Search results for: nutrients biomass
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1539

Search results for: nutrients biomass

339 Bacterio-Algal Microbial Fuel Cells for Sustainable Power Production, Wastewater Treatment, and Desalination

Authors: Ann D. Christy, Beenish Saba

Abstract:

The Microbial fuel Cell (MFC) is a successful integrated technology for power production and wastewater treatment. MFCs are recognized for their dual function, but research in this field is still ongoing to increase efficiency and power output. One such effort is successful integration of phototrophic and autotrophic microorganisms to create bacterio-algal MFCs for sustainable electricity production along with wastewater treatment and algal biomass production. An MFC is typically configured with an anaerobic anodic chamber containing exoelectrogenic microorganisms separated by a cation exchange membrane from an adjacent aerobic cathodic chamber. The two electrodes are connected by an external circuit. This conventional MFC can be converted into a phototrophic MFC by introducing photosynthetic microorganisms into the cathode chamber. This study examines adding a third desalination chamber to a two-chamber bacterio-algal MFC. Successful results have been observed from these three-chamber MFCs demonstrating wastewater treatment in the anodic chamber, phototrophic algal growth in the cathodic chamber, and desalination in the middle chamber. The present article will summarize successful results of the bacterio-algal fuel cells and offer insights about the mechanisms involved. Tables summarizing the input substrate along with optimized operational conditions and output performance in terms of power production and efficiencies of water and wastewater treatment will be presented. The negative impacts and challenges will be discussed, along with possible future research directions. Results suggest that the three chamber bacterio-algal desalination cell has potential as a feasible technology for power production, wastewater treatment and desalination, but it needs further investigation under optimized conditions.

Keywords: bacterio-algal MFC, three chamber, microbial fuel cell, wastewater treatment and desalination

Procedia PDF Downloads 361
338 Optimization of a Bioremediation Strategy for an Urban Stream of Matanza-Riachuelo Basin

Authors: María D. Groppa, Andrea Trentini, Myriam Zawoznik, Roxana Bigi, Carlos Nadra, Patricia L. Marconi

Abstract:

In the present work, a remediation bioprocess based on the use of a local isolate of the microalgae Chlorella vulgaris immobilized in alginate beads is proposed. This process was shown to be effective for the reduction of several chemical and microbial contaminants present in Cildáñez stream, a water course that is part of the Matanza-Riachuelo Basin (Buenos Aires, Argentina). The bioprocess, involving the culture of the microalga in autotrophic conditions in a stirred-tank bioreactor supplied with a marine propeller for 6 days, allowed a significant reduction of Escherichia coli and total coliform numbers (over 95%), as well as of ammoniacal nitrogen (96%), nitrates (86%), nitrites (98%), and total phosphorus (53%) contents. Pb content was also significantly diminished after the bioprocess (95%). Standardized cytotoxicity tests using Allium cepa seeds and Cildáñez water pre- and post-remediation were also performed. Germination rate and mitotic index of onion seeds imbibed in Cildáñez water subjected to the bioprocess was similar to that observed in seeds imbibed in distilled water and significantly superior to that registered when untreated Cildáñez water was used for imbibition. Our results demonstrate the potential of this simple and cost-effective technology to remove urban-water contaminants, offering as an additional advantage the possibility of an easy biomass recovery, which may become a source of alternative energy.

Keywords: bioreactor, bioremediation, Chlorella vulgaris, Matanza-Riachuelo Basin, microalgae

Procedia PDF Downloads 250
337 M. J. Rodríguez, F. M. Sánchez, B. Velardo, P. Calvo, M. J. Serradilla, J. Delgado, J. M. López

Authors: Q. Rzina, M. Lahrouni, S. Rida, N. Saadaoui, Y. Almossaid, K. Oufdou, K. Fares

Abstract:

Many organic solid wastes are produced in the world. Poultry manure (PM), municipal organic wastes (MOW) and sugar beet lime sludge (LS) are produced in large quantities in Morocco. The co-composting of these organic wastes was investigated. The recycling and the valorization of such wastes is environmentally and economically beneficial especially for PM which is known source of bacterial pathogens. The aerobic biodegradation process was carried out by using three windrows of variable compositions: C1 prepared without LS (only MOW were composted with PM), C2 prepared from MOW plus PM and10% LS; and the last one C3 from MOW plus PM and 20% LS. The main process physico-chemical parameters (temperature, pH, humidity and C/N) and microbiological populations (mesophilic and thermophilic flora, total coliform, fecal coliform, Streptococci, Staphylococcus aureus and mesophilic fungi) were monitored over three months to ascertain the compost maturity and to ensure the compost hygienic aspect. The final products were characterized by their relatively high organic matter content, and low C/N ratio of 10.6-10.9. The organic matter degradation was reached approximately 59% for C2 and C3. In addition, the monitoring of the microbial population showed that the produced composts are mature and hygienic. The agronomic valorization of the final composts was tested on radish plant with tree level of composts and poultry manure without composting. The primary results of field trial showed a growth of radish plant biomass and root development without any phytotoxicity detected which reflects the quality of the composts produced. As for poultry manure it allowed to have a better results than other composts because of its readily available nitrogen.

Keywords: compost, municipal organic wastes, poultry manure, radish crop, sugar beet lime sludge

Procedia PDF Downloads 312
336 Characterization of Fungal Endophytes in Leaves, Stems and Roots of African Yam Bean (Sphenostylis sternocarpa Hochst ex. A. Rich Harms)

Authors: Iyabode A. Kehinde, Joshua O. Oyekanmi, Jumoke T. Abimbola, Olajumoke E. Ayanda

Abstract:

African yam bean (AYB), (Sphenostylis stenocarpa) is a leguminous crop that provides nutritionally rich seeds, tubers and leaves for human consumption. AYB potentials as an important food security crop is yet to be realized and thus classified as underutilized crop. Underutilization of the crop has been partly associated with scarce information on the incidence and characterization of fungal endophytes infecting vascular parts of AYB. Accurate and robust detection of these endophytic fungi is essential for diagnosis, modeling, surveillance and protection of germplasm (seed) health. This work aimed at isolating and identifying fungal endophytes associated with leaves, stems and roots of AYB in Ogun State, Nigeria. This study investigated both cultural and molecular properties of endophytic fungi in AYB for its characterization and diversity. Fungal endophytes were isolated and culturally identified. DNA extraction, PCR amplification using ITS primers and analyses of nucleotide sequences of ribosomal DNA fragments were conducted on selected isolates. BLAST analysis was conducted on consensus nucleotide sequences of 28 out of 30 isolates and results showed similar homology with genera of Rhizopus, Cunninghamella, Fusarium, Aspergillus, Penicillium, Alternaria, Diaporthe, Nigrospora, Purpureocillium, Corynespora, Magnaporthe, Macrophomina, Curvularia, Acrocalymma, Talaromyces and Simplicillium. Slight similarity was found with endophytes associated with soybean. Phylogenetic analysis by maximum likelihood method showed high diversity among the general. These organisms have high economic importance in crop improvement. For an instance, Purpureocillium lilacinum showed high potential in control of root rot caused by nematodes in tomatoes. Though some can be pathogens, but many of the fungal endophytes have beneficial attributes to plant in host health, uptake of nutrients, disease suppression, and host immunity.

Keywords: molecular characterization, African Yam Bean, fungal endophyte, plant parts

Procedia PDF Downloads 213
335 Towards Resilient and Sustainable Integrated Agro-ecosystems Through Appropriate Climate-smart Farming Practices in Morocco Rainfed Agriculture

Authors: Abdelali Laamari, Morad Faiz, Ali Amamou And Mohamed Elkoudrim

Abstract:

