Search results for: sulfate resistance
2278 Evaluation of Fresh, Strength and Durability Properties of Self-Compacting Concrete Incorporating Bagasse Ash
Authors: Abdul Haseeb Wani, Shruti Sharma, Rafat Siddique
Abstract:
Self-compacting concrete is an engineered concrete that flows and de-airs without additional energy input. Such concrete requires a high slump which can be achieved by the addition of superplasticizers to the concrete mix. In the present work, bagasse ash is utilised as a replacement of cement in self-compacting concrete. This serves the purpose of both land disposal and environmental concerns related to the disposal of bagasse ash. Further, an experimental program was carried out to study the fresh, strength, and durability properties of self-compacting concrete made with bagasse ash. The mixes were prepared with four percentages (0, 5, 10 and 15) of bagasse ash as partial replacement of cement. Properties investigated were; Slump-flow, V-funnel and L-box, Compressive strength, Splitting tensile strength, Chloride-ion penetration resistance and Water absorption. Compressive and splitting tensile strength tests were conducted at the age of 7 and 28 days. Rapid chloride-ion permeability test was carried at the age of 28 days and water absorption test was carried out at the age of 7 days after initial curing of 28 days. Test results showed that there is an increase in the compressive strength and splitting tensile strength of the concrete specimens having up to 10% replacement level, however, there is a slight decrease at 15% level of replacement. Resistance to chloride-ion penetration of the specimens increased as the percentage of replacement was increased. The charge passed in all the specimens containing bagasse ash was lower than that of the specimen without bagasse ash. Water absorption of the specimens decreased up to 10% replacement level and increased at 15% level of replacement. Hence, it can be concluded that optimum level of replacement of cement with bagasse ash in self-compacting concrete comes out to be 10%; at which the self-compacting concrete has satisfactory flow characteristics (as per the European guidelines), improved compressive and splitting tensile strength and better durability properties as compared to the control mix.Keywords: bagasse ash, compressive strength, self-compacting concrete, splitting tensile strength
Procedia PDF Downloads 3542277 Application of Bacteriophages as Natural Antibiotics in Aquaculture
Authors: Chamilani Nikapitiya, Mahanama De Zoysa, Jehee Lee
Abstract:
Most of the bacterial diseases are associated with high mortalities in aquaculture species and causing huge economic losses. Different approaches have been taken to prevent or control of bacterial diseases including use of vaccines, probiotics, chemotherapy, water quality management, etc. Antibiotics are widely applying as chemotherapy to control bacterial diseases, however, it has been shown that frequent use of antibiotics is favored to develop multi-drug resistance bacteria. Therefore, phages and phage encoded lytic proteins are known to be one of the most promising alternatives for antibiotics to avoid the emergence of antibiotic-resistant bacteria. We isolated and characterized the two lytic phages, namely pAh-1 and pAs-1 against pathogenic Aeromonas hydrophila and Aeromonas salmonicida, respectively. Morphological characteristics were analyzed by Transmission electron microscopy (TEM) and host strain specificities were tested with Aeromonas and other closely related bacterial strains. TEM analysis revealed that both pAh-1 and pAsm-1 are composed of an icosahedral head and a segmented tail, and we suggest that, they are new members of Myoviridae family. Genome sizes of isolated phages were estimated by restriction enzyme digestion of genomic DNA using selected endonucleases followed by agarose gel electrophoresis. Estimated genome size of pAh-1 and pAs-1 were approximately 64 Kbp and 120 Kbp, respectively. Both pAh-1 and pAs-1 have shown narrow host specificity. Moreover, protective effects of phage therapy against fish pathogenic A. hydrophila were investigated in zebrafish model. The survival rate was 40% higher when zebrafish received intra-peritoneal injection (i.p.) of pAh-1 were simultaneously challenge A. hydrophila (2 x 106 CFU/fish) compared to that without phage treatment. Overall results suggest that both pAh-1 and pAs-1 can be used as a potential phage therapy to control Aeromonas infections in aquaculture.Keywords: Aeromonas infections, antibiotic resistance, bacteriophage, bio-control, lytic phage
Procedia PDF Downloads 1972276 Characterization and Pcr Detection of Selected Strains of Psychrotrophic Bacteria Isolated From Raw Milk
Authors: Kidane workelul, Li xu, Xiaoyang Pang, Jiaping Lv
Abstract:
Dairy products are exceptionally ideal media for the growth of microorganisms because of their high nutritional content. There are several ways that milk might get contaminated throughout the milking process, including how the raw milk is transported and stored, as well as how long it is kept before being processed. Psychrotrophic bacteria are among the one which can deteriorate the quality of milk mainly their heat resistance proteas and lipase enzyme. For this research purpose 8 selected strains of Psychrotrophic bacteria (Entrococcus hirae, Pseudomonas fluorescens, Pseudomonas azotoformans, Pseudomonas putida, Exiguobacterium indicum, Pseudomonas paralactice, Acinetobacter indicum, Serratia liquefacients)are chosen and try to determine their characteristics based on the research methodology protocol. Thus, the 8 selected strains are cultured, plated incubate, extracted their genomic DNA and genome DNA was amplified, the purpose of the study was to identify their Psychrotrophic properties, lipase hydrolysis positive test, their optimal incubation temperature, designed primer using the noble strain P,flourescens conserved region area in target with lipA gene, optimized primer specificity as well as sensitivity and PCR detection for lipase positive strains using the design primers. Based on the findings both the selected 8 strains isolated from stored raw milk are Psychrotrophic bacteria, 6 of the selected strains except the 2 strains are positive for lipase hydrolysis, their optimal temperature is 20 to 30 OC, the designed primer specificity is very accurate and amplifies for those strains only with lipase positive but could not amplify for the others. Thus, the result is promising and could help in detecting the Psychrotrophic bacteria producing heat resistance enzymes (lipase) at early stage before the milk is processed and this will safe production loss for the dairy industry.Keywords: dairy industry, heat-resistant, lipA, milk, primer and psychrotrophic
Procedia PDF Downloads 682275 Antibacterial Effects of Zinc Oxide Nanoparticles as Alternative Therapy on Drug-Resistant Group B Streptococcus Strains Isolated from Pregnant Women
Authors: Leila Fozouni, Anahita Mazandarani
Abstract:
Background: Maternal infections are the most common cause of infections in infants, and the level of infection and its severity highly depends on the degree of colonization of the bacteria in the mother; so, the occurrence of aggressive diseases is not unpredictable in mothers with very high colonization. Group B Streptococcus is part of the normal flora of the gastrointestinal and genital tracts in women and is the leading cause of septicemia and meningitis in newborns. Today Zinc oxide nanoparticle is regarded as one of the most commonly used and safest nanoparticles for defeating Gram-positive and Gram-negative bacteria. This study aims to determine the antibacterial effects of Zinc oxide on the growth of drug-resistant group B Streptococcus strains isolated from pregnant women. Materials and Methods: This cross-sectional study was conducted on 150 pregnant women of 28–37 weeks admitted to seven hospitals and maternity wards in Golestan province, northeast of Iran. For bacterial identification, rectovaginal swabs were firstly inoculated to the Todd-Hewitt Broth and cultured in blood agar (containing 5% sheep blood). Then microbiologic and PCR methods were performed to detect group B Streptococci. Disk diffusion and broth microdilution tests were used to determine the bacterial susceptibility to antibiotics according to CLSI M100(2021) criteria. The antibacterial properties of Zinc oxide nanoparticles were evaluated using the agar well-diffusion method. Results: The prevalence of group B Streptococcus was 18% in pregnant women. Out of twenty-seven positive cultures, 62.96% were higher than thirty years old. Ninety percent and 45% of isolates were resistant to clindamycin and erythromycin, respectively, and susceptibility to cefazolin was 71%. In addition, susceptibility to ampicillin and penicillin were 74% and 55%, respectively. The results showed that 82% of erythromycin-resistant, 92% clindamycin-resistant, and 78% of cefazolin-resistant isolates were eliminated by zinc oxide nanoparticles at a concentration of 100 mg/L of the nanoparticle. Furthermore, ZnONPs could inhibit all drug-resistant isolates at a concentration of 200 mg/mL (MIC90 ≥ 200). Conclusion: Since the drug resistance of group B streptococci against various antibiotics is increasing, determining and investigating the drug-resistance pattern of this bacterium to different antibiotics in order to prevent arbitrary consumption of antibiotics by pregnant women and ultimately prevent Infant mortality seems necessary. Generally, ZnONPs showed a high antimicrobial effect, and it was revealed that the bactericide effect increases upon the increase in the concentration of the nanoparticle.Keywords: group B beta-hemolytic streptococcus, pregnant women, zinc oxide nanoparticles, drug resistance
Procedia PDF Downloads 1032274 Treatment of Porphyromonas gingivalis Induced Gingivitis in Albino Rats with Tetracycline-Loaded Nanochitosan, an Immunohistochemical Analysis
Authors: Rania Hanafi Said, Rasha Mohamed Taha
Abstract:
Background: By using nanoparticles as drug delivery, it may be possible to avoid the drawbacks of systemic antibiotic dosing, including bacterial antibiotic resistance. The goal of this study was to see how well tetracycline loaded on nanochitosan worked to treat gingival inflammation in albino rats caused by Porphyromonas gingivalis. The study analyzed immunohistochemically the localization of the pro-inflammatory cytokine Interleukin-1beta (IL-1β). Material and methods: In this study, fifty mature male albino rats weighing 150 to 180 grams each were used. They were randomly divided into five groups. We checked for weight changes in rats. Ten male albino rats were included in Group I, which served as a negative control group. Ten rats were included in Group II, where they were exposed once to Porphyromonas. Group III contained ten rats, which were treated the same as Group II plus daily injections of diluted tetracycline powder at the infection sites. Ten rats in Group IV received the same procedure as those in Group II before receiving daily injections of nanochitosan at the injection sites. Finally, Group V, which had ten rats. Following the same protocol as Group II, they received localized injections of tetracycline loaded on nanochitosan once daily. Rats' gingivae were extracted and prepared after they were anesthetized. The biopsies were examined histologically and immunohistochemically by light microscopy. Results: Groups I and V had a nearly normal histological appearance of gingival tissue. In Groups II, III, and IV, degeneration was seen because the epithelial cells were bigger, collagen fibers were pulling away from the lamina propria connective tissue, and the basement membranes had come to an end. There was no discernible difference between groups V and I when they were examined immunohistochemically. Conclusion: The use of nano chitosan as a tetracycline carrier is a novel technique to overcome the drug's rising level of resistance.Keywords: Immunohistochemistry, Nanochitosan, porphyromonas gingivitis, Tetracycline
Procedia PDF Downloads 892273 Determination of the CCR5Δ32 Frequency in Emiratis and Tunisians and Screening of the CCR5 Gene for Novel Alleles in Emiratis
Authors: Sara A. Al-Jaberi, Salma Ben-Salem, Meriam Messedi, Fatma Ayadi, Lihadh Al-Gazali, Bassam R. Ali
Abstract:
Background: The chemokine receptor components play crucial roles in the immune system and some of them serve as co-receptors for the HIV virus. Several studies have documented those variants in chemokine receptors are correlated with susceptibility and resistance to infection with HIV virus. For example, mutations in the chemokine receptor 5 gene (CCR5) resulting in loss-of-function (such as the homozygous CCR5Δ32) confer high degree of resistance to HIV infection. Heterozygotes for these variants exhibit slow progression to AIDS. The prevalence of CCR5 polymorphisms varies among ethnic and geographical groups. For example, the CCR5 Δ32 variant is present in 10–15% of north Europeans but is rarely encountered among Africans. This study aims to identify the prevalence of some CCR5 variants in two geographically distant Arab populations (namely Emiratis and Tunisians). Methodology: The prevalence of CCR5 gene variants including CCR5Δ32, FS299, C101X, A29S and C178R has been determined using PCR and direct DNA sequencing. A total of 403 unrelated healthy individuals (253 Emiratis and 150 Tunisians) were genotyped for the CCR5Δ32 variant using PCR amplification and gel electrophoresis. In addition, 200 Emiratis have been screened for other SNPs using Sanger DNA sequencing. Results: Among Emiratis, the allele frequency of the CCR5Δ32 variant has been found to be 0.002. In addition, two variants L55Q and A159 were found at a frequency of 0.002.Moreover, the prevalence of the CCR5Δ32 variant in Tunisians was estimated to be 0.013 which is relatively higher than its frequency in Emiratis but lower than Europeans. Conclusion: We conclude that the allele frequency of the most critical CCR5 polymorphism (Δ32) is extremely low among Emiratis compared to other Arabs and North Europeans. In addition, very low allele frequencies of other CCR5 polymorphisms have been detected among Emiratis.Keywords: chemokine receptors, CCR5Δ32, CCR5 polymorphisms, Emiratis, Arab populations
Procedia PDF Downloads 3832272 Tribological Properties of Non-Stick Coatings Used in Bread Baking Process
Authors: Maurice Brogly, Edwige Privas, Rajesh K. Gajendran, Sophie Bistac
Abstract:
Anti-sticky coatings based on perfluoroalkoxy (PFA) coatings are widely used in food processing industry especially for bread making. Their tribological performance, such as low friction coefficient, low surface energy and high heat resistance, make them an appropriate choice for anti-sticky coating application in moulds for food processing industry. This study is dedicated to evidence the transfer of contaminants from the coating due to wear and thermal ageing of the mould. The risk of contamination is induced by the damage of the coating by bread crust during the demoulding stage. The study focuses on the wear resistance and potential transfer of perfluorinated polymer from the anti-sticky coating. Friction between perfluorinated coating and bread crust is modeled by a tribological pin-on-disc test. The cellular nature of the bread crust is modeled by a polymer foam. FTIR analysis of the polymer foam after friction allow the evaluation of the transfer from the perfluorinated coating to polymer foam. Influence of thermal ageing on the physical, chemical and wear properties of the coating are also investigated. FTIR spectroscopic results show that the increase of PFA transfer onto the foam counterface is associated to the decrease of the friction coefficient. Increasing lubrication by film transfer results in the decrease of the friction coefficient. Moreover increasing the friction test parameters conditions (load, speed and sliding distance) also increase the film transfer onto the counterface. Thermal ageing increases the hydrophobic character of the PFA coating and thus also decreases the friction coefficient.Keywords: fluorobased polymer coatings, FTIR spectroscopy, non-stick food moulds, wear and friction
