Search results for: network group behavior
16916 The Effect of Fetal Movement Counting on Maternal Antenatal Attachment
Authors: Esra Güney, Tuba Uçar
Abstract:
Aim: This study has been conducted for the purpose of determining the effects of fetal movement counting on antenatal maternal attachment. Material and Method: This research was conducted on the basis of the real test model with the pre-test /post-test control groups. The study population consists of pregnant women registered in the six different Family Health Centers located in the central Malatya districts of Yeşilyurt and Battalgazi. When power analysis is done, the sample size was calculated for each group of at least 55 pregnant women (55 tests, 55 controls). The data were collected by using Personal Information Form and MAAS (Maternal Antenatal Attachment Scale) between July 2015-June 2016. Fetal movement counting training was given to pregnant women by researchers in the experimental group after the pre-test data collection. No intervention was applied to the control group. Post-test data for both groups were collected after four weeks. Data were evaluated with percentage, chi-square arithmetic average, chi-square test and as for the dependent and independent group’s t test. Result: In the MAAS, the pre-test average of total scores in the experimental group is 70.78±6.78, control group is also 71.58±7.54 and so there was no significant difference in mean scores between the two groups (p>0.05). MAAS post-test average of total scores in the experimental group is 78.41±6.65, control group is also is 72.25±7.16 and so the mean scores between groups were found to have statistically significant difference (p<0.05). Conclusion: It was determined that fetal movement counting increases the maternal antenatal attachments.Keywords: antenatal maternal attachment, fetal movement counting, pregnancy, midwifery
Procedia PDF Downloads 27116915 Enhancement Method of Network Traffic Anomaly Detection Model Based on Adversarial Training With Category Tags
Authors: Zhang Shuqi, Liu Dan
Abstract:
For the problems in intelligent network anomaly traffic detection models, such as low detection accuracy caused by the lack of training samples, poor effect with small sample attack detection, a classification model enhancement method, F-ACGAN(Flow Auxiliary Classifier Generative Adversarial Network) which introduces generative adversarial network and adversarial training, is proposed to solve these problems. Generating adversarial data with category labels could enhance the training effect and improve classification accuracy and model robustness. FACGAN consists of three steps: feature preprocess, which includes data type conversion, dimensionality reduction and normalization, etc.; A generative adversarial network model with feature learning ability is designed, and the sample generation effect of the model is improved through adversarial iterations between generator and discriminator. The adversarial disturbance factor of the gradient direction of the classification model is added to improve the diversity and antagonism of generated data and to promote the model to learn from adversarial classification features. The experiment of constructing a classification model with the UNSW-NB15 dataset shows that with the enhancement of FACGAN on the basic model, the classification accuracy has improved by 8.09%, and the score of F1 has improved by 6.94%.Keywords: data imbalance, GAN, ACGAN, anomaly detection, adversarial training, data augmentation
Procedia PDF Downloads 10416914 Artificial Neural Network Speed Controller for Excited DC Motor
Authors: Elabed Saud
Abstract:
This paper introduces the new ability of Artificial Neural Networks (ANNs) in estimating speed and controlling the separately excited DC motor. The neural control scheme consists of two parts. One is the neural estimator which is used to estimate the motor speed. The other is the neural controller which is used to generate a control signal for a converter. These two neutrals are training by Levenberg-Marquardt back-propagation algorithm. ANNs are the standard three layers feed-forward neural network with sigmoid activation functions in the input and hidden layers and purelin in the output layer. Simulation results are presented to demonstrate the effectiveness of this neural and advantage of the control system DC motor with ANNs in comparison with the conventional scheme without ANNs.Keywords: Artificial Neural Network (ANNs), excited DC motor, convenional controller, speed Controller
Procedia PDF Downloads 72616913 Analysis of Senior Secondary II Students Performance/Approaches Exhibited in Solving Circle Geometry
Authors: Mukhtari Hussaini Muhammad, Abba Adamu
Abstract:
The paper will examine the approaches and solutions that will be offered by Senior Secondary School II Students (Demonstration Secondary School, Azare Bauchi State Northern Nigeria – Hausa/ Fulani predominant area) toward solving exercises related to the circle theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of the circumference. The Students will be divided in to 2 groups by given them numbers 1, 2; 1, 2; 1, 2, then all 1s formed group I and all 2s formed group II. Group I will be considered as control group in which the traditional method will be applied during instructions. Thus, the researcher will revise the concept of circle, state the theorem, prove the theorem and then solve examples. Group II, experimental group in which the concept of circle will be revised to the students and then the students will be asked to draw different circles, mark arcs, draw angle at the center, angle at the circumference then measure the angles constructed. The students will be asked to explain what they can infer/deduce from the angles measured and lastly, examples will be solved. During the next contact day, both groups will be subjected to solving exercises in the classroom related to the theorem. The angle that an arc of a circle subtends at the center is twice that which it subtends at any point on the remaining part of circumference. The solution to the exercises will be marked, the scores compared/analysed using relevant statistical tool. It is expected that group II will perform better because of the method/ technique followed during instructions is more learner-centered. By exploiting the talents of the individual learners through listening to the views and asking them how they arrived at a solution will really improve learning and understanding.Keywords: circle theorem, control group, experimental group, traditional method
Procedia PDF Downloads 19216912 Effect of Timing and Contributing Factors for Early Language Intervention in Toddlers with Repaired Cleft Lip and Palate
Authors: Pushpavathi M., Kavya V., Akshatha V.
