Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11

Search results for: scientometrics

11 Scientometrics Analysis of Food Supply Chain Risk Assessment Literature: Based On Web of Science Record 1996-2014

Authors: Mohsen Shirani, Shadi Asadzandi, Micaela Demichela


This paper presents the results of a study to assess crucial aspects and the strength of the scientific basis of a typically interdisciplinary, applied field: food supply chain risk assessment research. Our approach is based on an advanced scientometrics analysis with novel elements to assess the influence and dissemination of research results and to measure interdisciplinary. This paper aims to describe the quantity and quality of the publication trends in food supply chain risk assessment. The population under study was composed of 266 articles from database web of science. The results were analyzed based on date of publication, type of document, language of the documents, source of publications, subject areas, authors and their affiliations, and the countries involved in developing the articles.

Keywords: food supply chain, risk assessment, scientometrics, web of science

Procedia PDF Downloads 299
10 Analyzing Keyword Networks for the Identification of Correlated Research Topics

Authors: Thiago M. R. Dias, Patrícia M. Dias, Gray F. Moita


The production and publication of scientific works have increased significantly in the last years, being the Internet the main factor of access and distribution of these works. Faced with this, there is a growing interest in understanding how scientific research has evolved, in order to explore this knowledge to encourage research groups to become more productive. Therefore, the objective of this work is to explore repositories containing data from scientific publications and to characterize keyword networks of these publications, in order to identify the most relevant keywords, and to highlight those that have the greatest impact on the network. To do this, each article in the study repository has its keywords extracted and in this way the network is  characterized, after which several metrics for social network analysis are applied for the identification of the highlighted keywords.

Keywords: bibliometrics, data analysis, extraction and data integration, scientometrics

Procedia PDF Downloads 171
9 Climate Change and Tourism: A Scientometric Analysis Using Citespace

Authors: Yan Fang, Jie Yin, Bihu Wu


The interaction between climate change and tourism is one of the most promising research areas of recent decades. In this paper, a scientometric analysis of 976 academic publications between 1990 and 2015 related to climate change and tourism is presented in order to characterize the intellectual landscape by identifying and visualizing the evolution of the collaboration network, the co-citation network, and emerging trends of citation burst and keyword co-occurrence. The results show that the number of publications in this field has increased rapidly and it has become an interdisciplinary and multidisciplinary topic. The research areas are dominated by Australia, USA, Canada, New Zealand, and European countries, which have the most productive authors and institutions. The hot topics of climate change and tourism research in recent years are further identified, including the consequences of climate change for tourism, necessary adaptations, the vulnerability of the tourism industry, tourist behaviour and demand in response to climate change, and emission reductions in the tourism sector. The work includes an in-depth analysis of a major forum of climate change and tourism to help readers to better understand global trends in this field in the past 25 years.

Keywords: climate change, tourism, scientometrics, CiteSpace

Procedia PDF Downloads 334
8 Bibliometric Analysis of the Research Progress on Graphene Inks from 2008 to 2018

Authors: Jean C. A. Sousa, Julio Cesar Maciel Santos, Andressa J. Rubio, Edneia A. S. Paccola, Natália U. Yamaguchi


A bibliometric analysis in the Web of Science database was used to identify overall scientific results of graphene inks to date (2008 to 2018). The objective of this study was to evaluate the evolutionary tendency of graphene inks research and to identify its aspects, aiming to provide data that can guide future work. The contributions of different researches, languages, thematic categories, periodicals, place of publication, institutes, funding agencies, articles cited and applications were analyzed. The results revealed a growing number of annual publications, of 258 papers found, 107 were included because they met the inclusion criteria. Three main applications were identified: synthesis and characterization, electronics and surfaces. The most relevant research on graphene inks has been summarized in this article, and graphene inks for electronic devices presented the most incident theme according to the research trends during the studied period. It is estimated that this theme will remain in evidence and will contribute to the direction of future research in this area.

