Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2582

Search results for: Epilepsy Detection

2582 Feedforward Neural Network with Backpropagation for Epilepsy Seizure Detection

Authors: Natalia Espinosa, Arthur Amorim, Rudolf Huebner

Abstract:

Epilepsy is a chronic neural disease and around 50 million people in the world suffer from this disease, however, in many cases, the individual acquires resistance to the medication, which is known as drug-resistant epilepsy, where a detection system is necessary. This paper showed the development of an automatic system for seizure detection based on artificial neural networks (ANN), which are common techniques of machine learning. Discrete Wavelet Transform (DWT) is used for decomposing electroencephalogram (EEG) signal into main brain waves, with these frequency bands is extracted features for training a feedforward neural network with backpropagation, finally made a pattern classification, seizure or non-seizure. Obtaining 95% accuracy in epileptic EEG and 100% in normal EEG.

Keywords: Artificial Neural Network (ANN), Discrete Wavelet Transform (DWT), Epilepsy Detection , Seizure.

Procedia PDF Downloads 26
2581 Performance Evaluation of Contemporary Classifiers for Automatic Detection of Epileptic EEG

Authors: K. E. Ch. Vidyasagar, M. Moghavvemi, T. S. S. T. Prabhat

Abstract:

Epilepsy is a global problem, and with seizures eluding even the smartest of diagnoses a requirement for automatic detection of the same using electroencephalogram (EEG) would have a huge impact in diagnosis of the disorder. Among a multitude of methods for automatic epilepsy detection, one should find the best method out, based on accuracy, for classification. This paper reasons out, and rationalizes, the best methods for classification. Accuracy is based on the classifier, and thus this paper discusses classifiers like quadratic discriminant analysis (QDA), classification and regression tree (CART), support vector machine (SVM), naive Bayes classifier (NBC), linear discriminant analysis (LDA), K-nearest neighbor (KNN) and artificial neural networks (ANN). Results show that ANN is the most accurate of all the above stated classifiers with 97.7% accuracy, 97.25% specificity and 98.28% sensitivity in its merit. This is followed closely by SVM with 1% variation in result. These results would certainly help researchers choose the best classifier for detection of epilepsy.

Keywords: classification, seizure, KNN, SVM, LDA, ANN, epilepsy

Procedia PDF Downloads 385
2580 EEG Diagnosis Based on Phase Space with Wavelet Transforms for Epilepsy Detection

Authors: Mohmmad A. Obeidat, Amjed Al Fahoum, Ayman M. Mansour

Abstract:

The recognition of an abnormal activity of the brain functionality is a vital issue. To determine the type of the abnormal activity either a brain image or brain signal are usually considered. Imaging localizes the defect within the brain area and relates this area with somebody functionalities. However, some functions may be disturbed without affecting the brain as in epilepsy. In this case, imaging may not provide the symptoms of the problem. A cheaper yet efficient approach that can be utilized to detect abnormal activity is the measurement and analysis of the electroencephalogram (EEG) signals. The main goal of this work is to come up with a new method to facilitate the classification of the abnormal and disorder activities within the brain directly using EEG signal processing, which makes it possible to be applied in an on-line monitoring system.

Keywords: EEG, wavelet, epilepsy, detection

Procedia PDF Downloads 366
2579 Understanding Parental Style and Its Effect on the Wellbeing of Adolescents with Epilepsy

Authors: Arthy Vinayakam, Emilda Judith Ezhil Rajan

Abstract:

Adolescents with epilepsy living in developing country like India face many difficulties on stigma towards the disease. The psychological wellbeing of adolescents who are living with epilepsy has a varied influence on their daily activities and decision-making. Parental involvement with adolescents has always been a subject of caution. The dynamics in adolescents with epilepsy is much varied as their parental aspects has been known to have an impact on their education, socialization and wellbeing. The current study aims to identify the effect of parental styles, how they tend to effect the perception of self-concept that relate to the stigma in adolescents with epilepsy. A sample of 30 adolescents with epilepsy and their parents were taken; a control group of 30 adolescents and their parents were also taken. The General Health Questionnaire -12 was used as a screening for both groups to be included in the study. Parents were evaluated with Parenting Practices Questionnaire (PPQ). Adolescents were administered the Epilepsy Stigma Scale (ESS), Rosenberg Self-esteem Scale (RSS) and Adolescent Wellbeing Scale (AWS). Descriptive statistics was used to analyze the data. The findings of the study highlight the challenges of both parent and their influence on adolescent’s wellbeing. The findings also establish the impact of parenting style on the stigma in adolescents having epilepsy and how this influences their self-concept whereby their emotional strength.