Abstract:
Introduction: Cleft lip and palate (CLP) is a congenital condition which hinders effectual communication due to associated speech and language difficulties. Expressive language delay (ELD) is a feature seen in this population which is influenced by factors such as type and severity of CLP, age at surgical and linguistic intervention and also the type and intensity of speech and language therapy (SLT). Since CLP is the most common congenital abnormality seen in Indian children, early intervention is a necessity which plays a critical role in enhancing their speech and language skills. The interaction between the timing of intervention and factors which contribute to effective intervention by caregivers is an area which needs to be explored. Objectives: The present study attempts to determine the effect of timing of intervention on the contributing maternal factors for effective linguistic intervention in toddlers with repaired CLP with respect to the awareness, home training patterns, speech and non-speech behaviors of the mothers. Participants: Thirty six toddlers in the age range of 1 to 4 years diagnosed as ELD secondary to repaired CLP, along with their mothers served as participants. Group I (Early Intervention Group, EIG) included 19 mother-child pairs who came to seek SLT soon after corrective surgery and group II (Delayed Intervention Group, DIG) included 16 mother-child pairs who received SLT after the age of 3 years. Further, the groups were divided into group A, and group B. Group ‘A’ received SLT for 60 sessions by Speech Language Pathologist (SLP), while Group B received SLT for 30 sessions by SLP and 30 sessions only by mother without supervision of SLP. Method: The mothers were enrolled for the Early Language Intervention Program and following this, their awareness about CLP was assessed through the Parental awareness questionnaire. The quality of home training was assessed through Mohite’s Inventory. Subsequently, the speech and non-speech behaviors of the mothers were assessed using a Mother’s behavioral checklist. Detailed counseling and orientation was done to the mothers, and SLT was initiated for toddlers. After 60 sessions of intensive SLT, the questionnaire and checklists were re-administered to find out the changes in scores between the pre- and posttest measurements. Results: The scores obtained under different domains in the awareness questionnaire, Mohite’s inventory and Mothers behavior checklist were tabulated and subjected to statistical analysis. Since the data did not follow normal distribution (i.e. p > 0.05), Mann-Whitney U test was conducted which revealed that there was no significant difference between groups I and II as well as groups A and B. Further, Wilcoxon Signed Rank test revealed that mothers had better awareness regarding issues related to CLP and improved home-training abilities post-orientation (p ≤ 0.05). A statistically significant difference was also noted for speech and non-speech behaviors of the mothers (p ≤ 0.05). Conclusions: Extensive orientation and counseling helped mothers of both EI and DI groups to improve their knowledge about CLP. Intensive SLT using focused stimulation and a parent-implemented approach enabled them to carry out the intervention in an effectual manner.Keywords: awareness, cleft lip and palate, early language intervention program, home training, orientation, timing of intervention
Procedia PDF Downloads 12216911 Integration Network ASI in Lab Automation and Networks Industrial in IFCE
Authors: Jorge Fernandes Teixeira Filho, André Oliveira Alcantara Fontenele, Érick Aragão Ribeiro
Abstract:
The constant emergence of new technologies used in automated processes makes it necessary for teachers and traders to apply new technologies in their classes. This paper presents an application of a new technology that will be employed in a didactic plant, which represents an effluent treatment process located in a laboratory of a federal educational institution. At work were studied in the first place, all components to be placed on automation laboratory in order to determine ways to program, parameterize and organize the plant. New technologies that have been implemented to the process are basically an AS-i network and a Profinet network, a SCADA system, which represented a major innovation in the laboratory. The project makes it possible to carry out in the laboratory various practices of industrial networks and SCADA systems.Keywords: automation, industrial networks, SCADA systems, lab automation
Procedia PDF Downloads 54516910 Alloy Design of Single Crystal Ni-base Superalloys by Combined Method of Neural Network and CALPHAD
Authors: Mehdi Montakhabrazlighi, Ercan Balikci
Abstract:
The neural network (NN) method is applied to alloy development of single crystal Ni-base Superalloys with low density and improved mechanical strength. A set of 1200 dataset which includes chemical composition of the alloys, applied stress and temperature as inputs and density and time to rupture as outputs is used for training and testing the network. Thermodynamic phase diagram modeling of the screened alloys is performed with Thermocalc software to model the equilibrium phases and also microsegregation in solidification processing. The model is first trained by 80% of the data and the 20% rest is used to test it. Comparing the predicted values and the experimental ones showed that a well-trained network is capable of accurately predicting the density and time to rupture strength of the Ni-base superalloys. Modeling results is used to determine the effect of alloying elements, stress, temperature and gamma-prime phase volume fraction on rupture strength of the Ni-base superalloys. This approach is in line with the materials genome initiative and integrated computed materials engineering approaches promoted recently with the aim of reducing the cost and time for development of new alloys for critical aerospace components. This work has been funded by TUBITAK under grant number 112M783.Keywords: neural network, rupture strength, superalloy, thermocalc