This research seeks to develop multi-disciplinary, multi-criteria, and multi-institutional approaches that consider the three main pillars of sustainability (environmental, economic, and social aspects) at the level of decision making regarding the adoption of improved technologies in the targeted case study region in Morocco. The study is aimed at combining sound R&I with extensive skills in applied research and policy evaluation. The intention is to provide new simple, and transferable tools and agricultural practices that will enable the uptake of sustainability and the resiliency of agro-ecosystems. The study will understand the state-of-the-art of the impact of climate change and identify the core bottlenecks and climate change’s impact on crop and livestock productivity of the targeted value chains in Morocco. Studies conducted during 2021-2022 showed that most of the farmers are using since 2010 the direct seeding and the system can be improved by adopting new fertilizer and varieties of wheat. The alley-cropping technology is based on Atriplex plant or olive trees. The introduction of new varieties of oat and quinoa has improved biomass and grain production in a dry season. The research is targeting other issues, such as social enterprises, to diversify women’s income resources and create new job opportunities through diversification of end uses of durum wheat and barley grains. Women’s local knowledge is rich on the different end uses of durum and barley grains that can improve their added value if they are transformed as couscous, pasta, or any other products.

Keywords: agriculture, climate, production system, integration

Procedia PDF Downloads 76
334 Food Waste and Sustainable Management

Authors: Farhana Nosheen, Moeez Ahmad

Abstract:

Throughout the food chain, the food waste from initial agricultural production to final household consumption has become a serious concern for global sustainability because of its adverse impacts on food security, natural resources, the environment, and human health. About a third of tomatoes (Lycopersicon esculentum L.) delivered to processing plants end as processing waste. The amount of such waste material is estimated to have increased with the emergence of mechanical harvesting. Experiments were made to determine the nutritional profile and antioxidant activity of tomato processing waste and to explore the bioactive compound in tomato waste, i.e., Lycopene. Tomato Variety of ‘SAHARA F1’ was used to make tomato waste. The tomatoes were properly cleaned, and then unwanted impurities were removed properly. The tomatoes were blanched at 90 ℃ for 5 minutes. After which, the skin of the tomatoes was removed, and the remaining part passed through the electric pulper. The pulp and seeds were collected separately. The seeds and skin of tomatoes were mixed and saved in a sterilized jar. The samples of tomato waste were found to contain 89.11±0.006 g/100g moisture, 10.13±0.115 g/100g protein, 2.066±0.57 g/100g fat, 4.81±0.10 g/100g crude fiber, and 4.06±0.057 g/100g ash and NFE 78.92±0.066 g/100g. The results confirmed that tomato waste contains a considerable amount of Lycopene 51.0667±0.00577 mg/100g and exhibited good antioxidant properties. Total phenolics showed average contents of 122.9600±0.01000 mg GAE/100g, of which flavonoids accounted for 41.5367±0.00577 mg QE/100g. Antioxidant activity of tomato processing waste was found 0.6833±0.00577 mmol Trolox/100g. Unsaturated fatty acids represent the major portion of total fatty acids, Linoleic acid being the major one. The mineral content of tomato waste showed a good amount of potassium 3030.1767 mg/100g and calcium 131.80 mg/100g, respectively were present in it. These findings suggest that tomato processing waste is rich in nutrients, antioxidants, fatty acids, and minerals. I recommend that this waste should be sun-dried to be used in the combination of feed of the animals. It can also be used in making some other products like lycopene tea or several other health-beneficial products.

Keywords: food waste, tomato, bioactive compound, sustainable management

Procedia PDF Downloads 109
333 Optimization of the Culture Medium, Incubation Period, pH and Temperatures for Maximal Dye Bioremoval Using A. Fumigates

Authors: Wafaa M. Abd El-Rahim, Magda A. El-Meleigy, Eman Refaat

Abstract:

This study dealing with optimization the conditions affecting the formation of extracellular lignin- degrading enzymes to achieve maximal decolorization activity of Direct Violet dye by one fungal strain. In this study Aspergillus fumigates fungal strain used for production extracellular ligninolytic enzymes for removing Direct Violet dye under different conditions: culture medium, incubation period, pH and temperatures. The results indicted that the removal efficiency of A. fumigatus was enhanced by addition glucose and peptone to the culture medium. The addition of peptone and glucose was found to increase the decolorization activity of the fungal isolate from 51.38% to 93.74% after 4 days of incubation. The highest production of extracellular lignin degrading enzymes also recorded in Direct Violet dye medium supplemented with peptone and glucose. It was also found the decolorization activity of A. fumigatus was decreased gradually by increasing the incubation period up to 4 days. Also it was found that the fungal strain can grow and produce extracellular ligninolytic enzymes which accompanied by efficient removal of Direct Violet dye in a wide pH range of 4-8. The results also found that the maximal biosynthesis of ligninolytic enzymes which accompanied with maximal removal of Direct Violet dye was obtained at a temperature of 28C. This indicates that the different conditions of culture medium, incubation period, pH and temperatures are effective on dye decolorization on the fungal biomass and played a role in Direct Violet dye removal along with enzymatic activity of A. fumigatus.