Keywords: epilepsy, parenting style, stigma, wellbeing

Procedia PDF Downloads 120
2578 A Study on Awareness and Attitude of First-Year Medical Students on Epilepsy in University of Khartoum 2020-2021

Authors: Mohammed E. Ibrahim, Baraa A. Taha, Kamil M. A. Shabban

Abstract:

Background: Epilepsy is a common but widely misunderstood illness. Consequently, patients with epilepsy suffer from considerable stigmatization in society. This social stigma and discrimination often cause more suffering for the patients than the disease itself. Since very few studies have explored the misperceptions about epilepsy among university students in Sudan, it is not possible to provide focused intervention aimed at eliminating this discrimination. Methods: A cross-sectional study was applied among the first-year medical students at the University of Khartoum between December (2020) and February (2021). A 29-item standardized questionnaire was self-administered by 198 students (out of 320) who agreed to participate in this study. Google form was the tool used to collect the data. The data were analyzed using the Statistical Package for Social Science software version 26. Result: Overall, the results indicate a negative trend in knowledge and attitude toward epilepsy. The vast majority of the respondents (84.8%) have read or heard about epilepsy, while 43.9% had seen someone with epilepsy. Only 7.5% of the participants reported that epilepsy is contagious, whereas 43.4% of them think that epilepsy is a psychological disorder. About 62.2% of students think head/birth trauma is a cause of epilepsy. On the other side, about 15.7% and 5.1% believed that evil spirits and punishment from god can also be a possible cause of epilepsy; we found these false beliefs are more common in participants from rural areas (p-value < 0.05). In regard to attitude, 19.7% of students thought that it is inappropriate for a patient with epilepsy to have a child. This attitude correlates with the mother’s education as the percentage is higher for those who have lower mother’s education (through secondary school education and below) (p < 0.05). The majority of Our participant knew that some people with epilepsy need life-long drug treatment; this belief was found to be more common in females than their counterparts(p < 0.05). . Finally, most of the respondents (93.9%) thought that a child with epilepsy Can be successful in a normal class. This belief is four-time as common in participants whose mothers have higher education (through university education and above) compared with corresponding respondents (p < 0.05). Conclusion: This study concludes that students' knowledge about epilepsy is limited and requires immediate intervention through educational campaigns to develop a well-informed and tolerant community.

Keywords: epilepsy, awareness, attitude, university students, Sudan

Procedia PDF Downloads 20
2577 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 46
2576 Depressive Symptoms in Children with Epilepsy Attending a Tertiary Care Hospital in Oman

Authors: Hamood Al Kiyumi, Salim Al Huseini, Khalid Al Risi, Hassan Mirza, Amira Al Hosni, Sanjay Jaju, Asaad Al Habsi

Abstract:

Objectives: The aim of this study was to assess the proportion of depressive symptoms along with demographic data in children diagnosed with epilepsy in a tertiary care institution in Oman. Methods: This cross-sectional study was conducted between June 2016 and August 2018. We have included 75 children with age group from five to 12 years old, attending epilepsy clinic at Sultan Qaboos University Hospital who were diagnosed with epilepsy and already on treatment. Patients were excluded if they have mental retardation. Validated Depression Scale for Children (CES-DC) questionnaire was utilized to assess the level of depressive symptoms among children. In addition, we have looked at associated factors including seizure status in the last three months, compliance with antiepileptic medications, type of epilepsy, and number of antiepileptic medications. Results: In this study, we found that depressive symptoms were present in 39 (52%) of patients. We also found that 96% of the patients were compliant to medications. In addition, seizure was present in the last three months in 48% of the sample studies. There was no statistically significant association between any of the studied variables and depression. Conclusions: Although depression is highly prevalent in children with epilepsy, this study did not find any significant association between the CES-DC scores and the studied factors.