Procedia PDF Downloads 31316909 Machine Learning in Patent Law: How Genetic Breeding Algorithms Challenge Modern Patent Law Regimes
Authors: Stefan Papastefanou
Abstract:
Artificial intelligence (AI) is an interdisciplinary field of computer science with the aim of creating intelligent machine behavior. Early approaches to AI have been configured to operate in very constrained environments where the behavior of the AI system was previously determined by formal rules. Knowledge was presented as a set of rules that allowed the AI system to determine the results for specific problems; as a structure of if-else rules that could be traversed to find a solution to a particular problem or question. However, such rule-based systems typically have not been able to generalize beyond the knowledge provided. All over the world and especially in IT-heavy industries such as the United States, the European Union, Singapore, and China, machine learning has developed to be an immense asset, and its applications are becoming more and more significant. It has to be examined how such products of machine learning models can and should be protected by IP law and for the purpose of this paper patent law specifically, since it is the IP law regime closest to technical inventions and computing methods in technical applications. Genetic breeding models are currently less popular than recursive neural network method and deep learning, but this approach can be more easily described by referring to the evolution of natural organisms, and with increasing computational power; the genetic breeding method as a subset of the evolutionary algorithms models is expected to be regaining popularity. The research method focuses on patentability (according to the world’s most significant patent law regimes such as China, Singapore, the European Union, and the United States) of AI inventions and machine learning. Questions of the technical nature of the problem to be solved, the inventive step as such, and the question of the state of the art and the associated obviousness of the solution arise in the current patenting processes. Most importantly, and the key focus of this paper is the problem of patenting inventions that themselves are developed through machine learning. The inventor of a patent application must be a natural person or a group of persons according to the current legal situation in most patent law regimes. In order to be considered an 'inventor', a person must actually have developed part of the inventive concept. The mere application of machine learning or an AI algorithm to a particular problem should not be construed as the algorithm that contributes to a part of the inventive concept. However, when machine learning or the AI algorithm has contributed to a part of the inventive concept, there is currently a lack of clarity regarding the ownership of artificially created inventions. Since not only all European patent law regimes but also the Chinese and Singaporean patent law approaches include identical terms, this paper ultimately offers a comparative analysis of the most relevant patent law regimes.Keywords: algorithms, inventor, genetic breeding models, machine learning, patentability
Procedia PDF Downloads 10816908 The Association between Saharran Dust and Emergency Department Admission and Hospitalization in Gaziantep, Turkey
Authors: Behcet Al, Mustafa Bogan, Mehmet Murat Oktay, Suat Zengin, Hasan Bayram
Abstract:
Objective: In the last two decades there is a strong scientific interest regarding the role of aerosols for the Earth’s climate and associated changes. Aerosol particles are very important to the Earth-atmosphere climate system playing a crucial role in cloud and precipitation processes, air quality and climate. Here, we evaluated the association between saharran dust and emergency department admission, hospitalization, and mortality. Method: The records of admission to emergency department of Gaziantep University and the dust stroms of 31 months were studied. Patients admitted to ED at dust strom with chronic obstructive lung disease (COLD), asthma bronchiale (AB), serebrovascular events (SVE), acute myocardial infarction (AMI), stabile and unstabile angina pectoris (SAAP andUSAP); and the days with and without dust stroms were included. The study was realized from March 2010 to October 2012. The admission of three days before strom (group 1), during strom days (group 2) and three days after strom (group 3) were determined. The mean level of dust PM10 particulate was calculated, and the results were compared. Results: 5864 patients with chronic obstructive lung disease, asthma bronchiale, serebrovascular events, acute myocardial infarction, stabile and unstabile angyina pectoris admitted during the days with and without dust stroms. 28 dust stroms ocurred during 31 months. The totaliy of stroms continiued 78 days. Of admissions, 35.5% (n=2075) were in group1, 29.8% (n=1746) in group 2, and 34.8% (n=2043) were in group 3. The mean of PM10 for groups (group 1, 2 and 3) were 78.53 mg/m3 (range 19–276) particulate, 108.7 mg/m3 (range 34–631) particulate, and 60.9 mg/m3 (range 17–160) particulate respectively. The mean admission per a day for groups were 24.86, 22.55, and 24.50 respectively. The mortality was 12 in group 1, 12 in group 2, and 17 in grou 3. The hospitalization ratio for groups were 0.24, 0.27, and 0.27 respectively. Conclusion: However, the mean level of PM10 particulate for groups 2 (in dust strom days) is significantly higher (p=0.001) than the days before (group 1) and after (group 3) dust stroms, the mean admissions/day, hostilalization and mortality related to deseases (COLD, AB, SVE, AMI, SAAP andUSA) for group 2 is lower than the group 1 and group 3.Keywords: Saharran dust, PM10 particulate, emergency department admission, mortality
