water such as the water reuse, developing alternative available supply sources, sustainable stormwater management and enhancing the aesthetic and recreational value of urban water. Managed Aquifer Recharge (MAR) is one WSUD strategy which has proven to be a successful reuse strategy in a number of places around the world. MAR is the process where an aquifer is intentionally or artificially recharged, which provides a valuable means of water storage while enhancing the aquifers supply potential. This paper investigates the feasibility of implementing MAR in the sandy, unconfined Cape Flats Aquifer (CFA) in Cape Town. The main objective of the study is to assess if MAR is a viable strategy for stormwater management on the Cape Flats, aiding the prevention or mitigation of the seasonal flooding that occurs on the Cape Flats, while also improving the supply potential of the aquifer. This involves the infiltration of stormwater into the CFA during the wet winter months and in turn, abstracting from the CFA during the dry summer months for fit-for-purpose uses in order to optimise the recharge and storage capacity of the CFA. The fully-integrated MIKE SHE model is used in this study to simulate both surface water and groundwater hydrology. This modelling approach enables the testing of various potential recharge and abstraction scenarios required for implementation of MAR on the Cape Flats. Further MIKE SHE scenario analysis under projected future climate scenarios provides insight into the performance of MAR as a stormwater management strategy under climate change conditions. The scenario analysis using an integrated model such as MIKE SHE is a valuable tool for evaluating the feasibility of the MAR as a stormwater management strategy and its potential to contribute towards improving Cape Town’s water security into the future.

Keywords: managed aquifer recharge, stormwater management, cape flats aquifer, MIKE SHE

Procedia PDF Downloads 242
179 Extracellular Hydrolase-Producing Bacteria Isolated from Chilca Salterns in Peru

Authors: Carol N. Flores-Fernández, Guadalupe Espilco, Cynthia Esquerre, Amparo I. Zavaleta

Abstract:

Saline environments represent a valuable source of enzymes with novel properties and particular features for application in food, pharmaceutical and chemical industry. This study focuses on the isolation and screening of hydrolase-producing bacteria from Chilca salterns and the evaluation of their biotechnological potential. Soil samples were collected from Chilca salterns in Peru. For the isolation, medium containing 0.2 % of yeast extract, 5 % of NaCl and 10 % of the soil sample was used. After 72 h of incubation at 37 °C, serial dilutions were made up to 10−12 dilutions, spread on agar plates with 0.5 % of yeast extract and 5 % of NaCl, and incubated at 37 °C for 48 h. Screening of hydrolase-producing bacteria was carried out for cellulases, amylases, lipases, DNase, and proteases on specific media. Moreover, protease-producing bacteria were tested using protein extracted from the following legumes as substrate: Glycine max, Lupinus mutabilis, Pisum sativum, Erythrina edulis, Cicer arietinum, Phaseolus vulgaris and Vicia faba. A total of 16 strains were isolated from soil samples. On the screening media; 75, 44, 81 and 50 % were cellulase, amylase, DNase and protease producers, respectively. Also, 19 % of the isolates produced all the hydrolytic enzymes above mentioned. Lipase producers were not found. The 37 % and 12 % of the strains grew at 20 % and 30 % of salt concentration, respectively. In addition, 75 % of the strains grew at pH range between 5 and 10. From the total of protease-producing bacteria, 100 % hydrolyzed Glycine max, Lupinus mutabilis, and Pisum sativum protein, while 87 % hydrolyzed Erythrina edulis and Cicer arietinum protein. Finally, 75 % and 50 % of the strains hydrolyzed Phaseolus vulgaris and Vicia faba protein, respectively. Hydrolase-producing bacteria isolated from Chilca salterns in Peru grew at high salt concentrations and wide range of pH. In addition, protease-producing bacteria hydrolyzed protein from different sources such as leguminous. These enzymes have great biotechnological potential and could be used for different industrial processes and applications.