Keywords: depression, children, epilepsy, Oman

Procedia PDF Downloads 51
2575 EEG-Based Screening Tool for School Student’s Brain Disorders Using Machine Learning Algorithms

Authors: Abdelrahman A. Ramzy, Bassel S. Abdallah, Mohamed E. Bahgat, Sarah M. Abdelkader, Sherif H. ElGohary

Abstract:

Attention-Deficit/Hyperactivity Disorder (ADHD), epilepsy, and autism affect millions of children worldwide, many of which are undiagnosed despite the fact that all of these disorders are detectable in early childhood. Late diagnosis can cause severe problems due to the late treatment and to the misconceptions and lack of awareness as a whole towards these disorders. Moreover, electroencephalography (EEG) has played a vital role in the assessment of neural function in children. Therefore, quantitative EEG measurement will be utilized as a tool for use in the evaluation of patients who may have ADHD, epilepsy, and autism. We propose a screening tool that uses EEG signals and machine learning algorithms to detect these disorders at an early age in an automated manner. The proposed classifiers used with epilepsy as a step taken for the work done so far, provided an accuracy of approximately 97% using SVM, Naïve Bayes and Decision tree, while 98% using KNN, which gives hope for the work yet to be conducted.

Keywords: ADHD, autism, epilepsy, EEG, SVM

Procedia PDF Downloads 40
2574 Understanding the Genetic Basis of SUDEP

Authors: Kumar Ashwini, Nayak C. Vinod

Abstract:

Sudden unexpected death in epilepsy (SUDEP) is a rarity. Each year, about one in 150 epileptics, whose seizures are not controlled, may die of SUDEP. It is a leading cause of death in young adults with uncontrolled seizures. Understanding the genetic basis for SUDEP, is crucial given that the rate of sudden death in epilepsy patients is 20 fold that of the general population. We encountered one such case of a young male, a known epileptic, who was brought dead after a sudden collapse. We hereby present a poster discussing the autopsy findings of this case and also highlighting the importance of understanding the genetic basis of SUDEP.

Keywords: sudden death, epilepsy, genetic, autopsy

Procedia PDF Downloads 239
2573 D-Epi App: Mobile Application to Control Sodium Valproat Administration in Children with Idiopatic Epilepsy in Indonesia

Authors: Nyimas Annissa Mutiara Andini

Abstract:

There are 325,000 children younger than age 15 in the U.S. have epilepsy. In Indonesia, 40% of 3,5 millions cases of epilepsy happens in children. The most common type of epilepsy, which affects 6 out of 10 people with the disorder, is called idiopathic epilepsy and which has no identifiable cause. One of the most commonly used medications in the treatment of this childhood epilepsy is sodium valproate. Administration of sodium valproat in children has a problem to fail. Nearly 60% of pediatric patients known were mildly, moderately, or severely non-adherent with therapy during the first six months of treatment. Many parents or caregiver took far less medication than prescribed, and the treatment-adherence pattern for the majority of patients was established during the first month of treatment. 42% of the patients were almost always given their medications as prescribed but 13% had very poor adherence even in the early weeks and months of treatment. About 7% of patients initially gave the medication correctly 90% of the time, but adherence dropped to around 20% within six months of starting treatment. Over the six months of observation, the total missing of administration is about four out of 14 doses in any given week. This fail can cause the epilepsy to relapse. Whereas, current reported epilepsy disorder were significantly more likely than those never diagnosed to experience depression (8% vs 2%), anxiety (17% vs 3%), attention-deficit/hyperactivity disorder (23% vs 6%), developmental delay (51% vs 3%), autism/autism spectrum disorder (16% vs 1%), and headaches (14% vs 5%) (all P< 0.05). They had a greater risk of limitation in the ability to do things (relative risk: 9.22; 95% CI: 7.56–11.24), repeating a school grade (relative risk: 2.59; CI: 1.52–4.40), and potentially having unmet medical and mental health needs. In the other side, technology can help to make our life easier. One of the technology, that we can use is a mobile application. A mobile app is a software program we can download and access directly using our phone. Indonesians are highly mobile centric. They use, on average, 6.7 applications over a 30 day period. This paper is aimed to describe an application that could help to control a sodium valproat administration in children; we call it as D-Epi app. D-Epi app is a downloadable application that can help parents or caregiver alert by a timer-related application to warn whether it is the time to administer the sodium valproat. It works not only as a standard alarm, but also inform important information about the drug and emergency stuffs to do to children with epilepsy. This application could help parents and caregiver to take care a child with epilepsy in Indonesia.