Keywords: bibliometric, coating, nanomaterials, scientometrics

Procedia PDF Downloads 71
7 Technology Maps in Energy Applications Based on Patent Trends: A Case Study

Authors: Juan David Sepulveda


This article reflects the current stage of progress in the project “Determining technological trends in energy generation”. At first it was oriented towards finding out those trends by employing such tools as the scientometrics community had proved and accepted as effective for getting reliable results. Because a documented methodological guide for this purpose could not be found, the decision was made to reorient the scope and aim of this project, changing the degree of interest in pursuing the objectives. Therefore it was decided to propose and implement a novel guide from the elements and techniques found in the available literature. This article begins by explaining the elements and considerations taken into account when implementing and applying this methodology, and the tools that led to the implementation of a software application for patent revision. Univariate analysis helped recognize the technological leaders in the field of energy, and steered the way for a multivariate analysis of this sample, which allowed for a graphical description of the techniques of mature technologies, as well as the detection of emerging technologies. This article ends with a validation of the methodology as applied to the case of fuel cells.

Keywords: energy, technology mapping, patents, univariate analysis

Procedia PDF Downloads 416
6 Research Trends on Magnetic Graphene for Water Treatment: A Bibliometric Analysis

Authors: J. C. M. Santos, J. C. A. Sousa, A. J. Rubio, L. S. Soletti, F. Gasparotto, N. U. Yamaguchi


Magnetic graphene has received widespread attention for their capability of water and wastewater treatment, which has been attracted many researchers in this field. A bibliometric analysis based on the Web of Science database was employed to analyze the global scientific outputs of magnetic graphene for water treatment until the present time (2012 to 2017), to improve the understanding of the research trends. The publication year, place of publication, institutes, funding agencies, journals, most cited articles, distribution outputs in thematic categories and applications were analyzed. Three major aspects analyzed including type of pollutant, treatment process and composite composition have further contributed to revealing the research trends. The most relevant research aspects of the main technologies using magnetic graphene for water treatment were summarized in this paper. The results showed that research on magnetic graphene for water treatment goes through a period of decline that might be related to a saturated field and a lack of bibliometric studies. Thus, the result of the present work will lead researchers to establish future directions in further studies using magnetic graphene for water treatment.

Keywords: composite, graphene oxide, nanomaterials, scientometrics

Procedia PDF Downloads 150
5 Scientometrics Review of Embodied Carbon Benchmarks for Buildings

Authors: A. Rana, M. Badri, D. Lopez Behar, O. Yee, H. Al Bqaei


The building sector is one of the largest emitters of greenhouse gases. However, as operation energy demands of this sector decrease with more effective energy policies and strategies, there is an urgent need to parallel focus on the growing proportion of embodied carbons. In this regard, benchmarks on embodied carbon of buildings can provide a point of reference to compare and improve the environmental performance of buildings for the stakeholders. Therefore, embodied carbon benchmarks can serve as a useful tool to address climate change challenges. This research utilizes the method to provide a knowledge roadmap of embodied carbon benchmarks development and implementation trends. Two main databases, Web of Science and Engineering Village, are considered for the study. The mapping was conducted with the help of VosViewer tool to provide information regarding: the critical research areas; most cited authors and publications; and countries with the highest publications. It is revealed that the role of benchmarks in energy policies is an emerging trend. In addition, the research highlighted that in policies, embodied carbon benchmarks are gaining importance at the material, whole building, and building portfolio levels. This research reveals direction for improvement and future research and of relevance to building industry professionals, policymakers, and researchers.

Keywords: buildings embodied carbon benchmark, methods, policy

Procedia PDF Downloads 78
4 Scientific Development as Diffusion on a Social Network: An Empirical Case Study