Procedia PDF Downloads 39616907 Analyzing Keyword Networks for the Identification of Correlated Research Topics
Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita
Abstract:
The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics
Procedia PDF Downloads 25716906 Monitoring of Water Quality Using Wireless Sensor Network: Case Study of Benue State of Nigeria
Authors: Desmond Okorie, Emmanuel Prince
Abstract:
Availability of portable water has been a global challenge especially to the developing continents/nations such as Africa/Nigeria. The World Health Organization WHO has produced the guideline for drinking water quality GDWQ which aims at ensuring water safety from source to consumer. Portable water parameters test include physical (colour, odour, temperature, turbidity), chemical (PH, dissolved solids) biological (algae, plytoplankton). This paper discusses the use of wireless sensor networks to monitor water quality using efficient and effective sensors that have the ability to sense, process and transmit sensed data. The integration of wireless sensor network to a portable sensing device offers the feasibility of sensing distribution capability, on site data measurements and remote sensing abilities. The current water quality tests that are performed in government water quality institutions in Benue State Nigeria are carried out in problematic locations that require taking manual water samples to the institution laboratory for examination, to automate the entire process based on wireless sensor network, a system was designed. The system consists of sensor node containing one PH sensor, one temperature sensor, a microcontroller, a zigbee radio and a base station composed by a zigbee radio and a PC. Due to the advancement of wireless sensor network technology, unexpected contamination events in water environments can be observed continuously. local area network (LAN) wireless local area network (WLAN) and internet web-based also commonly used as a gateway unit for data communication via local base computer using standard global system for mobile communication (GSM). The improvement made on this development show a water quality monitoring system and prospect for more robust and reliable system in the future.Keywords: local area network, Ph measurement, wireless sensor network, zigbee
Procedia PDF Downloads 17116905 Association between Eating Behavior in Children Aged 7-10 Years Old and Their Mother’s Feeding Practice: A Study among the Families in Isfahan, Iran
Authors: Behnaz Farahani, Razieh Sotoudeh, Ali Vahdani, Hamed Abdi
Abstract:
Individual differences in eating behavior can cause underweight or overweight and obesity. Thus influencing factors on children’s eating behavior such as mothers’ feeding practices are needed to be more investigated. The goals of this survey are to evaluate the association of (i) parental pressure and children’s food avoidant tendency, (ii) parental restriction and children’s food approach tendency, (iii) modeling of healthy eating in front of children and their children’s eating behavior. 760 mothers of children aged 7-10 from schools in Isfahan were asked to complete questionnaires including Child Feeding Questionnaire, Children’s Eating Behavior Questionnaire, Modeling Questionnaire, and self-administered demographic questionnaire in which mothers reported their children’s height and weight as well. Of those mothers, 745 completed the questionnaires for the children’s index (mean age: 8.513±1.112) during the 2011-2012 school year. The results of this quantitative, descriptive, cross-sectional analysis indicated that “parental restriction” was positively associated with child food responsiveness (P,0.000) and food enjoyment (P,0.000) and surprisingly, it was positively associated with Food Fussiness(0.000) .Parental pressure to eat was positively associated with child satiety responsiveness (P,0.000), slowness (P,0.000), and fussiness (P,0.00) and negatively associated with Food responsiveness(p,0.000)and Enjoyment of food (p,0.002), modeling of healthy eating were positively associated with Enjoyment of food / q (p,0.000) and negatively with food fussiness (P,0.000). The results of this survey will improve interventions and maternal guidance on their feeding practices and their association with children’s eating behavior and weight.Keywords: feeding practices, eating behavior, pressure to eat, restriction, modeling, satiety responsiveness, slowness in eating, food fussiness, food responsiveness, enjoyment of food
Procedia PDF Downloads 61416904 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection
Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner
Abstract:
Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.