Procedia PDF Downloads 3372271 Development of Highly Repellent Silica Nanoparticles Treatment for Protection of Bio-Based Insulation Composite Material
Authors: Nadia Sid, Alan Taylor, Marion Bourebrab
Abstract:
The construction sector is on the critical path to decarbonise the European economy by 2050. In order to achieve this objective it must enable reducing its CO2 emission by 90% and its energy consumption by as much as 50%. For this reason, a new class of low environmental impact construction materials named “eco-material” are becoming increasingly important in the struggle against climate change. A European funded collaborative project ISOBIO coordinated by TWI is aimed at taking a radical approach to the use of bio-based aggregates to create novel construction materials that are usable in high volume in using traditional methods, as well as developing markets such as exterior insulation of existing house stocks. The approach taken for this project is to use finely chopped material protected from bio-degradation through the use of functionalized silica nanoparticles. TWI is exploring the development of novel inorganic-organic hybrid nano-materials, to be applied as a surface treatment onto bio-based aggregates. These nanoparticles are synthesized by sol-gel processing and then functionalised with silanes to impart multifunctionality e.g. hydrophobicity, fire resistance and chemical bonding between the silica nanoparticles and the bio-based aggregates. This talk will illustrate the approach taken by TWI to design the functionalized silica nanoparticles by using a material-by-design approach. The formulation and synthesize process will be presented together with the challenges addressed by those hybrid nano-materials. The results obtained with regards to the water repellence and fire resistance will be displayed together with preliminary public results of the ISOBIO project. (This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 641927).Keywords: bio-sourced material, composite material, durable insulation panel, water repellent material
Procedia PDF Downloads 2422270 Probiotic Antibacterial Test of Pediococcus pentosaceus Isolated from Dadih in Inhibiting Periodontitis Bacteria: In Vitro Study on Bacteria Aggregatibacter actinomycetemcomitans
Authors: Nurlaili Syafar Wulan, Almurdi, Suprianto Kosno
Abstract:
Introduction: Periodontitis defined as an inflammatory disease of teeth supporting tissue with irritation of specific pathogens as the main aetiology. Periodontitis can be cured by giving medical action accompanied by administration of an antibiotic, but the use of antibiotic has a side effect that can cause bacterial resistance. This side effect can be corrected by probiotic, which has antibiotic-like substance but do not have bacterial resistance effect; it makes probiotic became a promising future periodontitis medication. West Sumatran people has their own typical traditional food product made from fermented buffalo’s milk called dadih, and it contained probiotics. Objectives: The aim of this study was to determine the ability of probiotic Pediococcus pentosaceus isolated from dadih in inhibiting the growth of bacteria Aggregatibacter actinomycetemcomitans. Material and Method: This was a true experimental study with post-test and control group design. This study was conducted on 36 samples of 2 treatment groups, the test group with probiotic Pediococcus pentosacesus isolated from dadih and the negative control group with sterile aquadest. The antibacterial effect was tested using the Kirby-Bauer disk diffusion method and calculated by measuring the zone of inhibition on MHA around paper disk using a sliding caliper with 0.5 mm accuracy. Result: The result of bivariate analysis using Independent t-test was p=0.00 where p < 0.05 means that there is a significant difference between the tested group and negative control group. Conclusion: Probiotic Pediococcus pentosaceus isolated from dadih are able to inhibit the growth of Aggregatibacter actinomycetemcomitans.Keywords: aggregatibacter actinomycetemcomitans, antibacterial activities, periodontitis, probiotic Pediococcus pentosaceus
Procedia PDF Downloads 1372269 Analysis of Grid Connected High Concentrated Photovoltaic Systems for Peak Load Shaving in Kuwait
Authors: Adel A. Ghoneim
Abstract:
Air conditioning devices are substantially utilized in the summer months, as a result maximum loads in Kuwait take place in these intervals. Peak energy consumption are usually more expensive to satisfy compared to other standard power sources. The primary objective of the current work is to enhance the performance of high concentrated photovoltaic (HCPV) systems in an attempt to minimize peak power usage in Kuwait using HCPV modules. High concentrated PV multi-junction solar cells provide a promising method towards accomplishing lowest pricing per kilowatt-hour. Nevertheless, these cells have various features that should be resolved to be feasible for extensive power production. A single diode equivalent circuit model is formulated to analyze multi-junction solar cells efficiency in Kuwait weather circumstances taking into account the effects of both the temperature and the concentration ratio. The diode shunt resistance that is commonly ignored in the established models is considered in the present numerical model. The current model results are successfully validated versus measurements from published data to within 1.8% accuracy. Present calculations reveal that the single diode model considering the shunt resistance provides accurate and dependable results. The electrical efficiency (η) is observed to increase with concentration to a specific concentration level after which it reduces. Implementing grid systems is noticed to increase with concentration to a certain concentration degree after which it decreases. Employing grid connected HCPV systems results in significant peak load reduction.Keywords: grid connected, high concentrated photovoltaic systems, peak load, solar cells
Procedia PDF Downloads 1592268 Salting Effect in Partially Miscible Systems of Water/Acétic Acid/1-Butanol at 298.15k: Experimental Study and Estimation of New Solvent-Solvent and Salt-Solvent Binary Interaction Parameters for NRTL Model
Authors: N. Bourayou, A. -H. Meniai, A. Gouaoura
Abstract:
The presence of salt can either raise or lower the distribution coefficient of a solute acetic acid in liquid- liquid equilibria. The coefficient of solute is defined as the ratio of the composition of solute in solvent rich phase to the composition of solute in diluents (water) rich phase. The phenomena are known as salting–out or salting-in, respectively. The effect of monovalent salt, sodium chloride and the bivalent salt, sodium sulfate on the distribution of acetic acid between 1-butanol and water at 298.15K were experimentally shown to be effective in modifying the liquid-liquid equilibrium of water/acetic acid/1-butanol system in favour of the solvent extraction of acetic acid from an aqueous solution with 1-butanol, particularly at high salt concentrations of both salts. All the two salts studied are found to have to salt out effect for acetic acid in varying degrees. The experimentally measured data were well correlated by Eisen-Joffe equation. NRTL model for solvent mixtures containing salts was able to provide good correlation of the present liquid-liquid equilibrium data. Using the regressed salt concentration coefficients for the salt-solvent interaction parameters and the solvent-solvent interaction parameters obtained from the same system without salt. The calculated phase equilibrium was in a quite good agreement with the experimental data, showing the ability of NRTL model to correlate salt effect on the liquid-liquid equilibrium.Keywords: activity coefficient, Eisen-Joffe, NRTL model, sodium chloride
Procedia PDF Downloads 2862267 Beneficiation of Low Grade Chromite Ore and Its Characterization for the Formation of Magnesia-Chromite Refractory by Economically Viable Process
Authors: Amit Kumar Bhandary, Prithviraj Gupta, Siddhartha Mukherjee, Mahua Ghosh Chaudhuri, Rajib Dey
Abstract:
Chromite ores are primarily used for extraction of chromium, which is an expensive metal. For low grade chromite ores (containing less than 40% Cr2O3), the chromium extraction is not usually economically viable. India possesses huge quantities of low grade chromite reserves. This deposit can be utilized after proper physical beneficiation. Magnetic separation techniques may be useful after reduction for the beneficiation of low grade chromite ore. The sample collected from the sukinda mines is characterized by XRD which shows predominant phases like maghemite, chromite, silica, magnesia and alumina. The raw ore is crushed and ground to below 75 micrometer size. The microstructure of the ore shows that the chromite grains surrounded by a silicate matrix and porosity observed the exposed side of the chromite ore. However, this ore may be utilized in refractory applications. Chromite ores contain Cr2O3, FeO, Al2O3 and other oxides like Fe-Cr, Mg-Cr have a high tendency to form spinel compounds, which usually show high refractoriness. Initially, the low grade chromite ore (containing 34.8% Cr2O3) was reduced at 1200 0C for 80 minutes with 30% coke fines by weight, before being subjected to magnetic separation. The reduction by coke leads to conversion of higher state of iron oxides converted to lower state of iron oxides. The pre-reduced samples are then characterized by XRD. The magnetically inert mass was then reacted with 20% MgO by weight at 1450 0C for 2 hours. The resultant product was then tested for various refractoriness parameters like apparent porosity, slag resistance etc. The results were satisfactory, indicating that the resultant spinel compounds are suitable for refractory applications for elevated temperature processes.Keywords: apparent porosity, beneficiation, low-grade chromite, refractory, spinel compounds, slag resistance
Procedia PDF Downloads 3902266 The Effects of the Interaction between Prenatal Stress and Diet on Maternal Insulin Resistance and Inflammatory Profile
Authors: Karen L. Lindsay, Sonja Entringer, Claudia Buss, Pathik D. Wadhwa
Abstract:
Maternal nutrition and stress are independently recognized as among the most important factors that influence prenatal biology, with implications for fetal development and poor pregnancy outcomes. While there is substantial evidence from non-pregnancy human and animal studies that a complex, bi-directional relationship exists between nutrition and stress, to the author’s best knowledge, their interaction in the context of pregnancy has been significantly understudied. The aim of this study is to assess the interaction between maternal psychological stress and diet quality across pregnancy and its effects on biomarkers of prenatal insulin resistance and inflammation. This is a prospective longitudinal study of N=235 women carrying a healthy, singleton pregnancy, recruited from prenatal clinics of the University of California, Irvine Medical Center. Participants completed a 4-day ambulatory assessment in early, middle and late pregnancy, which included multiple daily electronic diary entries using Ecological Momentary Assessment (EMA) technology on a dedicated study smartphone. The EMA diaries gathered moment-level data on maternal perceived stress, negative mood, positive mood and quality of social interactions. The numerical scores for these variables were averaged across each study time-point and converted to Z-scores. A single composite variable for 'STRESS' was computed as follows: (Negative mood+Perceived stress)–(Positive mood+Social interaction quality). Dietary intakes were assessed by three 24-hour dietary recalls conducted within two weeks of each 4-day assessment. Daily nutrient and food group intakes were averaged across each study time-point. The Alternative Healthy Eating Index adapted for pregnancy (AHEI-P) was computed for early, middle and late pregnancy as a validated summary measure of diet quality. At the end of each 4-day ambulatory assessment, women provided a fasting blood sample, which was assayed for levels of glucose, insulin, Interleukin (IL)-6 and Tumor Necrosis Factor (TNF)-α. Homeostasis Model Assessment of Insulin Resistance (HOMA-IR) was computed. Pearson’s correlation was used to explore the relationship between maternal STRESS and AHEI-P within and between each study time-point. Linear regression was employed to test the association of the stress-diet interaction (STRESS*AHEI-P) with the biological markers HOMA-IR, IL-6 and TNF-α at each study time-point, adjusting for key covariates (pre-pregnancy body mass index, maternal education level, race/ethnicity). Maternal STRESS and AHEI-P were significantly inversely correlated in early (r=-0.164, p=0.018) and mid-pregnancy (-0.160, p=0.019), and AHEI-P from earlier gestational time-points correlated with later STRESS (early AHEI-P x mid STRESS: r=-0.168, p=0.017; mid AHEI-P x late STRESS: r=-0.142, p=0.041). In regression models, the interaction term was not associated with HOMA-IR or IL-6 at any gestational time-point. The stress-diet interaction term was significantly associated with TNF-α according to the following patterns: early AHEI-P*early STRESS vs early TNF-α (p=0.005); early AHEI-P*early STRESS vs mid TNF-α (p=0.002); early AHEI-P*mid STRESS vs mid TNF-α (p=0.005); mid AHEI-P*mid STRESS vs mid TNF-α (p=0.070); mid AHEI-P*late STRESS vs late TNF-α (p=0.011). Poor diet quality is significantly related to higher psychosocial stress levels in pregnant women across gestation, which may promote inflammation via TNF-α. Future prenatal studies should consider the combined effects of maternal stress and diet when evaluating either one of these factors on pregnancy or infant outcomes.Keywords: diet quality, inflammation, insulin resistance, nutrition, pregnancy, stress, tumor necrosis factor-alpha
Procedia PDF Downloads 2032265 Smart Oxygen Deprivation Mask: An Improved Design with Biometric Feedback
Authors: Kevin V. Bui, Richard A. Claytor, Elizabeth M. Priolo, Weihui Li
Abstract:
Oxygen deprivation masks operate through the use of restricting valves as a means to reduce respiratory flow where flow is inversely proportional to the resistance applied. This produces the same effect as higher altitudes where lower pressure leads to reduced respiratory flow. Both increased resistance with restricting valves and reduce the pressure of higher altitudes make breathing difficultier and force breathing muscles (diaphragm and intercostal muscles) working harder. The process exercises these muscles, improves their strength and results in overall better breathing efficiency. Currently, these oxygen deprivation masks are purely mechanical devices without any electronic sensor to monitor the breathing condition, thus not be able to provide feedback on the breathing effort nor to evaluate the lung function. That is part of the reason that these masks are mainly used for high-level athletes to mimic training in higher altitude conditions, not suitable for patients or customers. The design aims to improve the current method of oxygen deprivation mask to include a larger scope of patients and customers while providing quantitative biometric data that the current design lacks. This will be accomplished by integrating sensors into the mask’s breathing valves along with data acquisition and Bluetooth modules for signal processing and transmission. Early stages of the sensor mask will measure breathing rate as a function of changing the air pressure in the mask, with later iterations providing feedback on flow rate. Data regarding breathing rate will be prudent in determining whether training or therapy is improving breathing function and quantify this improvement.Keywords: oxygen deprivation mask, lung function, spirometer, Bluetooth
Procedia PDF Downloads 2202264 Microvoid Growth in the Interfaces during Aging
Authors: Jae-Yong Park, Gwancheol Seo, Young-Ho Kim
Abstract:
Microvoids, sometimes called Kikendall voids, generally form in the interfaces between Sn-based solders and Cu and degrade the mechanical and electrical properties of the solder joints. The microvoid formation is known as the rapid interdiffusion between Sn and Cu and impurity content in the Cu. Cu electroplating from the acid solutions has been widely used by microelectronic packaging industry for both printed circuit board (PCB) and integrated circuit (IC) applications. The quality of electroplated Cu that can be optimized by the electroplating conditions is critical for the solder joint reliability. In this paper, the influence of electroplating conditions on the microvoid growth in the interfaces between Sn-3.0Ag-0.5Cu (SAC) solder and Cu layer was investigated during isothermal aging. The Cu layers were electroplated by controlling the additive of electroplating bath and current density to induce various microvoid densities. The electroplating bath consisted of sulfate, sulfuric acid, and additives and the current density of 5-15 mA/cm2 for each bath was used. After aging at 180 °C for up to 250 h, typical bi-layer of Cu6Sn5 and Cu3Sn intermetallic compounds (IMCs) was gradually growth at the SAC/Cu interface and microvoid density in the Cu3Sn showed disparities in the electroplating conditions. As the current density increased, the microvoid formation was accelerated in all electroplating baths. The higher current density induced, the higher impurity content in the electroplated Cu. When the polyethylene glycol (PEG) and Cl- ion were mixed in an electroplating bath, the microvoid formation was the highest compared to other electroplating baths. On the other hand, the overall IMC thickness was similar in all samples irrespective of the electroplating conditions. Impurity content in electroplated Cu influenced the microvoid growth, but the IMC growth was not affected by the impurity content. In conclusion, the electroplated conditions are properly optimized to avoid the excessive microvoid formation that results in brittle fracture of solder joint under high strain rate loading.Keywords: electroplating, additive, microvoid, intermetallic compound
Procedia PDF Downloads 2652263 Record Peak Current Density in AlN/GaN Double-Barrier Resonant Tunneling Diodes on Free-Standing Gan Substrates by Modulating Barrier Thickness
Authors: Fang Liu, Jia Jia Yao, Guan Lin Wu, Ren Jie Liu, Zhuang Guo
Abstract:
Leveraging plasma-assisted molecular beam epitaxy (PA-MBE) on c-plane free-standing GaN substrates, this work demonstrates high-performance AlN/GaN double-barrier resonant tunneling diodes (RTDs) featuring stable and repeatable negative differential resistance (NDR) characteristics at room temperature. By scaling down the barrier thickness of AlN and the lateral mesa size of collector, a record peak current density of 1551 kA/cm2 is achieved, accompanied by a peak-to-valley current ratio (PVCR) of 1.24. This can be attributed to the reduced resonant tunneling time under thinner AlN barrier and the suppressed external incoherent valley current by reducing the dislocation number contained in the RTD device with the smaller size of collector. Statistical analysis of the NDR performance of RTD devices with different AlN barrier thicknesses reveals that, as the AlN barrier thickness decreases from 1.5 nm to 1.25 nm, the average peak current density increases from 145.7 kA/cm2 to 1215.1 kA/cm2, while the average PVCR decreases from 1.45 to 1.1, and the peak voltage drops from 6.89 V to 5.49 V. The peak current density obtained in this work represents the highest value reported for nitride-based RTDs to date, while maintaining a high PVCR value simultaneously. This illustrates that an ultra-scaled RTD based on a vertical quantum-well structure and lateral collector size is a valuable approach for the development of nitride-based RTDs with excellent NDR characteristics, revealing their great potential applications in high-frequency oscillation sources and high-speed switch circuits.Keywords: GaN resonant tunneling diode, peak current density, peak-to-valley current ratio, negative differential resistance
Procedia PDF Downloads 662262 Prevalence and Risk Factors of Faecal Carriage Fluoroquinolone-Resistant Escherichia coli among Hospitalized Patients in Ado-Ekiti, Nigeria
Authors: C. A. Ologunde
Abstract:
Escherichia coli have been a major microorganisms associated with, and isolated from feacal samples either in adult or children all over the world. Strains of these organisms are resistant to cephalosporins and fluoroquinolone (FQ) antimicrobial agents among hospitalized patients and FQs are the most frequently prescribed antimicrobial class in hospitals, and the level of resistant of E. coli to these antimicrobial agents is a risk factor that should be assessed. Hence, this study was conducted to determine the prevalence and risk factors for colonization with fluoroquinolone (FQ)-resistant E. coli in hospitalized patients in Ado-Ekiti. Rectal swabs were obtained from patients in hospitals in the study area and FQ-resistant E. coli were isolated and identified by means of Nalidixic acid multi-disk and a 1-step screening procedure. Species identification and FQ resistance were confirmed by automated testing (Vitek, bioMerieux, USA). Individual colonies were subjected to pulse-field gel electrophoresis (PAGE) to determine macro-restriction polymorphism after digestion of chromosomal DNA. FQ-resistant E. coli was detected in the stool sample of 37(62%) hospitalized patient. With multivariable analyses, the use of FQ before hospitalization was the only independent risk factor for FQ-resistant E. coli carriage and was consistent for FQ exposures for the 3-12 months of study. Pulsed-field gel electrophoresis of FQ-resistant E. coli identified conal spread of 1(one) strain among 18 patients. Loss (9 patients) or acquisition (10 residents) of FQ-resistant E. coli was documented and was associated with de novo colonization with genetically distinct strains. It was concluded that FQ-resistant E. coli carriage was associated with clonal spread. The differential effects of individual fluoroquinolone on antimicrobial drug resistance are an important area for future study, as hospitals manipulate their formularies with regard to use of individual fluoroquinolone, often for economic reasons.Keywords: E. coli, fluoroquinolone, risk factors, feacal carriage, hospitalized patients, Ado-Ekiti