Keywords: application, children, D-Epi, epilepsy

Procedia PDF Downloads 187
2572 Machine Learning Approach for Lateralization of Temporal Lobe Epilepsy

Authors: Samira-Sadat JamaliDinan, Haidar Almohri, Mohammad-Reza Nazem-Zadeh

Abstract:

Lateralization of temporal lobe epilepsy (TLE) is very important for positive surgical outcomes. We propose a machine learning framework to ultimately identify the epileptogenic hemisphere for temporal lobe epilepsy (TLE) cases using magnetoencephalography (MEG) coherence source imaging (CSI) and diffusion tensor imaging (DTI). Unlike most studies that use classification algorithms, we propose an effective clustering approach to distinguish between normal and TLE cases. We apply the famous Minkowski weighted K-Means (MWK-Means) technique as the clustering framework. To overcome the problem of poor initialization of K-Means, we use particle swarm optimization (PSO) to effectively select the initial centroids of clusters prior to applying MWK-Means. We demonstrate that compared to K-means and MWK-means independently, this approach is able to improve the result of a benchmark data set.

Keywords: temporal lobe epilepsy, machine learning, clustering, magnetoencephalography

Procedia PDF Downloads 28
2571 Development of Nursing Service System Integrated Case Manager Concept for the Patients with Epilepsy at the Tertiary Epilepsy Clinic of Thailand

Authors: C. Puangsawat, C. Limotai, P. Srikhachin

Abstract:

Bio-psycho-social caring was required for promoting the quality of life of the patients with epilepsy (PWE), despite controlled seizures. Multifaceted issues emerge at the epilepsy clinic. Unpredicted seizures, antiepileptic drug compliance problems/adverse effects, psychiatric, and social problems are all needed to be explored and managed. The Nursing Service System (NSS) at the tertiary epilepsy clinic (TEC) was consequently developed for improving the clinical care for PWE. Case manager concept was integrated as the framework guiding the processes and strategies used for developing the NSS as well as the roles of the multidisciplinary team at the clinic. This study aimed to report the outcomes of the developed NSS integrated case manager concept. The processes of our developed NSS program included 1) screening for patient’s problems using questionnaire prior to seeing epileptologists i.e., assessing the patient’s risk to develop acute seizures at the clinic, issues related to medication use, and uncovered psychiatric and social problems; and 2) assigning the patients at risk to be evaluated and managed by appropriate team. Nurses specializing in epilepsy in coordination with the multidisciplinary team implemented the NSS to promote coordinated work among the team which consists of epileptologists, nurses, pharmacists, psychologists, and social workers. Determination of the role of each person and their responsibilities along with joint care plan were clearly established. One year after implementation, the rate of acute seizure occurrence at the clinic was decreased, and satisfactory feedback from the patients was received. In order to achieve an optimal goal to promote self-management behaviors in PWE, continuing the NSS and systematic assessment of its effectiveness is required.

Keywords: case manager concept, nursing service system, patients with epilepsy, quality of life

Procedia PDF Downloads 27
2570 Auricular Electroacupuncture Rescued Epilepsy Seizure by Attenuating TLR-2 Inflammatory Pathway in the Kainic Acid-Induced Rats

Authors: I-Han Hsiao, Chun-Ping Huang, Ching-Liang Hsieh, Yi-Wen Lin

Abstract:

Epilepsy is chronic brain disorder that results in the sporadic occurrence of spontaneous seizures in the temporal lobe, cerebral cortex, and hippocampus. Clinical antiepileptic medicines are often ineffective or little benefits in the small amount of patients and usually initiate severe side effects. This inflammation contributes to enhanced neuronal excitability and the onset of epilepsy. Auricular electric-stimulation (AES) can increase parasympathetic activity and stimulate the solitary tract nucleus to induce the cholinergic anti-inflammatory pathway. Furthermore, it may be a therapeutic strategy for the treatment of epilepsy. In the present study, we want to investigate the effects of AES on inflammatory mediators in kainic acid (KA)-induced epileptic seizure rats. Experimental KA injection increased expression of TLR-2 pathway associated inflammatory mediators, were further reduced by either 2Hz or 15 Hz AES in the prefrontal cortex, hippocampus, and somatosensory cortex. We suggest that AES can successfully control the epileptic seizure by down-regulation of inflammation signaling pathway.