Procedia PDF Downloads 22316903 Protein Tertiary Structure Prediction by a Multiobjective Optimization and Neural Network Approach
Authors: Alexandre Barbosa de Almeida, Telma Woerle de Lima Soares
Abstract:
Protein structure prediction is a challenging task in the bioinformatics field. The biological function of all proteins majorly relies on the shape of their three-dimensional conformational structure, but less than 1% of all known proteins in the world have their structure solved. This work proposes a deep learning model to address this problem, attempting to predict some aspects of the protein conformations. Throughout a process of multiobjective dominance, a recurrent neural network was trained to abstract the particular bias of each individual multiobjective algorithm, generating a heuristic that could be useful to predict some of the relevant aspects of the three-dimensional conformation process formation, known as protein folding.Keywords: Ab initio heuristic modeling, multiobjective optimization, protein structure prediction, recurrent neural network
Procedia PDF Downloads 20516902 Social Network Analysis as a Research and Pedagogy Tool in Problem-Focused Undergraduate Social Innovation Courses
Authors: Sean McCarthy, Patrice M. Ludwig, Will Watson
Abstract:
This exploratory case study explores the deployment of Social Network Analysis (SNA) in mapping community assets in an interdisciplinary, undergraduate, team-taught course focused on income insecure populations in a rural area in the US. Specifically, it analyzes how students were taught to collect data on community assets and to visualize the connections between those assets using Kumu, an SNA data visualization tool. Further, the case study shows how social network data was also collected about student teams via their written communications in Slack, an enterprise messaging tool, which enabled instructors to manage and guide student research activity throughout the semester. The discussion presents how SNA methods can simultaneously inform both community-based research and social innovation pedagogy through the use of data visualization and collaboration-focused communication technologies.Keywords: social innovation, social network analysis, pedagogy, problem-based learning, data visualization, information communication technologies
Procedia PDF Downloads 14716901 Analysis and Performance of Handover in Universal Mobile Telecommunications System (UMTS) Network Using OPNET Modeller
Authors: Latif Adnane, Benaatou Wafa, Pla Vicent
Abstract:
Handover is of great significance to achieve seamless connectivity in wireless networks. This paper gives an impression of the main factors which are being affected by the soft and the hard handovers techniques. To know and understand the handover process in The Universal Mobile Telecommunications System (UMTS) network, different statistics are calculated. This paper focuses on the quality of service (QoS) of soft and hard handover in UMTS network, which includes the analysis of received power, signal to noise radio, throughput, delay traffic, traffic received, delay, total transmit load, end to end delay and upload response time using OPNET simulator.Keywords: handover, UMTS, mobility, simulation, OPNET modeler
Procedia PDF Downloads 32116900 Impacts of Online Behaviors on Empathy in Medical Students
Authors: Ling-Lang Huang, Yih-Jer Wu
Abstract:
Empathy is crucial for a patient-physician relationship and medical professionalism. Internet activity, gaming, or even addiction, have been more and more common among medical students. However, there’s been no report showing whether internet behavior has a substantial impact on empathy in medical students to our best knowledge. All year-2 medical students taking the optional course 'Narrative, Comprehension, and Communication' were enrolled. Internet behaviors are divided into two groups, 'internet users without online gaming (IU)' and 'internet users with online gaming (IG)', each group was further divided into 3 groups according to their average online retention time each day (< 2, 2 - 6, > 6 hours). Empathy was evaluated by the scores of the reports and humanities reflection after watching indicated movies, and by self-measured empathy questionnaire. All students taking the year-2 optional course 'Narrative, Comprehension, and Communication' were enrolled. As compared with students in the IU group, those in the IG group had significantly lower scores for the reports (81.3 ± 3.7 vs. 86.4 ± 5.1, P = 0.014). If further dividing the students into 5 groups (IU < 2, IU 2-6, IG < 2, IG 2 - 6, and IG > 6 hours), the scores were significantly and negatively correlated to online gaming with longer hours (r = -0.556, P = 0.006). However, there was no significant difference between IU and IG groups (33.0 ± 5.4 vs. 34.8 ± 3.2, P = n.s.), in terms of scores in the self-measured empathy questionnaire, neither was there any significant trend of scores along with longer online hours across the 5 groups (r = -0.164, P = n.s.). To date, there has been no evidence showing whether different internet behaviors (with or without online gaming) have distinct impacts on empathy. Although all of the medical students had a similarly good self-perception for empathy, our data suggested that online gaming did have a negative impact on their actual expression of empathy. Our observation has brought up an important issue for pondering: May IT- or gaming-assisted medical learning actually harm students’ empathy? In conclusion, this data suggests that long hours of online gaming harms expression of empathy, though all medics think themselves a person of high empathy.Keywords: empathy. Internet, medical students, online gaming
Procedia PDF Downloads 13216899 Accounting for Downtime Effects in Resilience-Based Highway Network Restoration Scheduling
Authors: Zhenyu Zhang, Hsi-Hsien Wei
Abstract:
Highway networks play a vital role in post-disaster recovery for disaster-damaged areas. Damaged bridges in such networks can disrupt the recovery activities by impeding the transportation of people, cargo, and reconstruction resources. Therefore, rapid restoration of damaged bridges is of paramount importance to long-term disaster recovery. In the post-disaster recovery phase, the key to restoration scheduling for a highway network is prioritization of bridge-repair tasks. Resilience is widely used as a measure of the ability to recover with which a network can return to its pre-disaster level of functionality. In practice, highways will be temporarily blocked during the downtime of bridge restoration, leading to the decrease of highway-network functionality. The failure to take downtime effects into account can lead to overestimation of network resilience. Additionally, post-disaster recovery of highway networks is generally divided into emergency bridge repair (EBR) in the response phase and long-term bridge repair (LBR) in the recovery phase, and both of EBR and LBR are different in terms of restoration objectives, restoration duration, budget, etc. Distinguish these two phases are important to precisely quantify highway network resilience and generate suitable restoration schedules for highway networks in the recovery phase. To address the above issues, this study proposes a novel resilience quantification method for the optimization of long-term bridge repair schedules (LBRS) taking into account the impact of EBR activities and restoration downtime on a highway network’s functionality. A time-dependent integer program with recursive functions is formulated for optimally scheduling LBR activities. Moreover, since uncertainty