Procedia PDF Downloads 2512261 Development of Environmentally Clean Construction Materials Using Industrial Waste from Kazakhstan
Authors: Galiya Zhanzakovna Alzhanova, Yelaman Kanatovich Aibuldinov, Zhanar Baktybaevna Iskakova, Gaziz Galymovich Abdiyussupov, Madi Toktasynuly Omirzak, Aizhan Doldashevna Gazizova
Abstract:
The sustainable use of industrial waste has recently increased due to increased environmental problems in landfills. One of the best ways to utilise waste is as a road base material. Industrial waste is a less costly and more efficient way to strengthen local soils than by introducing new additive materials. This study explored the feasibility of utilising red mud, blast furnace slag, and lime production waste to develop environmentally friendly construction materials for stabilising natural loam. Four different ratios of red mud (20, 30, and 40%), blast furnace slag (25, 30, and 35%), lime production waste (4, 6, and 8%), and varied amounts of natural loam were combined to produce nine different mixtures. The results showed that the sample with 40% red mud, 35% blast furnace slag, and 8% lime production waste had the highest strength. The sample's measured compressive strength for 90 days was 7.38 MPa, its water resistance for the same period was 7.12 MPa, and its frost resistance for the same period was 7.35 MP; low linear expansion met the requirements of the Kazakh regulations for first-class building materials. The study of mineral composition showed that there was no contamination with heavy metals or dangerous substances. Road base materials made of red mud, blast furnace slag, lime production waste, and natural loam mix can be employed because of their durability and environmental performance. The chemical and mineral composition of raw materials was determined using X-ray diffraction, X-ray fluorescence, scanning electron microscopy, energy dispersive spectroscopy, atomic absorption spectroscopy, and axial compressive strength were examined.Keywords: blast furnace slag, lime production waste, natural loam stabilizing, red mud, road base material
Procedia PDF Downloads 1152260 Long-Term Durability of Roller-Compacted Concrete Pavement
Authors: Jun Hee Lee, Young Kyu Kim, Seong Jae Hong, Chamroeun Chhorn, Seung Woo Lee
Abstract:
Roller-compacted concrete pavement (RCCP), an environmental friendly pavement of which load carry capacity benefitted from both hydration and aggregate interlock from roller compacting, demonstrated a superb structural performance for a relatively small amount of water and cement content. Even though an excellent structural performance can be secured, it is required to investigate roller-compacted concrete (RCC) under environmental loading and its long-term durability under critical conditions. In order to secure long-term durability, an appropriate internal air-void structure is required for this concrete. In this study, a method for improving the long-term durability of RCCP is suggested by analyzing the internal air-void structure and corresponding durability of RCC. The method of improving the long-term durability involves measurements of air content, air voids, and air-spacing factors in RCC that experiences changes in terms of type of air-entraining agent and its usage amount. This test is conducted according to the testing criteria in ASTM C 457, 672, and KS F 2456. It was found that the freezing-thawing and scaling resistances of RCC without any chemical admixture was quite low. Interestingly, an improvement of freezing-thawing and scaling resistances was observed for RCC with appropriate the air entraining (AE) agent content; Relative dynamic elastic modulus was found to be more than 80% for those mixtures. In RCC with AE agent mixtures, large amount of air was distributed within a range of 2% to 3%, and an air void spacing factor ranging between 200 and 300 μm (close to 250 μm, recommended by PCA) was secured. The long-term durability of RCC has a direct relationship with air-void spacing factor, and thus it can only be secured by ensuring the air void spacing factor through the inclusion of the AE in the mixture.Keywords: durability, RCCP, air spacing factor, surface scaling resistance test, freezing and thawing resistance test
Procedia PDF Downloads 2572259 The Effect of Aging of ZnO, AZO, and GZO films on the Microstructure and Photoelectric Property
Authors: Zue-Chin Chang
Abstract:
RF magnetron sputtering is used on the ceramic targets, each of which contains zinc oxide (ZnO), zinc oxide doped with aluminum (AZO) and zinc oxide doped with gallium (GZO). The XRD analysis showed a preferred orientation along the (002) plane for ZnO, AZO, and GZO films. The AZO film had the best electrical properties; it had the lowest resistivity of 6.6 × 10-4 cm, the best sheet resistance of 2.2 × 10-1 Ω/square, and the highest carrier concentration of 4.3 × 1020 cm-3, as compared to the ZnO and GZO films.Keywords: aging, films, microstructure, photoelectric property
Procedia PDF Downloads 4772258 Application of Computational Chemistry for Searching Anticancer Derivatives of 2-Phenazinamines as Bcr-Abl Tyrosine Kinase Inhibitors
Authors: Gajanan M. Sonwane
Abstract:
The computational studies on 2-phenazinamines with their protein targets have been carried out to design compounds with potential anticancer activity. This strategy of designing compounds possessing selectivity over specific tyrosine kinase has been achieved through G-QSAR and molecular docking studies. The objective of this research has been to design newer 2-phenazinamine derivatives as Bcr-Abl tyrosine kinase inhibitors by G-QSAR, molecular docking studies followed by wet-lab studies along with evaluation of their anticancer potential. Computational chemistry was done by using VLife MDS 4.3 and Autodock 4.2 followed by wet-lab experiments for synthesizing 2-phenazinamine derivatives. The chemical structures of ligands in 2D were drawn by employing Chemdraw 2D Ultra 8.0 and were converted into 3D. These were optimized by using a semi-empirical method called MOPAC. The protein structure was retrieved from RCSC protein data bank as a PDB file. The binding interactions of protein and ligands were done by using PYMOL. The molecular properties of the designed compounds were predicted in silico by using Osiris property explorer. The parent compound 2-phenazinamine was synthesized by reduction of 2, 4-dinitro-N-phenyl-benzenamine in the presence of tin chloride followed by cyclization in the presence of nitrobenzene and magnesium sulfate. The derivatization at the amino function of 2-phenazinamine was performed by treating parent compound with various aldehydes in the presence of dicyclohexylcarbodiimide (DCC) and urea to afford 2-(2-chlorophenyl)-3-(phenazine-2-yl) thiazolidine-4-one. Synthesized 39 novel derivatives of 2-phenazinamine and performed antioxidant activity, anti antiproliferative on the bulb of onion and anticancer activity on cell line showing significant competition with marked blockbuster drug imatinib.Keywords: computer-aided drug design, tyrosin kinases, anticancer, docking
Procedia PDF Downloads 1422257 Fluvial Stage-Discharge Rating of a Selected Reach of Jamuna River
Authors: Makduma Zahan Badhan, M. Abdul Matin
Abstract:
A study has been undertaken to develop a fluvial stage-discharge rating curve for Jamuna River. Past Cross-sectional survey of Jamuna River reach within Sirajgonj and Tangail has been analyzed. The analysis includes the estimation of discharge carrying capacity, possible maximum scour depth and sediment transport capacity of the selected reaches. To predict the discharge and sediment carrying capacity, stream flow data which include cross-sectional area, top width, water surface slope and median diameter of the bed material of selected stations have been collected and some are calculated from reduced level data. A well-known resistance equation has been adopted and modified to a simple form in order to be used in the present analysis. The modified resistance equation has been used to calculate the mean velocity through the channel sections. In addition, a sediment transport equation has been applied for the prediction of transport capacity of the various sections. Results show that the existing drainage sections of Jamuna channel reach under study have adequate carrying capacity under existing bank-full conditions, but these reaches are subject to bed erosion even in low flow situations. Regarding sediment transport rate, it can be estimated that the channel flow has a relatively high range of bed material concentration. Finally, stage discharge curves for various sections have been developed. Based on stage-discharge rating data of various sections, water surface profile and sediment-rating curve of Jamuna River have been developed and also the flooding conditions have been analyzed from predicted water surface profile.Keywords: discharge rating, flow profile, fluvial, sediment rating
Procedia PDF Downloads 1852256 Enhanced Production of Endo-β-1,4-Xylanase from a Newly Isolated Thermophile Geobacillus stearothermophilus KIBGE-IB29 for Prospective Industrial Applications
Authors: Zainab Bibi, Afsheen Aman, Shah Ali Ul Qader
Abstract:
Endo-β-1,4-xylanases [EC 3.2.1.8] are one of the major groups of enzymes that are involved in degradation process of xylan and have several applications in food, textile and paper processing industries. Due to broad utility of endo-β-1,4-xylanase, researchers are focusing to increase the productivity of this hydrolase from various microbial species. Harsh industrial condition, faster reaction rate and efficient hydrolysis of xylan with low risk of contamination are critical requirements of industry that can be fulfilled by synthesizing the enzyme with efficient properties. In the current study, a newly isolated thermophile Geobacillus stearothermophilus KIBGE-IB29 was used in order to attain the maximum production of endo-1,4-β-xylanase. Bacterial culture was isolated from soil, collected around the blast furnace site of a steel processing mill, Karachi. Optimization of various nutritional and physical factors resulted the maximum synthesis of endo-1,4-β-xylanase from a thermophile. High production yield was achieved at 60°C and pH-6.0 after 24 hours of incubation period. Various nitrogen sources viz. peptone, yeast extract and meat extract improved the enzyme synthesis with 0.5%, 0.2% and 0.1% optimum concentrations. Dipotassium hydrogen phosphate (0.25%), potassium dihydrogen phosphate (0.05%), ammonium sulfate (0.05%) and calcium chloride (0.01%) were noticed as valuable salts to improve the production of enzyme. The thermophilic nature of isolate, with its broad pH stability profile and reduced fermentation time indicates its importance for effective xylan saccharification and for large scale production of endo-1,4-β-xylanase.Keywords: geobacillus, optimization, production, xylanase
Procedia PDF Downloads 3132255 The Effect of Vitamin D Supplements and Aerobic Exercise on Hunger and Serum Insulin Levels in Adolescents With Metabolic Syndrome
Authors: Vahab Behmanesh
Abstract:
Metabolic syndrome is defined as having at least three of the five metabolic risk factors, including abdominal obesity, high blood pressure, high triglycerides, low HDL, and insulin resistance. Lifestyle changes towards reducing physical activity, unhealthy eating habits Especially the high-fat and high-carbohydrate diet is directly related to metabolic syndrome, and due to the epidemic of overweight and sedentary life, metabolic syndrome is a serious problem worldwide. On the other hand, vitamin D deficiency is considered as one of the most common problems in the world, which is related to the dysfunction of beta cells and insulin resistance, and therefore, vitamin D deficiency is considered as a factor in the occurrence of metabolic syndrome. 40 subjects (age: 16.12 ± 4.4 years and body mass index 25.61 ± 4.4 kg/m2) were randomly assigned to groups of aerobic exercise and placebo, aerobic exercise and vitamin D and placebo (no exercise) were divided. Vitamin D was taken at a dose of 50,000 units per week in a double-blind format for eight weeks, and the daily aerobic exercise program was performed for 50 to 60 minutes, three doses per week, with an intensity of 50-60% of the maximum heart rate. From one-way analysis of variance, Factorial variance analysis (2x2) repeated measurement and correlated t-test were used for data analysis. Aerobic exercise and vitamin D intake reduced all metabolic risk indicators and blood insulin (P < 0.05). However, the subjective feeling of hunger did not change significantly (P < 0.05). Regarding waist circumference and blood glucose, the effect of exercise combined with vitamin D consumption was greater than the corresponding effect in the vitamin D group (P < 0.05). Aerobic exercises and vitamin D intake are safe and effective for improving cardiometabolic health, Imam adds vitamin D to the exercise program has more benefits for weight and blood sugar control, which suggests prescribing it for patients with metabolic syndrome.Keywords: vitamin D, aerobic exercise, metabolic control, adolescents
Procedia PDF Downloads 1062254 Triplet Shear Tests on Retrofitted Brickwork Masonry Walls
Authors: Berna Istegun, Erkan Celebi
Abstract:
The main objective of this experimental study is to assess the shear strength and the crack behavior of the triplets built of perforated brickwork masonry elements. In order to observe the influence of shear resistance and energy dissipating before and after retrofitting applications by using the reinforcing system, static-cyclic shear tests were employed in the structural mechanics laboratory of Sakarya University. The reinforcing system is composed of hybrid multiaxial seismic fabric consisting of alkali resistant glass and polypropylene fibers. The plaster as bonding material used in the specimen’s retrofitting consists of expanded glass granular. In order to acquire exact measuring data about the failure behavior of the two mortar joints under shear stressing, vertical load-controlled cylinder having force capacity of 50 kN and loading rate of 1.5 mm/min. with an internal inductive displacement transducers is carried out perpendicular to the triplet specimens. In this study, a total of six triplet specimens with textile reinforcement were prepared for these shear bond tests. The three of them were produced as single-sided reinforced triplets with seismic fabric, while the others were strengthened on both sides. In addition, three triplet specimens without retrofitting and plaster were also tested as reference samples. The obtained test results were given in the manner of force-displacement relationships, ductility coefficients and shear strength parameters comparatively. It is concluded that two-side seismic textile applications on masonry elements with relevant plaster have considerably increased the sheer force resistance and the ductility capacity.Keywords: expanded glass granular, perforated brickwork, retrofitting, seismic fabric, triplet shear tests
Procedia PDF Downloads 2082253 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques
Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee
Abstract:
Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel
Procedia PDF Downloads 2622252 Slope Stability and Landslides Hazard Analysis, Limitations of Existing Approaches, and a New Direction
Authors: Alisawi Alaa T., Collins P. E. F.