Keywords: bacteria, extracellular, hydrolases, Peru, salterns

Procedia PDF Downloads 198
178 Laccase Catalysed Conjugation of Tea Polyphenols for Enhanced Antioxidant Properties

Authors: Parikshit Gogo, N. N. Dutta

Abstract:

The oxidative enzymes specially laccase (benzenediol: oxygen oxidoreductase, E.C.1.10.3.2) from bacteria, fungi and plants have been playing an important role in green technologies due to their specific advantageous properties. Laccase from different sources and in different forms was used as a biocatalyst in many oxidation and conjugation reactions starting from phenol to hydrocarbons. Tea polyphenols and its derivatives attract the scientific community because of their potential use as antioxidants in food, pharmaceutical and cosmetic industries. Conjugate of polyphenols emerged as a novel materials which shows better stability and antioxidant properties in applied fields. The conjugation reaction of catechin with poly (allylamine) has been studied using free, immobilized and cross-linked enzyme crystals (CLEC) of laccase from Trametes versicolor with particular emphasis on the effect of pertinent variables and kinetic aspects of the reaction. The stability and antioxidant property of the conjugated product was improved as compared to the unconjugated tea polyphenols. The reaction was studied in 11 different solvents in order to deduce the solvent effect through an attempt to correlate the initial reaction rate with solvent properties such as hydrophobicity (logP), water solubility (logSw), electron pair acceptance (ETN) and donation abilities (DNN), polarisibility and dielectric constant which exhibit reasonable correlations. The study revealed, in general that polar solvents favour the initial reaction rate. The kinetics of the conjugation reaction conformed to the so-called Ping-Pong-Bi-Bi mechanism with catechin inhibition. The stability as well as activity of the CLEC was better than the free enzymes and immobilized laccase for practical application. In case of immobilized laccase system marginal diffusional limitation could be inferred from the experimental data. The kinetic parameters estimated by non-linear regression analysis were found to be KmPAA(mM) = 0.75, 1.8967 and Kmcat (mM) = 11.769, 15.1816 for free and immobilized laccase respectively. An attempt has been made to assess the activity of the laccase for the conjugation reaction in relation to other reactions such as dimerisation of ferulic acids and develop a protocol to enhance polyphenol antioxidant activity.

Keywords: laccase, catechin, conjugation reaction, antioxidant properties

Procedia PDF Downloads 263
177 Biobased Sustainable Films from the Algerian Opuntia Ficus-Indica Cladodes Powder: Effect of Plasticizer Content

Authors: Nadia Chougui, Nawal Makhloufi, Farouk Rezgui, Elias Benramdane, Carmen S. R. Freire, Carla Vilela, Armando J. D. Silvestre

Abstract:

Native to Mexico, Opuntia ficus-indica was introduced in southern Spain, and thereafter, it was spread throughout the Mediterranean Basin by the Spanish conquerors in the 16th and 17th centuries. O. ficus-indica is a tropical and subtropical plant able to grow in arid and semi-arid regions, such as the Mediterranean and Central America regions. The culture of Opuntia covers about 200,000 ha in North Africa. This tree is used against soil erosion and desertification for fruit production and is encouraged to promote the livestock sector. It has recently received ever-increasing attention from researchers worldwide for the multivalent pharmaceutical and cosmetical potential of its different compartments (fruits, seeds, cladodes). The present study investigated the elaboration by casting method and characterization of new biodegradable films composed of cladodes powder (CP) of the plant raw material mentioned above, and a marine seaweed derivative, namely agar (A). The effect of glycerol concentration on the properties of the films was evaluated at four different contents (30, 40, 50 and 60 wt.%). The films present UV-blocking properties, thermal stability as well as moderate mechanical performance and water vapor transmission rate (WVTR). The results point to an increase in thickness, elongation at break, moisture content, water solubility, and WVTR with increasing glycerol content. On the contrary, Young’s modulus, tensile strength and contact angle decreased as glycerol concentration increased. The best combination is obtained for the film with 30% glycerol, based on an intermediate compromise between physical, mechanical, thermal and barrier properties. All these outcomes express the potentiality of the powder obtained from grinding the OFI cladodes as raw material to produce low-cost films for the development of sustainable packaging materials.