Keywords: auricular electric-stimulation, epileptic seizures, anti-inflammation

Procedia PDF Downloads 66
2569 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song

Abstract:

In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 205
2568 Epileptic Seizure Onset Detection via Energy and Neural Synchronization Decision Fusion

Authors: Marwa Qaraqe, Muhammad Ismail, Erchin Serpedin

Abstract:

This paper presents a novel architecture for a patient-specific epileptic seizure onset detector using scalp electroencephalography (EEG). The proposed architecture is based on the decision fusion calculated from energy and neural synchronization related features. Specifically, one level of the detector calculates the condition number (CN) of an EEG matrix to evaluate the amount of neural synchronization present within the EEG channels. On a parallel level, the detector evaluates the energy contained in four EEG frequency subbands. The information is then fed into two independent (parallel) classification units based on support vector machines to determine the onset of a seizure event. The decisions from the two classifiers are then combined together according to two fusion techniques to determine a global decision. Experimental results demonstrate that the detector based on the AND fusion technique outperforms existing detectors with a sensitivity of 100%, detection latency of 3 seconds, while it achieves a 2:76 false alarm rate per hour. The OR fusion technique achieves a sensitivity of 100%, and significantly improves delay latency (0:17 seconds), yet it achieves 12 false alarms per hour.

Keywords: epilepsy, EEG, seizure onset, electroencephalography, neuron, detection

Procedia PDF Downloads 359
2567 Reduced Complexity of ML Detection Combined with DFE

Authors: Jae-Hyun Ro, Yong-Jun Kim, Chang-Bin Ha, Hyoung-Kyu Song

Abstract:

In multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) systems, many detection schemes have been developed to improve the error performance and to reduce the complexity. Maximum likelihood (ML) detection has optimal error performance but it has very high complexity. Thus, this paper proposes reduced complexity of ML detection combined with decision feedback equalizer (DFE). The error performance of the proposed detection scheme is higher than the conventional DFE. But the complexity of the proposed scheme is lower than the conventional ML detection.

Keywords: detection, DFE, MIMO-OFDM, ML

Procedia PDF Downloads 362
2566 Enhancement Effect of Compound 4-Hydroxybenzoic Acid from Petung Bamboo (Dendrocalamus Asper) Shoots on α1β2γ2S of GABA (A) Receptor Expressed in Xenopus laevis Oocytes- Preliminary Study on Its Anti-Epileptic Potential

Authors: Muhammad Bilal, Amelia Jane Llyod, Habsah Mohamad, Jia Hui Wong, Abdul Aziz Mohamed Yusoff, Jafri Malin Abdullah, Jingli Zhang

Abstract:

Epilepsy is one of the major brain afflictions occurs with uncontrolled excitation of cortex; disturbed 50 million of world’s population. About 25 percent of patients subjected to adverse effects from antiepileptic drugs (AEDs) such as depression, nausea, tremors, gastrointestinal symptoms, osteoporosis, dizziness, weight change, drowsiness, fatigue are commonly observed indications; therefore, new drugs are required to cure epilepsy. GABA is principle inhibitory neurotransmitter, control excitation of the brain. Mutation or dysfunction of GABA receptor is one of the primary causes of epilepsy, which is confirmed from many acquired models of epilepsy like traumatic brain injury, kindling, and status epilepticus models of epilepsy. GABA receptor has 3 distinct types such as GABA (A), GABA (B), GABA(C).GABA (A) receptor has 20 different subunits, α1β2γ2 subunits composition of GABA (A) receptor is the most used combination of subunits for screening of compounds against epilepsy. We expressed α1β2γ2s subunits of GABA (A) Receptor in Xenopus leavis oocytes and examined the enhancement potential of 4-Hydroxybenzoic acid compound on GABA (A) receptor via two-electrode voltage clamp current recording technique. Bamboo shoots are the young, tender offspring of bamboo, which are usually harvested after a cultivating period of 2 weeks. Proteins, acids, fat, starch, carbohydrate, fatty acid, vitamin, dietary fiber, and minerals are the major constituent found systematically in bamboo shoots. These shoots reported to have anticancer, antiviral, antibacterial activity, also possess antioxidant properties due to the presence of phenolic compounds. Student t-test analysis suggested that 4- hydroxybenzoic acid positively allosteric GABA (A) receptor, increased normalized current amplitude to 1.0304±0.0464(p value 0.032) compared with vehicle. 4-Hydrobenzoic acid, a compound from Dendrocalamus Asper bamboo shoot gives new insights for future studies on bamboo shoots with motivation for extraction of more compounds to investigate their effects on human and rodents against epilepsy, insomnia, and anxiety.