Authors: Anna Keuchenius


Broadly speaking, scientific development is studied in either a qualitative manner with a focus on the behavior and interpretations of academics, such as the sociology of science and science studies or in a quantitative manner with a focus on the analysis of publications, such as scientometrics and bibliometrics. Both come with a different set of methodologies and few cross-references. This paper contributes to the bridging of this divide, by on the on hand approaching the process of scientific progress from a qualitative sociological angle and using on the other hand quantitative and computational techniques. As a case study, we analyze the diffusion of Granovetter's hypothesis from his 1973 paper 'On The Strength of Weak Ties.' A network is constructed of all scientists that have referenced this particular paper, with directed edges to all other researchers that are concurrently referenced with Granovetter's 1973 paper. Studying the structure and growth of this network over time, it is found that Granovetter's hypothesis is used by distinct communities of scientists, each with their own key-narrative into which the hypothesis is fit. The diffusion within the communities shares similarities with the diffusion of an innovation in which innovators, early adopters, and an early-late majority can clearly be distinguished. Furthermore, the network structure shows that each community is clustered around one or few hub scientists that are disproportionately often referenced and seem largely responsible for carrying the hypothesis into their scientific subfield. The larger implication of this case study is that the diffusion of scientific hypotheses and ideas are not the spreading of well-defined objects over a network. Rather, the diffusion is a process in which the object itself dynamically changes in concurrence with its spread. Therefore it is argued that the methodology presented in this paper has potential beyond the scientific domain, in the study of diffusion of other not well-defined objects, such as opinions, behavior, and ideas.

Keywords: diffusion of innovations, network analysis, scientific development, sociology of science

Procedia PDF Downloads 256
3 Cleaning of Scientific References in Large Patent Databases Using Rule-Based Scoring and Clustering

Authors: Emiel Caron


Patent databases contain patent related data, organized in a relational data model, and are used to produce various patent statistics. These databases store raw data about scientific references cited by patents. For example, Patstat holds references to tens of millions of scientific journal publications and conference proceedings. These references might be used to connect patent databases with bibliographic databases, e.g. to study to the relation between science, technology, and innovation in various domains. Problematic in such studies is the low data quality of the references, i.e. they are often ambiguous, unstructured, and incomplete. Moreover, a complete bibliographic reference is stored in only one attribute. Therefore, a computerized cleaning and disambiguation method for large patent databases is developed in this work. The method uses rule-based scoring and clustering. The rules are based on bibliographic metadata, retrieved from the raw data by regular expressions, and are transparent and adaptable. The rules in combination with string similarity measures are used to detect pairs of records that are potential duplicates. Due to the scoring, different rules can be combined, to join scientific references, i.e. the rules reinforce each other. The scores are based on expert knowledge and initial method evaluation. After the scoring, pairs of scientific references that are above a certain threshold, are clustered by means of single-linkage clustering algorithm to form connected components. The method is designed to disambiguate all the scientific references in the Patstat database. The performance evaluation of the clustering method, on a large golden set with highly cited papers, shows on average a 99% precision and a 95% recall. The method is therefore accurate but careful, i.e. it weighs precision over recall. Consequently, separate clusters of high precision are sometimes formed, when there is not enough evidence for connecting scientific references, e.g. in the case of missing year and journal information for a reference. The clusters produced by the method can be used to directly link the Patstat database with bibliographic databases as the Web of Science or Scopus.

Keywords: clustering, data cleaning, data disambiguation, data mining, patent analysis, scientometrics

Procedia PDF Downloads 128
2 Evidence of a Negativity Bias in the Keywords of Scientific Papers

Authors: Kseniia Zviagintseva, Brett Buttliere


Science is fundamentally a problem-solving enterprise, and scientists pay more attention to the negative things, that cause them dissonance and negative affective state of uncertainty or contradiction. While this is agreed upon by philosophers of science, there are few empirical demonstrations. Here we examine the keywords from those papers published by PLoS in 2014 and show with several sentiment analyzers that negative keywords are studied more than positive keywords. Our dataset is the 927,406 keywords of 32,870 scientific articles in all fields published in 2014 by the journal PLOS ONE (collected from Counting how often the 47,415 unique keywords are used, we can examine whether those negative topics are studied more than positive. In order to find the sentiment of the keywords, we utilized two sentiment analysis tools, Hu and Liu (2004) and SentiStrength (2014). The results below are for Hu and Liu as these are the less convincing results. The average keyword was utilized 19.56 times, with half of the keywords being utilized only 1 time and the maximum number of uses being 18,589 times. The keywords identified as negative were utilized 37.39 times, on average, with the positive keywords being utilized 14.72 times and the neutral keywords - 19.29, on average. This difference is only marginally significant, with an F value of 2.82, with a p of .05, but one must keep in mind that more than half of the keywords are utilized only 1 time, artificially increasing the variance and driving the effect size down. To examine more closely, we looked at those top 25 most utilized keywords that have a sentiment. Among the top 25, there are only two positive words, ‘care’ and ‘dynamics’, in position numbers 5 and 13 respectively, with all the rest being identified as negative. ‘Diseases’ is the most studied keyword with 8,790 uses, with ‘cancer’ and ‘infectious’ being the second and fourth most utilized sentiment-laden keywords. The sentiment analysis is not perfect though, as the words ‘diseases’ and ‘disease’ are split by taking 1st and 3rd positions. Combining them, they remain as the most common sentiment-laden keyword, being utilized 13,236 times. More than just splitting the words, the sentiment analyzer logs ‘regression’ and ‘rat’ as negative, and these should probably be considered false positives. Despite these potential problems, the effect is apparent, as even the positive keywords like ‘care’ could or should be considered negative, since this word is most commonly utilized as a part of ‘health care’, ‘critical care’ or ‘quality of care’ and generally associated with how to improve it. All in all, the results suggest that negative concepts are studied more, also providing support for the notion that science is most generally a problem-solving enterprise. The results also provide evidence that negativity and contradiction are related to greater productivity and positive outcomes.