Keywords: A. fumigates, extracellular lignin- degrading enzymes, textile dye, dye removing

Procedia PDF Downloads 278
332 Fate of Sustainability and Land Use Array in Urbanized Cities

Authors: Muhammad Yahaya Ubale

Abstract:

Substantial rate of urbanization as well as economic growth is the tasks and prospects of sustainability. Objectives of the paper are: to ascertain the fate of sustainability in urbanized cities and; to identify the challenges of land use array in urbanized cities. Methodology engaged in this paper employed the use of secondary data where articles, conference proceedings, seminar papers and literature materials were effectively used. The paper established the fact that while one thinks globally, it is reciprocal to act locally if at all sustainability should be achieved. The speed and scale of urbanization must be equal to natural and cost-effective deliberations. It also discovered a podium that allows a city to work together as an ideal conglomerate, engaging all city departments as a source of services, engaging residents, businesses, and contractors. It also revealed that city should act as a leader and partner within an urban region, engaging senior government officials, utilities, rural settlements, private sector stakeholders, NGOs, and academia. Cities should assimilate infrastructure system design and management to enhance efficiency of resource flows in an urban area. They should also coordinate spatial development; integrate urban forms and urban flows, combine land use, urban design, urban density, and other spatial attributes with infrastructural development. Finally, by 2050, urbanized cities alone could be consuming 140 billion tons of minerals, ores, fossil fuels and biomass annually (three times its current rate of consumption), sustainability can be accomplished through land use control, limited access to finite resources, facilities, utilities and services as well as property right and user charge.

Keywords: sustainability, land use array, urbanized cities, fate of sustainability and perseverance

Procedia PDF Downloads 272
331 The Effect of Feedstock Type and Slow Pyrolysis Temperature on Biochar Yield from Coconut Wastes

Authors: Adilah Shariff, Nur Syairah Mohamad Aziz, Norsyahidah Md Saleh, Nur Syuhada Izzati Ruzali

Abstract:

The first objective of this study is to investigate the suitability of coconut frond (CF) and coconut husk (CH) as feedstocks using a laboratory-scale slow pyrolysis experimental setup. The second objective is to investigate the effect of pyrolysis temperature on the biochar yield. The properties of CF and CH feedstocks were compared. The properties of the CF and CH feedstocks were investigated using proximate and elemental analysis, lignocellulosic determination, and also thermogravimetric analysis (TGA). The CF and CH feedstocks were pyrolysed at 300, 400, 500, 600 and 700 °C for 2 hours at 10 °C/min heating rate. The proximate analysis showed that CF feedstock has 89.96 mf wt% volatile matter, 4.67 mf wt% ash content and 5.37 mf wt% fixed carbon. The lignocelluloses analysis showed that CF feedstock contained 21.46% lignin, 39.05% cellulose and 22.49% hemicelluloses. The CH feedstock contained 84.13 mf wt% volatile matter, 0.33 mf wt% ash content, 15.54 mf wt% fixed carbon, 28.22% lignin, 33.61% cellulose and 22.03% hemicelluloses. Carbon and oxygen are the major component of the CF and CH feedstock compositions. Both of CF and CH feedstocks contained very low percentage of sulfur, 0.77% and 0.33%, respectively. TGA analysis indicated that coconut wastes are easily degraded. It may be due to their high volatile content. Between the temperature ranges of 300 and 800 °C, the TGA curves showed that the weight percentage of CF feedstock is lower than CH feedstock by 0.62%-5.88%. From the D TGA curves, most of the weight loss occurred between 210 and 400 °C for both feedstocks. The maximum weight loss for both CF and CH are 0.0074 wt%/min and 0.0061 wt%/min, respectively, which occurred at 324.5 °C. The yield percentage of both CF and CH biochars decreased significantly as the pyrolysis temperature was increased. For CF biochar, the yield decreased from 49.40 wt% to 28.12 wt% as the temperature increased from 300 to 700 °C. The yield for CH biochars also decreased from 52.18 wt% to 28.72 wt%. The findings of this study indicated that both CF and CH are suitable feedstock for slow pyrolysis of biochar.