Keywords: α1β2γ2S, antiepileptic, bamboo shoots, epilepsy GABA (A) receptor, two-microelectrode voltage clamp, xenopus laevis oocytes

Procedia PDF Downloads 271
2565 Personality Profiles, Emotional Disturbance and Health-Related Quality of Life in Patients with Epilepsy

Authors: Usha Barahmand, Ruhollah Heydari Sheikh Ahmad, Sara Alaie Khoraem

Abstract:

Introduction: The association of epilepsy with several psychological disorders and reduced quality of life has long been recognized. The present study aimed at comparing the personality profiles, quality of life and symptomatology of anxiety and depression in patients with epilepsy and healthy controls. Materials and Methods: Forty seven patients (29 men and 18 women) with diagnosed epilepsy participated in this study. Forty seven healthy controls who matched the patients in age and gender were also recruited. The participants’ personality and psychological profiles were assessed using the Depression, Anxiety, and Stress Scale (DASS-21), the Short-Form Health Survey (SF-36) and the HEXACO Personality Inventory (HEXACO-PI). Scoring algorithms were applied to the SF-36 produce the physical and mental component scores (PCS and MCS). Results: There were statistically significant differences in the total SF-36 score, anxiety, depression and stress scores of the DASS-21 between patients and controls. Anxiety, stress and depression scores significantly correlated inversely with the PCS and MCS. Data analysis showed that females had higher depression scores than males in both patients and controls, while males in both groups scored higher on stress. Patients’ personality scores were also different from those reported by controls on emotional, agreeableness and extroversion. Patients scored higher on emotionality, and lower on agreeableness and extraversion. Patients also scored lower on indices of quality of life. Regression analysis revealed that emotionality, anxiety, stress and MCS accounted for a significant proportion of the variance in severity of epileptic seizures. Conclusion: Stressful situations and psychological conditions as well as the personality trait of neuroticism were related to the occurrence of recurrent epileptic seizures.

Keywords: anxiety, depression, epilepsy, neuroticism, personality, quality of life, stress

Procedia PDF Downloads 264
2564 Theory of Mind and Its Brain Distribution in Patients with Temporal Lobe Epilepsy

Authors: Wei-Han Wang, Hsiang-Yu Yu, Mau-Sun Hua

Abstract:

Theory of Mind (ToM) refers to the ability to infer another’s mental state. With appropriate ToM, one can behave well in social interactions. A growing body of evidence has demonstrated that patients with temporal lobe epilepsy (TLE) may have damaged ToM due to impact on regions of the underlying neural network of ToM. However, the question of whether there is cerebral laterality for ToM functions remains open. This study aimed to examine whether there is cerebral lateralization for ToM abilities in TLE patients. Sixty-seven adult TLE patients and 30 matched healthy controls (HC) were recruited. Patients were classified into right (RTLE), left (LTLE), and bilateral (BTLE) TLE groups on the basis of a consensus panel review of their seizure semiology, EEG findings, and brain imaging results. All participants completed an intellectual test and four tasks measuring basic and advanced ToM. The results showed that, on all ToM tasks; (1)each patient group performed worse than HC; (2)there were no significant differences between LTLE and RTLE groups; (3)the BTLE group performed the worst. It appears that the neural network responsible for ToM is distributed evenly between the cerebral hemispheres.

Keywords: cerebral lateralization, social cognition, temporal lobe epilepsy, theory of mind

Procedia PDF Downloads 317
2563 The Findings EEG-LORETA about Epilepsy

Authors: Leila Maleki, Ahmad Esmali Kooraneh, Hossein Taghi Derakhshi

Abstract:

Neural activity in the human brain starts from the early stages of prenatal development. This activity or signals generated by the brain are electrical in nature and represent not only the brain function but also the status of the whole body. At the present moment, three methods can record functional and physiological changes within the brain with high temporal resolution of neuronal interactions at the network level: the electroencephalogram (EEG), the magnet oencephalogram (MEG), and functional magnetic resonance imaging (fMRI); each of these has advantages and shortcomings. EEG recording with a large number of electrodes is now feasible in clinical practice. Multichannel EEG recorded from the scalp surface provides a very valuable but indirect information about the source distribution. However, deep electrode measurements yield more reliable information about the source locations، Intracranial recordings and scalp EEG are used with the source imaging techniques to determine the locations and strengths of the epileptic activity. As a source localization method, Low Resolution Electro-Magnetic Tomography (LORETA) is solved for the realistic geometry based on both forward methods, the Boundary Element Method (BEM) and the Finite Difference Method (FDM). In this paper, we review The findings EEG- LORETA about epilepsy.

Keywords: epilepsy, EEG, EEG-LORETA

Procedia PDF Downloads 438
2562 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study

Authors: Si Mon Kueh, Tom J. Kazmierski

Abstract:

There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.