Abstract:
The analysis and evaluation of slope stability and landslide hazards are landslide hazards are critically important in civil engineering projects and broader considerations of safety. The level of slope stability risk should be identified due to its significant and direct financial and safety effects. Slope stability hazard analysis is performed considering static and/or dynamic loading circumstances. To reduce and/or prevent the failure hazard caused by landslides, a sophisticated and practical hazard analysis method using advanced constitutive modeling should be developed and linked to an effective solution that corresponds to the specific type of slope stability and landslides failure risk. Previous studies on slope stability analysis methods identify the failure mechanism and its corresponding solution. The commonly used approaches include used approaches include limit equilibrium methods, empirical approaches for rock slopes (e.g., slope mass rating and Q-slope), finite element or finite difference methods, and district element codes. This study presents an overview and evaluation of these analysis techniques. Contemporary source materials are used to examine these various methods on the basis of hypotheses, the factor of safety estimation, soil types, load conditions, and analysis conditions and limitations. Limit equilibrium methods play a key role in assessing the level of slope stability hazard. The slope stability safety level can be defined by identifying the equilibrium of the shear stress and shear strength. The slope is considered stable when the movement resistance forces are greater than those that drive the movement with a factor of safety (ratio of the resistance of the resistance of the driving forces) that is greater than 1.00. However, popular and practical methods, including limit equilibrium approaches, are not effective when the slope experiences complex failure mechanisms, such as progressive failure, liquefaction, internal deformation, or creep. The present study represents the first episode of an ongoing project that involves the identification of the types of landslides hazards, assessment of the level of slope stability hazard, development of a sophisticated and practical hazard analysis method, linkage of the failure type of specific landslides conditions to the appropriate solution and application of an advanced computational method for mapping the slope stability properties in the United Kingdom, and elsewhere through geographical information system (GIS) and inverse distance weighted spatial interpolation(IDW) technique. This study investigates and assesses the different assesses the different analysis and solution techniques to enhance the knowledge on the mechanism of slope stability and landslides hazard analysis and determine the available solutions for each potential landslide failure risk.Keywords: slope stability, finite element analysis, hazard analysis, landslides hazard
Procedia PDF Downloads 1042251 The Effect of Partially Replacing Cement with Metakaolin on the Properties of Concrete
Authors: Gashaw Abebaw
Abstract:
Concrete usage in Ethiopia is expanding at a faster rate than before. Cement is the most important and costly ingredient in this respect. The construction industry is currently challenged by cement scarcity and stock market inflation. Scholars' trays, on the other hand, will use natural pozzolan material to substitute cement. Apart from that, Metakaolin has pozzolanic characteristics. According to the industrial mineral occurrence map, Ethiopia kaolin may be found in abundance. Some of them include Debretabor, so it is good to utilize Metakaolin as cement replacement material. In this study, the capability of Ethiopian Metakaolin as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of PPC by MA with 0.49 percent water to cement ratio is investigated. The study examines; the chemical properties of MA, Physical properties of cement paste, workability, compressive strength, water absorption, density and sulfate attack of concrete was investigated. The chemical composition of Metakaolin was examined and the summation of SiO₂, AlO₃, and FeO₃ is 86.25% and the ash was classified class N pozzolan. The normal consistency percent of water increases as the MA replacement amount increase and both initial and final setting time rang increase as the MA replacement amount increase. On the 28th day, the compressive strength of concrete with MA replacement of 5%, 10%, and 15% exceeds the goal mean strength (33.5Mpa) with compressive strength enhancements of 2.23 %, 4.05 %, and 2.23 %, respectively. Similarly, on the 56th day, 5 %, 10%, and 15% replacement enhance concrete strength by 2.06 %, 3.06 %, and 1.2 %, respectively. The MA mixed concrete has improved significantly in terms of water absorption and sulphate attack, with a 15% replacement level. MA content Metakaolin could possibly replace cement up to 15%, according to the studies. The study's findings will help to offset cement price increases while also boosting house affordability without significantly degrading.Keywords: metakaolin, compressive strength, sulphate attack, water absorption, N pozzolan
Procedia PDF Downloads 1262250 A Comparative Study of the Tribological Behavior of Bilayer Coatings for Machine Protection
Authors: Cristina Diaz, Lucia Perez-Gandarillas, Gonzalo Garcia-Fuentes, Simone Visigalli, Roberto Canziani, Giuseppe Di Florio, Paolo Gronchi
Abstract:
During their lifetime, industrial machines are often subjected to chemical, mechanical and thermal extreme conditions. In some cases, the loss of efficiency comes from the degradation of the surface as a result of its exposition to abrasive environments that can cause wear. This is a common problem to be solved in industries of diverse nature such as food, paper or concrete industries, among others. For this reason, a good selection of the material is of high importance. In the machine design context, stainless steels such as AISI 304 and 316 are widely used. However, the severity of the external conditions can require additional protection for the steel and sometimes coating solutions are demanded in order to extend the lifespan of these materials. Therefore, the development of effective coatings with high wear resistance is of utmost technological relevance. In this research, bilayer coatings made of Titanium-Tantalum, Titanium-Niobium, Titanium-Hafnium, and Titanium-Zirconium have been developed using magnetron sputtering configuration by PVD (Physical Vapor Deposition) technology. Their tribological behavior has been measured and evaluated under different environmental conditions. Two kinds of steels were used as substrates: AISI 304, AISI 316. For the comparison with these materials, titanium alloy substrate was also employed. Regarding the characterization, wear rate and friction coefficient were evaluated by a tribo-tester, using a pin-on-ball configuration with different lubricants such as tomato sauce, wine, olive oil, wet compost, a mix of sand and concrete with water and NaCl to approximate the results to real extreme conditions. In addition, topographical images of the wear tracks were obtained in order to get more insight of the wear behavior and scanning electron microscope (SEM) images were taken to evaluate the adhesion and quality of the coating. The characterization was completed with the measurement of nanoindentation hardness and elastic modulus. Concerning the results, thicknesses of the samples varied from 100 nm (Ti-Zr layer) to 1.4 µm (Ti-Hf layer) and SEM images confirmed that the addition of the Ti layer improved the adhesion of the coatings. Moreover, results have pointed out that these coatings have increased the wear resistance in comparison with the original substrates under environments of different severity. Furthermore, nanoindentation hardness results showed an improvement of the elastic strain to failure and a high modulus of elasticity (approximately 200 GPa). As a conclusion, Ti-Ta, Ti-Zr, Ti-Nb, and Ti-Hf are very promising and effective coatings in terms of tribological behavior, improving considerably the wear resistance and friction coefficient of typically used machine materials.Keywords: coating, stainless steel, tribology, wear
Procedia PDF Downloads 1522249 Studies on the Characterization and Machinability of Duplex Stainless Steel 2205 during Dry Turning
Authors: Gaurav D. Sonawane, Vikas G. Sargade
Abstract:
The present investigation is a study of the effect of advanced Physical Vapor Deposition (PVD) coatings on cutting temperature residual stresses and surface roughness during Duplex Stainless Steel (DSS) 2205 turning. Austenite stabilizers like nickel, manganese, and molybdenum reduced the cost of DSS. Surface Integrity (SI) plays an important role in determining corrosion resistance and fatigue life. Resistance to various types of corrosion makes DSS suitable for applications with critical environments like Heat exchangers, Desalination plants, Seawater pipes and Marine components. However, lower thermal conductivity, poor chip control and non-uniform tool wear make DSS very difficult to machine. Cemented carbide tools (M grade) were used to turn DSS in a dry environment. AlTiN and AlTiCrN coatings were deposited using advanced PVD High Pulse Impulse Magnetron Sputtering (HiPIMS) technique. Experiments were conducted with cutting speed of 100 m/min, 140 m/min and 180 m/min. A constant feed and depth of cut of 0.18 mm/rev and 0.8 mm were used, respectively. AlTiCrN coated tools followed by AlTiN coated tools outperformed uncoated tools due to properties like lower thermal conductivity, higher adhesion strength and hardness. Residual stresses were found to be compressive for all the tools used for dry turning, increasing the fatigue life of the machined component. Higher cutting temperatures were observed for coated tools due to its lower thermal conductivity, which results in very less tool wear than uncoated tools. Surface roughness with uncoated tools was found to be three times higher than coated tools due to lower coefficient of friction of coating used.Keywords: cutting temperature, DSS2205, dry turning, HiPIMS, surface integrity
Procedia PDF Downloads 138