Keywords: biochar, biomass, coconut wastes, slow pyrolysis

Procedia PDF Downloads 212
330 Mechanical Activation of a Waste Material Used as Cement Replacement in Soft Soil Stabilisation

Authors: Hassnen M. Jafer, W. Atherton, F. Ruddock, E. Loffil

Abstract:

Waste materials or sometimes called by-product materials have been increasingly used as construction material to reduce the usage of cement in different construction projects. In the field of soil stabilisation, waste materials such as pulverised fuel ash (PFA), biomass fly ash (BFA), sewage sludge ash (SSA), etc., have been used since 1960s in last century. In this study, a particular type of a waste material (WM) was used in soft soil stabilisation as a cement replacement, as well as, the effect of mechanical activation, using grinding, on the performance of this WM was also investigated. The WM used in this study is a by-product resulted from the incineration processes between 1000 and 1200oc in domestic power generation plant using a fluidized bed combustion system. The stabilised soil in this study was an intermediate plasticity silty clayey soil with medium organic matter content. The experimental works were conducted first to find the optimum content of WM by carrying out Atterberg limits and unconfined compressive strength (UCS) tests on soil samples contained (0, 3, 6, 9, 12, and 15%) of WM by the dry weight of soil. The UCS test was carried out on specimens provided to different curing periods (zero, 7, 14, and 28 days). Moreover, the optimum percentage of the WM was subject to different periods of grinding (10, 20, 30, 40mins) using mortar and pestle grinder to find the effect of grinding and its optimum time by conducting UCS test. The results indicated that the WM used in this study improved the physical properties of the soft soil where the index of plasticity (IP) was decreased significantly from 21 to 13.10 with 15% of WM. Meanwhile, the results of UCS test indicated that 12% of WM was the optimum and this percentage developed the UCS value from 202kPa to 700kPa for 28 days cured samples. Along with the time of grinding, the results revealed that 10 minutes of grinding was the best for mechanical activation for the WM used in this study.

Keywords: soft soil stabilisation, waste materials, grinding, and unconfined compressive strength

Procedia PDF Downloads 280
329 Effect of Roasting Temperature on the Proximate, Mineral and Antinutrient Content of Pigeon Pea (Cajanus cajan) Ready-to-Eat Snack

Authors: Olaide Ruth Aderibigbe, Oluwatoyin Oluwole

Abstract:

Pigeon pea is one of the minor leguminous plants; though underutilised, it is used traditionally by farmers to alleviate hunger and malnutrition. Pigeon pea is cultivated in Nigeria by subsistence farmers. It is rich in protein and minerals, however, its utilisation as food is only common among the poor and rural populace who cannot afford expensive sources of protein. One of the factors contributing to its limited use is the high antinutrient content which makes it indigestible, especially when eaten by children. The development of value-added products that can reduce the antinutrient content and make the nutrients more bioavailable will increase the utilisation of the crop and contribute to reduction of malnutrition. This research, therefore, determined the effects of different roasting temperatures (130 0C, 140 0C, and 150 0C) on the proximate, mineral and antinutrient component of a pigeon pea snack. The brown variety of pigeon pea seeds were purchased from a local market- Otto in Lagos, Nigeria. The seeds were cleaned, washed, and soaked in 50 ml of water containing sugar and salt (4:1) for 15 minutes, and thereafter the seeds were roasted at 130 0C, 140 0C, and 150 0C in an electric oven for 10 minutes. Proximate, minerals, phytate, tannin and alkaloid content analyses were carried out in triplicates following standard procedures. The results of the three replicates were polled and expressed as mean±standard deviation; a one-way analysis of variance (ANOVA) and the Least Significance Difference (LSD) were carried out. The roasting temperatures significantly (P<0.05) affected the protein, ash, fibre and carbohydrate content of the snack. Ready-to-eat snack prepared by roasting at 150 0C significantly had the highest protein (23.42±0.47%) compared the ones roasted at 130 0C and 140 0C (18.38±1.25% and 20.63±0.45%, respectively). The same trend was observed for the ash content (3.91±0.11 for 150 0C, 2.36±0.15 for 140 0C and 2.26±0.25 for 130 0C), while the fibre and carbohydrate contents were highest at roasting temperature of 130 0C. Iron, zinc, and calcium were not significantly (P<0.5) affected by the different roasting temperatures. Antinutrients decreased with increasing temperature. Phytate levels recorded were 0.02±0.00, 0.06±0.00, and 0.07±0.00 mg/g; tannin levels were 0.50±0.00, 0.57±0.00, and 0.68±0.00 mg/g, while alkaloids levels were 0.51±0.01, 0.78±0.01, and 0.82±0.01 mg/g for 150 0C, 140 0C, and 130 0C, respectively. These results show that roasting at high temperature (150 0C) can be utilised as a processing technique for increasing protein and decreasing antinutrient content of pigeon pea.

Keywords: antinutrients, pigeon pea, protein, roasting, underutilised species

Procedia PDF Downloads 141
328 Optimising Leafy Indigenous Vegetables as Functional Foods: The Nigerian Case Study

Authors: John Olayinka Atoyebi

Abstract:

Developing countries like Nigeria are facing myriad problems, ranging from economic challenges, lack of no jobs, food insecurity, malnutrition, and poverty. However, tackling some of these menaces is not just a trivial issue neither do some of them require rocket science to fix, but rather the understanding of every individual citizen recognizing their respective roles that they have to play in making the country better, rather than putting all the blames on the Government. Tackling nutrition and food insecurity is a complex problem, but this work examines what an individual can do to improve nutrient consumption. Leafy indigenous vegetables can be termed as functional foods since they are very rich in nutrients, phytochemicals and other beneficial compounds to the body system. These functional foods are the class that provides necessary health benefits beyond basic nutrition. Usually functional foods often contain bioactive compounds, which help the body through the prevention and management of various diseases, as well as improving the overall health of human beings. The analysis carried out on some Nigerian leafy indigenous vegetables in home grown setting revealed, for example, the potential use of Iron (Fe) amount of 318.15ppm in Basella alba (red species) and that of Telfaria Occidentalis (Ugu) with 261.22ppm as being useful to stimulate heme, a necessary precursor and protein in the formation of blood in human being. Moreso, Virnonia amygdalina (ewuro) and water leaf possess anti-bacterial and anti-diabetic properties. They also provide digestive health benefits and support to the body system, including anti-inflammatory properties. Also, medicinal plant like Morinda citrifolia (Noni), which had been found to possess anti-cancer properties, has a Vitamin C amount of 528.85 mg/100g and a total carotenoids amount of 85.50 µg/g. However, despite all these results and potential utilization of these and other indigenous vegetables in Nigeria, there is a gross unawareness and/or non-cognizance of their utilization potentials, as some home garden lacks understanding of the immense nutrition benefits, thus hindering some of the populace to make proper use of these vegetables to enhance their health.