Keywords: Opuntia ficus-indica cladodes powder, agar, biobased films, effect of plasticizer, sustainable packaging

Procedia PDF Downloads 65
176 Oligoalkylamine Modified Poly(Amidoamine) Generation 4.5 Dendrimer for the Delivery of Small Interfering RNA

Authors: Endris Yibru Hanurry, Wei-Hsin Hsu, Hsieh-Chih Tsai

Abstract:

In recent years, the discovery of small interfering RNAs (siRNAs) has got great attention for the treatment of cancer and other diseases. However, the therapeutic efficacy of siRNAs has been faced with many drawbacks because of short half-life in blood circulation, poor membrane penetration, weak endosomal escape and inadequate release into the cytosol. To overcome these drawbacks, we designed a non-viral vector by conjugating polyamidoamine generation 4.5 dendrimer (PDG4.5) with diethylenetriamine (DETA)- and tetraethylenepentamine (TEPA) followed by binding with siRNA to form polyplexes through electrostatic interaction. The result of 1H nuclear magnetic resonance (NMR), 13C NMR, correlation spectroscopy, heteronuclear single–quantum correlation spectroscopy, and Fourier transform infrared spectroscopy confirmed the successful conjugation of DETA and TEPA with PDG4.5. Then, the size, surface charge, morphology, binding ability, stability, release assay, toxicity and cellular internalization were analyzed to explore the physicochemical and biological properties of PDG4.5-DETA and PDG4.5-TEPA polyplexes at specific N/P ratios. The polyplexes (N/P = 8) exhibited spherical nanosized (125 and 85 nm) particles with optimum surface charge (13 and 26 mV), showed strong siRNA binding ability, protected the siRNA against enzyme digestion and accepted biocompatibility to the HeLa cells. Qualitatively, the fluorescence microscopy image revealed the delocalization (Manders’ coefficient 0.63 and 0.53 for PDG4.5-DETA and PDG4.5-TEPA, respectively) of polyplexes and the translocation of the siRNA throughout the cytosol to show a decent cellular internalization and intracellular biodistribution of polyplexes in HeLa cells. Quantitatively, the flow cytometry result indicated that a significant (P < 0.05) amount of siRNA was internalized by cells treated with PDG4.5-DETA (68.5%) and PDG4.5-TEPA (73%) polyplexes. Generally, PDG4.5-DETA and PDG4.5-TEPA were ideal nanocarriers of siRNA in vitro and might be used as promising candidates for in vivo study and future pharmaceutical applications.

Keywords: non-viral carrier, oligoalkylamine, poly(amidoamine) dendrimer, polyplexes, siRNA

Procedia PDF Downloads 124
175 Developing a Roadmap by Integrating of Environmental Indicators with the Nitrogen Footprint in an Agriculture Region, Hualien, Taiwan

Authors: Ming-Chien Su, Yi-Zih Chen, Nien-Hsin Kao, Hideaki Shibata

Abstract:

The major component of the atmosphere is nitrogen, yet atmospheric nitrogen has limited availability for biological use. Human activities have produced different types of nitrogen related compounds such as nitrogen oxides from combustion, nitrogen fertilizers from farming, and the nitrogen compounds from waste and wastewater, all of which have impacted the environment. Many studies have indicated the N-footprint is dominated by food, followed by housing, transportation, and goods and services sectors. To solve the impact issues from agricultural land, nitrogen cycle research is one of the key solutions. The study site is located in Hualien County, Taiwan, a major rice and food production area of Taiwan. Importantly, environmentally friendly farming has been promoted for years, and an environmental indicator system has been established by previous authors based on the concept of resilience capacity index (RCI) and environmental performance index (EPI). Nitrogen management is required for food production, as excess N causes environmental pollution. Therefore it is very important to develop a roadmap of the nitrogen footprint, and to integrate it with environmental indicators. The key focus of the study thus addresses (1) understanding the environmental impact caused by the nitrogen cycle of food products and (2) uncovering the trend of the N-footprint of agricultural products in Hualien, Taiwan. The N-footprint model was applied, which included both crops and energy consumption in the area. All data were adapted from government statistics databases and crosschecked for consistency before modeling. The actions involved with agricultural production were evaluated and analyzed for nitrogen loss to the environment, as well as measuring the impacts to humans and the environment. The results showed that rice makes up the largest share of agricultural production by weight, at 80%. The dominant meat production is pork (52%) and poultry (40%); fish and seafood were at similar levels to pork production. The average per capita food consumption in Taiwan is 2643.38 kcal capita−1 d−1, primarily from rice (430.58 kcal), meats (184.93 kcal) and wheat (ca. 356.44 kcal). The average protein uptake is 87.34 g capita−1 d−1, and 51% is mainly from meat, milk, and eggs. The preliminary results showed that the nitrogen footprint of food production is 34 kg N per capita per year, congruent with the results of Shibata et al. (2014) for Japan. These results provide a better understanding of the nitrogen demand and loss in the environment, and the roadmap can furthermore support the establishment of nitrogen policy and strategy. Additionally, the results serve to develop a roadmap of the nitrogen cycle of an environmentally friendly farming area, thus illuminating the nitrogen demand and loss of such areas.