Keywords: bibliometrics, keywords analysis, negativity bias, positive and negative words, scientific papers, scientometrics

Procedia PDF Downloads 122
1 A Bibliometric Analysis of Ukrainian Research Articles on SARS-COV-2 (COVID-19) in Compliance with the Standards of Current Research Information Systems

Authors: Sabina Auhunas


These days in Ukraine, Open Science dramatically develops for the sake of scientists of all branches, providing an opportunity to take a more close look on the studies by foreign scientists, as well as to deliver their own scientific data to national and international journals. However, when it comes to the generalization of data on science activities by Ukrainian scientists, these data are often integrated into E-systems that operate inconsistent and barely related information sources. In order to resolve these issues, developed countries productively use E-systems, designed to store and manage research data, such as Current Research Information Systems that enable combining uncompiled data obtained from different sources. An algorithm for selecting SARS-CoV-2 research articles was designed, by means of which we collected the set of papers published by Ukrainian scientists and uploaded by August 1, 2020. Resulting metadata (document type, open access status, citation count, h-index, most cited documents, international research funding, author counts, the bibliographic relationship of journals) were taken from Scopus and Web of Science databases. The study also considered the info from COVID-19/SARS-CoV-2-related documents published from December 2019 to September 2020, directly from documents published by authors depending on territorial affiliation to Ukraine. These databases are enabled to get the necessary information for bibliometric analysis and necessary details: copyright, which may not be available in other databases (e.g., Science Direct). Search criteria and results for each online database were considered according to the WHO classification of the virus and the disease caused by this virus and represented (Table 1). First, we identified 89 research papers that provided us with the final data set after consolidation and removing duplication; however, only 56 papers were used for the analysis. The total number of documents by results from the WoS database came out at 21641 documents (48 affiliated to Ukraine among them) in the Scopus database came out at 32478 documents (41 affiliated to Ukraine among them). According to the publication activity of Ukrainian scientists, the following areas prevailed: Education, educational research (9 documents, 20.58%); Social Sciences, interdisciplinary (6 documents, 11.76%) and Economics (4 documents, 8.82%). The highest publication activity by institution types was reported in the Ministry of Education and Science of Ukraine (its percent of published scientific papers equals 36% or 7 documents), Danylo Halytsky Lviv National Medical University goes next (5 documents, 15%) and P. L. Shupyk National Medical Academy of Postgraduate Education (4 documents, 12%). Basically, research activities by Ukrainian scientists were funded by 5 entities: Belgian Development Cooperation, the National Institutes of Health (NIH, U.S.), The United States Department of Health & Human Services, grant from the Whitney and Betty MacMillan Center for International and Area Studies at Yale, a grant from the Yale Women Faculty Forum. Based on the results of the analysis, we obtained a set of published articles and preprints to be assessed on the variety of features in upcoming studies, including citation count, most cited documents, a bibliographic relationship of journals, reference linking. Further research on the development of the national scientific E-database continues using brand new analytical methods.

Keywords: content analysis, COVID-19, scientometrics, text mining

Procedia PDF Downloads 51