Keywords: Artificial Neural Networks (ANN), bit-serial neural processor, FPGA, Neural Processing Element (NPE)

Procedia PDF Downloads 210
2561 An Architecture for New Generation of Distributed Intrusion Detection System Based on Preventive Detection

Authors: H. Benmoussa, A. A. El Kalam, A. Ait Ouahman

Abstract:

The design and implementation of intrusion detection systems (IDS) remain an important area of research in the security of information systems. Despite the importance and reputation of the current intrusion detection systems, their efficiency and effectiveness remain limited as they should include active defense approach to allow anticipating and predicting intrusions before their occurrence. Consequently, they must be readapted. For this purpose we suggest a new generation of distributed intrusion detection system based on preventive detection approach and using intelligent and mobile agents. Our architecture benefits from mobile agent features and addresses some of the issues with centralized and hierarchical models. Also, it presents advantages in terms of increasing scalability and flexibility.

Keywords: Intrusion Detection System (IDS), preventive detection, mobile agents, distributed architecture

Procedia PDF Downloads 417
2560 Video Based Ambient Smoke Detection By Detecting Directional Contrast Decrease

Authors: Omair Ghori, Anton Stadler, Stefan Wilk, Wolfgang Effelsberg

Abstract:

Fire-related incidents account for extensive loss of life and material damage. Quick and reliable detection of occurring fires has high real world implications. Whereas a major research focus lies on the detection of outdoor fires, indoor camera-based fire detection is still an open issue. Cameras in combination with computer vision helps to detect flames and smoke more quickly than conventional fire detectors. In this work, we present a computer vision-based smoke detection algorithm based on contrast changes and a multi-step classification. This work accelerates computer vision-based fire detection considerably in comparison with classical indoor-fire detection.

Keywords: contrast analysis, early fire detection, video smoke detection, video surveillance

Procedia PDF Downloads 212
2559 Intrusion Detection Techniques in NaaS in the Cloud: A Review

Authors: Rashid Mahmood

Abstract:

The network as a service (NaaS) usage has been well-known from the last few years in the many applications, like mission critical applications. In the NaaS, prevention method is not adequate as the security concerned, so the detection method should be added to the security issues in NaaS. The authentication and encryption are considered the first solution of the NaaS problem whereas now these are not sufficient as NaaS use is increasing. In this paper, we are going to present the concept of intrusion detection and then survey some of major intrusion detection techniques in NaaS and aim to compare in some important fields.

Keywords: IDS, cloud, naas, detection

Procedia PDF Downloads 151
2558 Epilepsy Seizure Prediction by Effective Connectivity Estimation Using Granger Causality and Directed Transfer Function Analysis of Multi-Channel Electroencephalogram

Authors: Mona Hejazi, Ali Motie Nasrabadi

Abstract:

Epilepsy is a persistent neurological disorder that affects more than 50 million people worldwide. Hence, there is a necessity to introduce an efficient prediction model for making a correct diagnosis of the epileptic seizure and accurate prediction of its type. In this study we consider how the Effective Connectivity (EC) patterns obtained from intracranial Electroencephalographic (EEG) recordings reveal information about the dynamics of the epileptic brain and can be used to predict imminent seizures, as this will enable the patients (and caregivers) to take appropriate precautions. We use this definition because we believe that effective connectivity near seizures begin to change, so we can predict seizures according to this feature. Results are reported on the standard Freiburg EEG dataset which contains data from 21 patients suffering from medically intractable focal epilepsy. Six channels of EEG from each patients are considered and effective connectivity using Directed Transfer Function (DTF) and Granger Causality (GC) methods is estimated. We concentrate on effective connectivity standard deviation over time and feature changes in five brain frequency sub-bands (Alpha, Beta, Theta, Delta, and Gamma) are compared. The performance obtained for the proposed scheme in predicting seizures is: average prediction time is 50 minutes before seizure onset, the maximum sensitivity is approximate ~80% and the false positive rate is 0.33 FP/h. DTF method is more acceptable to predict epileptic seizures and generally we can observe that the greater results are in gamma and beta sub-bands. The research of this paper is significantly helpful for clinical applications, especially for the exploitation of online portable devices.