always exists in the LBRS problem, this paper extends the optimization model from the deterministic case to the stochastic case. A hybrid genetic algorithm that integrates a heuristic approach into a traditional genetic algorithm to accelerate the evolution process is developed. The proposed methods are tested using data from the 2008 Wenchuan earthquake, based on a regional highway network in Sichuan, China, consisting of 168 highway bridges on 36 highways connecting 25 cities/towns. The results show that, in this case, neglecting the bridge restoration downtime can lead to approximately 15% overestimation of highway network resilience. Moreover, accounting for the impact of EBR on network functionality can help to generate a more specific and reasonable LBRS. The theoretical and practical values are as follows. First, the proposed network recovery curve contributes to comprehensive quantification of highway network resilience by accounting for the impact of both restoration downtime and EBR activities on the recovery curves. Moreover, this study can improve the highway network resilience from the organizational dimension by providing bridge managers with optimal LBR strategies.Keywords: disaster management, highway network, long-term bridge repair schedule, resilience, restoration downtime
Procedia PDF Downloads 15016898 Consumer Choice Determinants in Context of Functional Food
Authors: E. Grochowska-Niedworok, K. Brukało, M. Kardas
Abstract:
The aim of this study was to analyze and evaluate the consumption of functional food by consumers by: age, sex, formal education level, place of residence and diagnosed diseases. The study employed an ad hoc questionnaire in a group of 300 inhabitants of Upper Silesia voivodship. Knowledge of functional food among the group covered in the study was far from satisfactory. The choice of functional food was of intuitive character. In addition, the group covered was more likely to choose pharmacotherapy instead of diet-related prevention then, which can be associated with presumption of too distant effects and a long period of treatment.Keywords: consumer choice, functional food, healthy lifestyle, consumer knowledge
Procedia PDF Downloads 25616897 Life Prediction of Condenser Tubes Applying Fuzzy Logic and Neural Network Algorithms
Authors: A. Majidian
Abstract:
The life prediction of thermal power plant components is necessary to prevent the unexpected outages, optimize maintenance tasks in periodic overhauls and plan inspection tasks with their schedules. One of the main critical components in a power plant is condenser because its failure can affect many other components which are positioned in downstream of condenser. This paper deals with factors affecting life of condenser. Failure rates dependency vs. these factors has been investigated using Artificial Neural Network (ANN) and fuzzy logic algorithms. These algorithms have shown their capabilities as dynamic tools to evaluate life prediction of power plant equipments.Keywords: life prediction, condenser tube, neural network, fuzzy logic
Procedia PDF Downloads 35116896 Linear Regression Estimation of Tactile Comfort for Denim Fabrics Based on In-Plane Shear Behavior
Authors: Nazli Uren, Ayse Okur
Abstract:
Tactile comfort of a textile product is an essential property and a major concern when it comes to customer perceptions and preferences. The subjective nature of comfort and the difficulties regarding the simulation of human hand sensory feelings make it hard to establish a well-accepted link between tactile comfort and objective evaluations. On the other hand, shear behavior of a fabric is a mechanical parameter which can be measured by various objective test methods. The principal aim of this study is to determine the tactile comfort of commercially available denim fabrics by subjective measurements, create a tactile score database for denim fabrics and investigate the relations between tactile comfort and shear behavior. In-plane shear behaviors of 17 different commercially available denim fabrics with a variety of raw material and weave structure were measured by a custom design shear frame and conventional bias extension method in two corresponding diagonal directions. Tactile comfort of denim fabrics was determined via subjective customer evaluations as well. Aforesaid relations were statistically investigated and introduced as regression equations. The analyses regarding the relations between tactile comfort and shear behavior showed that there are considerably high correlation coefficients. The suggested regression equations were likewise found out to be statistically significant. Accordingly, it was concluded that the tactile comfort of denim fabrics can be estimated with a high precision, based on the results of in-plane shear behavior measurements.Keywords: denim fabrics, in-plane shear behavior, linear regression estimation, tactile comfort
Procedia PDF Downloads 30216895 SiC Merged PiN and Schottky (MPS) Power Diodes Electrothermal Modeling in SPICE
Abstract:
This paper sets out a behavioral macro-model of a Merged PiN and Schottky (MPS) diode based on silicon carbide (SiC). This model holds good for both static and dynamic electrothermal simulations for industrial applications. Its parameters have been worked out from datasheets curves by drawing on the optimization method: Simulated Annealing (SA) for the SiC MPS diodes made available in the industry. The model also adopts the Analog Behavioral Model (ABM) of PSPICE in which it has been implemented. The thermal behavior of the devices was also taken into consideration by making use of Foster’ canonical network as figured out from electro-thermal measurement provided by the manufacturer of the device.Keywords: SiC MPS diode, electro-thermal, SPICE model, behavioral macro-model
Procedia PDF Downloads 40716894 Unsupervised Feature Learning by Pre-Route Simulation of Auto-Encoder Behavior Model
Authors: Youngjae Jin, Daeshik Kim
Abstract:
This paper describes a cycle accurate simulation results of weight values learned by an auto-encoder behavior model in terms of pre-route simulation. Given the results we visualized the first layer representations with natural images. Many common deep learning threads have focused on learning high-level abstraction of unlabeled raw data by unsupervised feature learning. However, in the process of handling such a huge amount of data, the learning method’s computation complexity and time limited advanced research. These limitations came from the fact these algorithms were computed by using only single core CPUs. For this reason, parallel-based hardware, FPGAs, was seen as a possible solution to overcome these limitations. We adopted and simulated the ready-made auto-encoder to design a behavior model in Verilog HDL before designing hardware. With the auto-encoder behavior model pre-route simulation, we obtained the cycle accurate results of the parameter of each hidden layer by using MODELSIM. The cycle accurate results are very important factor in designing a parallel-based digital hardware. Finally this paper shows an appropriate operation of behavior model based pre-route simulation. Moreover, we visualized learning latent representations of the first hidden layer with Kyoto natural image dataset.Keywords: auto-encoder, behavior model simulation, digital hardware design, pre-route simulation, Unsupervised feature learning
Procedia PDF Downloads 44616893 A Comparative Study of Morphine and Clonidine as an Adjunct to Ropivacaine in Paravertebral Block for Modified Radical Mastectomy
Authors: Mukesh K., Siddiqui A. K., Abbas H., Gupta R.