Keywords: agriculture productions, energy consumption, environmental indicator, nitrogen footprint

Procedia PDF Downloads 297
174 Formulation of Suppositories Using Allanblackia Floribunda Butter as a Base

Authors: Mary Konadu

Abstract:

The rectal route for drug administration is becoming attractive to drug formulators because it can avoid hepatic first-pass effects, decrease gastrointestinal side effects and avoid undesirable effects of meals on drug absorption. Suppositories have been recognized as an alternative to the oral route in situations such as when the patient is comatose, unable to swallow, or when the drug produces nausea or vomiting. Effective drug delivery with appropriate pharmaceutical excipient is key in the production of clinically useful preparations. The high cost of available excipients coupled with other disadvantages have led to the exploration of potential excipients from natural sources. Allanblackia floribunda butter, a naturally occurring lipid, is used for medicinal, culinary, and cosmetic purposes. Different extraction methods (solvent (hexane) extraction, traditional/hot water extraction, and cold/screw press extraction) were employed to extract the oil. The different extracts of A. floribunda oil were analyzed for their physicochemical properties and mineral content. The oil was used as a base to formulate Paracetamol and Diclofenac suppositories. Quality control test were carried out on the formulated suppositories. The %age oil yield for hexane extract, hot water extract, and cold press extract were 50.40 ±0.00, 37.36±0.00, and 20.48±0.00, respectively. The acid value, saponification value, iodine value and free fatty acid were 1.159 ± 0.065, 208.51 ± 8.450, 49.877 ± 0.690 and 0.583 ± 0.032 respectively for hexane extract; 3.480 ± 0.055, 204.672±2.863, 49.04 ± 0.76 and 1.747 ± 0.028 respectively for hot water/traditional extract; 4.43 ± 0.055, 192.05±1.56, 49.96 ± 0.29 and 2.23 ± 0.03 respectively for cold press extract. Calcium, sodium, magnesium, potassium, and iron were minerals found to be present in the A. floribunda butter extracts. The uniformity of weight, hardness, disintegration time, and uniformity of content were found to be within the acceptable range. The melting point ranges for all the suppositories were found to be satisfactory. The cumulative drug release (%) of the suppositories at 45 minutes was 90.19±0.00 (Hot water extract), 93.75±0.00 (Cold Pres Extract), and 98.16±0.00 (Hexane Extract) for Paracetamol suppositories. Diclofenac sodium suppositories had a cumulative %age release of 81.60±0.00 (Hot water Extract), 95.33±0.00 (Cold Press Extract), and 99.20±0.00 (Hexane Extract). The physicochemical parameters obtained from this study shows that Allanblackia floribunda seed oil is edible and can be used as a suppository base. The suppository formulation was successful, and the quality control tests conformed to Pharmacopoeia standard.