Keywords: effective connectivity, Granger causality, directed transfer function, epilepsy seizure prediction, EEG

Procedia PDF Downloads 354
2557 Fast and Accurate Model to Detect Ictal Waveforms in Electroencephalogram Signals

Authors: Piyush Swami, Bijaya Ketan Panigrahi, Sneh Anand, Manvir Bhatia, Tapan Gandhi

Abstract:

Visual inspection of electroencephalogram (EEG) signals to detect epileptic signals is very challenging and time-consuming task even for any expert neurophysiologist. This problem is most challenging in under-developed and developing countries due to shortage of skilled neurophysiologists. In the past, notable research efforts have gone in trying to automate the seizure detection process. However, due to high false alarm detections and complexity of the models developed so far, have vastly delimited their practical implementation. In this paper, we present a novel scheme for epileptic seizure detection using empirical mode decomposition technique. The intrinsic mode functions obtained were then used to calculate the standard deviations. This was followed by probability density based classifier to discriminate between non-ictal and ictal patterns in EEG signals. The model presented here demonstrated very high classification rates ( > 97%) without compromising the statistical performance. The computation timings for each testing phase were also very low ( < 0.029 s) which makes this model ideal for practical applications.

Keywords: electroencephalogram (EEG), epilepsy, ictal patterns, empirical mode decomposition

Procedia PDF Downloads 223
2556 Securing Web Servers by the Intrusion Detection System (IDS)

Authors: Yousef Farhaoui

Abstract:

An IDS is a tool which is used to improve the level of security. We present in this paper different architectures of IDS. We will also discuss measures that define the effectiveness of IDS and the very recent works of standardization and homogenization of IDS. At the end, we propose a new model of IDS called BiIDS (IDS Based on the two principles of detection) for securing web servers and applications by the Intrusion Detection System (IDS).

Keywords: intrusion detection, architectures, characteristic, tools, security, web server

Procedia PDF Downloads 279
2555 Analysis of Brain Signals Using Neural Networks Optimized by Co-Evolution Algorithms

Authors: Zahra Abdolkarimi, Naser Zourikalatehsamad,

Abstract:

Up to 40 years ago, after recognition of epilepsy, it was generally believed that these attacks occurred randomly and suddenly. However, thanks to the advance of mathematics and engineering, such attacks can be predicted within a few minutes or hours. In this way, various algorithms for long-term prediction of the time and frequency of the first attack are presented. In this paper, by considering the nonlinear nature of brain signals and dynamic recorded brain signals, ANFIS model is presented to predict the brain signals, since according to physiologic structure of the onset of attacks, more complex neural structures can better model the signal during attacks. Contribution of this work is the co-evolution algorithm for optimization of ANFIS network parameters. Our objective is to predict brain signals based on time series obtained from brain signals of the people suffering from epilepsy using ANFIS. Results reveal that compared to other methods, this method has less sensitivity to uncertainties such as presence of noise and interruption in recorded signals of the brain as well as more accuracy. Long-term prediction capacity of the model illustrates the usage of planted systems for warning medication and preventing brain signals.

Keywords: co-evolution algorithms, brain signals, time series, neural networks, ANFIS model, physiologic structure, time prediction, epilepsy suffering, illustrates model

Procedia PDF Downloads 189
2554 Suggestion for Malware Detection Agent Considering Network Environment

Authors: Ji-Hoon Hong, Dong-Hee Kim, Nam-Uk Kim, Tai-Myoung Chung

Abstract:

Smartphone users are increasing rapidly. Accordingly, many companies are running BYOD (Bring Your Own Device: Policies to bring private-smartphones to the company) policy to increase work efficiency. However, smartphones are always under the threat of malware, thus the company network that is connected smartphone is exposed to serious risks. Most smartphone malware detection techniques are to perform an independent detection (perform the detection of a single target application). In this paper, we analyzed a variety of intrusion detection techniques. Based on the results of analysis propose an agent using the network IDS.

Keywords: android malware detection, software-defined network, interaction environment, android malware detection, software-defined network, interaction environment

Procedia PDF Downloads 310
2553 Improved Skin Detection Using Colour Space and Texture

Authors: Medjram Sofiane, Babahenini Mohamed Chaouki, Mohamed Benali Yamina

Abstract:

Skin detection is an important task for computer vision systems. A good method for skin detection means a good and successful result of the system. The colour is a good descriptor that allows us to detect skin colour in the images, but because of lightings effects and objects that have a similar colour skin, skin detection becomes difficult. In this paper, we proposed a method using the YCbCr colour space for skin detection and lighting effects elimination, then we use the information of texture to eliminate the false regions detected by the YCbCr colour skin model.

Keywords: skin detection, YCbCr, GLCM, texture, human skin

Procedia PDF Downloads 278