Abstract:
Background: General Anesthesia is a standard for breast onco-surgery. The issue of postoperative pain and the occurrence of nausea and vomiting has prompted the quest for a superior methodology with fewer complications. Over the recent couple of years, paravertebral block (PVB) has acquired huge fame either in combination with GA or alone for anesthetic management. In this study, we aim to evaluate the efficacy of morphine and clonidine as an adjunct to ropivacaine in a paravertebral block in breast cancer patients undergoing modified radical mastectomy. Methods: In this study, total 90 patients were divided into three groups (30 each) on the basis of computer-generated randomization. Group C (Control): Paravertebral block with 0.25% ropivacaine (19ml) and 1 ml saline; Group M- Paravertebral block with 0.25% ropivacaine(19ml) + 20 microgram/kg body weight morphine; Group N: Paravertebral block with 0.25% ropivacaine(19ml) +1.0 microgram/kg body weight clonidine. The postoperative pain intensity was recorded using the visual analog scale (VAS) and Sedation was observed by the Ramsay Sedation score (RSS). Results: The VAS was similar at 0hr, 2hr and 4 hr in the postoperative period among all the groups. There was a significant (p=0.003) difference in VAS from 6 hr to 20 hr in the postoperative period among the groups. A significant (p<0.05) difference was observed among the groups at 8 hr to 20 hr). The first requirement of analgesia was significantly (p=0.001) higher in Group N (7.70±1.74) than in Group C (4.43±1.43) and Group M (7.33±2.21). Conclusion: The morphine in the paravertebral block provides better postoperative analgesia. The consumption of rescue analgesia was significantly reduced in the morphine group as compared to the clonidine group. The procedure also proved to be safe as no complication was encountered in the paravertebral block in our study.Keywords: ropivacaine, morphine, clonidine, paravertebral block
Procedia PDF Downloads 11716892 A Study of the Attitude Towards Marriage among Young Adults in Indian and Tibetan Society Which Impacted in Social Learning and Cross-Cultural Behavior
Authors: Meenakshi Chaubey
Abstract:
A principle proposed in the cross-cultural adaption of behavior among Indian and Tibetan societies in which there are not any great variations between their young adults on the mindset of day-to-day marriage, Marriage plays a dominant position in constructing the society, which in large part comprises underneath the domain of lifestyle. Way of life is a social behavior and norm located in human societies where an extensive range of phenomena can be transmitted thru social studying. It acts characteristic of the individual has been the diploma day-to-day which they have got cultivated a specific stage of class in arts, science, architecture. The existing studies preliminarily on young adults of each community, wherein we carried out a comparative observe of the mindset of daily marriage among Indian and Tibetan teens. Further, we studied statistics comprehensively on the mindset closer day by day the marriage between Indian adult males and Tibetan younger males. With the extension of a complete look, we considered the mindset of an everyday marriage of Indian girls and Tibetan young ladies. Studies 1 showed that there might be no sizable distinction within the attitude of the day-to-day marriage of Indian and Tibetan teenagers. It, in addition, showed that they followed each different marriage beliefs and customs. Studies 2 showed that there might be no important difference in the attitude toward the everyday marriage of Indian and Tibetan young males. It similarly showcased that day-to-day secular schooling gadget in Tibetan society complements their clinical approach and changes their point of view on distinct social issues along with marriage. Research three confirmed that there is no substantial difference in the mindset of the daily marriage of Indian and Tibetan younger females. It similarly spread out the strict authorities' recommendations that they may no longer be allowed day-to-day comply with their marriage practices, including polygamy and polyandry. Thus, the information showed that there's a shift of lifestyle from one network every day to some other community because of social every day, which affects the conduct and results of daily past cultural adaptation.Keywords: culture, marriage, attitude, society, young adults, Indian, Tibetan
Procedia PDF Downloads 8416891 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 12416890 Effect of Nitrogen-Based Cryotherapy on the Calf Muscle Spasticity in Stroke Patients
Authors: Engi E. I. Sarhan, Usama M. Rashad, Ibrahim M. I. Hamoda, Mohammed K. Mohamed
Abstract:
Background: This study aimed to know the effect of nitrogen-based cryotherapy on the spasticity of calf muscle in stroke patients. Patients were selected from the outpatient clinic of Neurology, Al-Mansoura general hospital, Al-Mansoura University. Subjects and methods: Thirty Stroke Patients of both sexes ranged from 45 to 60 years old were divided randomly into two equal groups, a study group (A) received a nitrogen-based cryotherapy, a selective physical therapy program and ankle foot orthosis (AFO), while as patients in control group (B) received the same program and AFO only. The treatment duration was three times per week for four weeks for both groups. We assessed spasticity of calf muscle before and after treatment subjectively using modified Ashworth scale (MAS) and objectively via measuring H / M ratio on electromyography machine. We also assessed ankle dorsiflexion ROM objectively using two dimensions motion analysis (2D). Results: After treatment, there was a highly significant improvement in the study group compared to the control group regarding the score of MAS, no significant difference in the study group compared to the control group regarding the readings of H / M ratio, highly significant improvement in the study group compared to the control group regarding the 2D motion analysis findings. Conclusion: This modality considers effective in reducing spasticity in the calf muscle and improving ankle dorsiflexion of the affected limb.Keywords: ankle foot orthosis, nitrogen-based cryotherapy, stroke, spasticity
Procedia PDF Downloads 20216889 Performance Analysis of Bluetooth Low Energy Mesh Routing Algorithm in Case of Disaster Prediction
Authors: Asmir Gogic, Aljo Mujcic, Sandra Ibric, Nermin Suljanovic
Abstract:
Ubiquity of natural disasters during last few decades have risen serious questions towards the prediction of such events and human safety. Every disaster regardless its proportion has a precursor which is manifested as a disruption of some environmental parameter such as temperature, humidity, pressure, vibrations and etc. In order to anticipate and monitor those changes, in this paper we propose an overall system for disaster prediction and monitoring, based on wireless sensor network (WSN). Furthermore, we introduce a modified and simplified WSN routing protocol built on the top of the trickle routing algorithm. Routing algorithm was deployed using the bluetooth low energy protocol in order to achieve low power consumption. Performance of the WSN network was analyzed using a real life system implementation. Estimates of the WSN parameters such as battery life time, network size and packet delay are determined. Based on the performance of the WSN network, proposed system can be utilized for disaster monitoring and prediction due to its low power profile and mesh routing feature.Keywords: bluetooth low energy, disaster prediction, mesh routing protocols, wireless sensor networks
Procedia PDF Downloads 38516888 Simulation of Nonlinear Behavior of Reinforced Concrete Slabs Using Rigid Body-Spring Discrete Element Method
Authors: Felix Jr. Garde, Eric Augustus Tingatinga
Abstract:
Most analysis procedures of reinforced concrete (RC) slabs are based on elastic theory. When subjected to large forces, however, slabs deform beyond elastic range and the study of their behavior and performance require nonlinear analysis. This paper presents a numerical model to simulate nonlinear behavior of RC slabs using rigid body-spring discrete element method. The proposed slab model composed of rigid plate elements and nonlinear springs is based on the yield line theory which assumes that the nonlinear behavior of the RC slab subjected to transverse loads is contained in plastic or yield-lines. In this model, the displacement of the slab is completely described by the rigid elements and the deformation energy is concentrated in the flexural springs uniformly distributed at the potential yield lines. The spring parameters are determined from comparison of transverse displacements and stresses developed in the slab obtained using FEM and the proposed model with assumed homogeneous material. Numerical models of typical RC slabs with varying geometry, reinforcement, support conditions, and loading conditions, show reasonable agreement with available experimental data. The model was also shown to be useful in investigating dynamic behavior of slabs.Keywords: RC slab, nonlinear behavior, yield line theory, rigid body-spring discrete element method
Procedia PDF Downloads 32316887 Characterization of Group Dynamics for Fostering Mathematical Modeling Competencies
Authors: Ayse Ozturk
Abstract:
The study extends the prior research on modeling competencies by positioning students’ cognitive and language resources as the fundamentals for pursuing their own inquiry and expression lines through mathematical modeling. This strategy aims to answer the question that guides this study, “How do students’ group approaches to modeling tasks affect their modeling competencies over a unit of instruction?” Six bilingual tenth-grade students worked on open-ended modeling problems along with the content focused on quantities over six weeks. Each group was found to have a unique cognitive approach for solving these problems. Three different problem-solving strategies affected how the groups’ modeling competencies changed. The results provide evidence that the discussion around groups’ solutions, coupled with their reflections, advances group interpreting and validating competencies in the mathematical modeling processKeywords: cognition, collective learning, mathematical modeling competencies, problem-solving
Procedia PDF Downloads 158