Keywords: allanblackia foribunda, paracetamol, diclofenac, suppositories

Procedia PDF Downloads 117
173 Exploring Polypnenolics Content and Antioxidant Activity of R. damascena Dry Extract by Spectroscopic and Chromatographic Techniques

Authors: Daniela Nedeltcheva-Antonova, Kamelia Getchovska, Vera Deneva, Stanislav Bozhanov, Liudmil Antonov

Abstract:

Rosa damascena Mill. (Damask rose) is one of the most important plants belonging to the Rosaceae family, with a long historical use in traditional medicine and as a valuable oil-bearing plant. Many pharmacological effects have been reported from this plant, including anti-inflammatory, hypnotic, analgesic, anticonvulsant, anti-depressant, antianxiety, antitussive, antidiabetic, relaxant effects on tracheal chains, laxative, prokinetic and hepatoprotective activities. Pharmacological studies have shown that the various health effects of R. damascena flowers can mainly be attributed to its large amount of polyphenolic components. Phenolics possess a wide range of pharmacological activities, such as antioxidants, free-radical scavengers, anticancer, anti-inflammatory, antimutagenic, and antidepressant, with flavonoids being the most numerous group of natural polyphenolic compounds. According to the technological process in the production of rose concrete (solvent extraction with non-polar solvents of fresh rose flowers), it can be assumed that the resulting plant residue would be as rich of polyphenolics, as the plant itself, and could be used for the development of novel products with promising health-promoting effect. Therefore, an optimisation of the extraction procedure of the by-product from the rose concrete production was carried out. An assay of the extracts in respect of their total polyphenols and total flavonoids content was performed. HPLC analysis of quercetin and kaempferol, the two main flavonoids found in R. damascena, was also carried out. The preliminary results have shown that the flavonoid content in the rose extracts is comparable to that of the green tea or Gingko biloba, and they could be used for the development of various products (food supplements, natural cosmetics and phyto-pharmaceutical formulation, etc.). The fact that they are derived from the by-product of industrial plant processing could add the marketing value of the final products in addition to the well-known reputation of the products obtained from Bulgarian roses (R. damascena Mill.).

Keywords: gas chromatography-mass-spectromrtry, dry extract, flavonoids, Rosa damascena Mill

Procedia PDF Downloads 149
172 Water Infrastructure Asset Management: A Comparative Analysis of Three Urban Water Utilities in South Africa

Authors: Elkington S. Mnguni

Abstract:

Water and sanitation services in South Africa are characterized by both achievements and challenges. After the end of apartheid in 1994 the newly elected government faced the challenge of eradicating backlogs with respect to access to basic services, including water and sanitation. Capital investment made in the development of new water and sanitation infrastructure to provide basic services to previously disadvantaged communities has grown, to a certain extent, at the expense of investment in the operation and maintenance of new and existing infrastructure. Challenges resulting from aging infrastructure and poor plant performance highlight the need for investing in the maintenance, rehabilitation, and replacement of existing infrastructure to optimize the return on investment. Advanced water infrastructure asset management (IAM) is key to achieving adequate levels of service, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution and associated risks. Against this backdrop, this paper presents an appraisal of water and sanitation IAM systems in South Africa’s three utilities, being metropolitan cities in the Gauteng Province. About a quarter of the national population lives in the three rapidly urbanizing cities of Johannesburg, Ekurhuleni and Tshwane, located in a semi-arid region. A literature review has been done and field visits to some of the utility facilities are being conducted. Semi-structured interviews will be conducted with the three utilities. The following critical factors are being analysed in terms of compliance with the national Water Services IAM Strategy (2011) and other applicable legislation: asset registers; capacity of assets; current and predicted demand; funding availability / budget allocations; plans: operation & maintenance, renewal & replacement, and risk management; no-drop status (non-revenue water levels); blue drop status (water quality); green drop status (effluent quality); and skills availability. Some of the key challenges identified in the literature review include: funding constraints, Skills shortage, and wastewater treatment plants operating beyond their design capacities. These challenges will be verified during field visits and research interviews. Gaps between literature and practice will be identified and relevant recommendations made if necessary. The objective of this study is to contribute to the resolution of the challenges brought about by the backlogs in the operation and maintenance of water and sanitation assets in the country in general, and in the three cities in particular, thus improving the sustainability thereof.

Keywords: asset management, backlogs, levels of service, sustainability, water and sanitation infrastructure

Procedia PDF Downloads 218