Keywords: developing countries, optimising, leafy vegetables, functional foods

Procedia PDF Downloads 5
327 Mitigating Ruminal Methanogenesis Through Genomic and Transcriptomic Approaches

Authors: Muhammad Adeel Arshad, Faiz-Ul Hassan, Yanfen Cheng

Abstract:

According to FAO, enteric methane (CH4) production is about 44% of all greenhouse gas emissions from the livestock sector. Ruminants produce CH4 as a result of fermentation of feed in the rumen especially from roughages which yield more CH4 per unit of biomass ingested as compared to concentrates. Efficient ruminal fermentation is not possible without abating CO2 and CH4. Methane abatement strategies are required to curb the predicted rise in emissions associated with greater ruminant production in future to meet ever increasing animal protein requirements. Ecology of ruminal methanogenesis and avenues for its mitigation can be identified through various genomic and transcriptomic techniques. Programs such as Hungate1000 and the Global Rumen Census have been launched to enhance our understanding about global ruminal microbial communities. Through Hungate1000 project, a comprehensive reference set of rumen microbial genome sequences has been developed from cultivated rumen bacteria and methanogenic archaea along with representative rumen anaerobic fungi and ciliate protozoa cultures. But still many species of rumen microbes are underrepresented especially uncultivable microbes. Lack of sequence information specific to the rumen's microbial community has inhibited efforts to use genomic data to identify specific set of species and their target genes involved in methanogenesis. Metagenomic and metatranscriptomic study of entire microbial rumen populations offer new perspectives to understand interaction of methanogens with other rumen microbes and their potential association with total gas and methane production. Deep understanding of methanogenic pathway will help to devise potentially effective strategies to abate methane production while increasing feed efficiency in ruminants.

Keywords: Genome sequences, Hungate1000, methanogens, ruminal fermentation

Procedia PDF Downloads 139
326 Site Specific Nutrient Management Need in India Now

Authors: A. H. Nanher, N. P. Singh, Shashidhar Yadav, Sachin Tyagi

Abstract:

Agricultural production system is an outcome of a complex interaction of seed, soil, water and agro-chemicals (including fertilizers). Therefore, judicious management of all the inputs is essential for the sustainability of such a complex system. Precision agriculture gives farmers the ability to use crop inputs more effectively including fertilizers, pesticides, tillage and irrigation water. More effective use of inputs means greater crop yield and/or quality, without polluting the environment the focus on enhancing the productivity during the Green Revolution coupled with total disregard of proper management of inputs and without considering the ecological impacts, has resulted into environmental degradation. To evaluate a new approach for site-specific nutrient management (SSNM). Large variation in initial soil fertility characteristics and indigenous supply of N, P, and K was observed among Field- and season-specific NPK applications were calculated by accounting for the indigenous nutrient supply, yield targets, and nutrient demand as a function of the interactions between N, P, and K. Nitrogen applications were fine-tuned based on season-specific rules and field-specific monitoring of crop N status. The performance of SSNM did not differ significantly between high-yielding and low-yielding climatic seasons, but improved over time with larger benefits observed in the second year Future, strategies for nutrient management in intensive rice systems must become more site-specific and dynamic to manage spatially and temporally variable resources based on a quantitative understanding of the congruence between nutrient supply and crop demand. The SSNM concept has demonstrated promising agronomic and economic potential. It can be used for managing plant nutrients at any scale, i.e., ranging from a general recommendation for homogenous management of a larger domain to true management of between-field variability. Assessment of pest profiles in FFP and SSNM plots suggests that SSNM may also reduce pest incidence, particularly diseases that are often associated with excessive N use or unbalanced plant nutrition.

Keywords: nutrient, pesticide, crop, yield

Procedia PDF Downloads 430
325 Thermal Characteristics of Sewage Sludge to Develop an IDPG Technology

Authors: Young Nam Chun, Mun Sup Lim, Byeo Ri Jeong

Abstract:

Sewage sludge is regarded as the residue produced by the waste water treatment process, during which liquids and solids are being separated. Thermal treatments are interesting techniques to stabilize the sewage sludge for disposal. Among the thermal treatments, pyrolysis and/or gasification has been being applied to the sewage sludge. The final goal of our NRF research is to develop a microwave In-line Drying-Pyrolysis-Gasification (IDPG) technology for the dewatered sewage sludge for the bio-waste to energy conversion. As a first step, the pyrolysis characteristics in a bench scale electric furnace was investigated at 800℃ for the dewatered sludge and dried sludge samples of which moisture contents are almost 80% and 0%, respectively. Main components of producer gas are hydrogen and carbon dioxide. Particularly, higher hydrogen for the dewatered sludge is shown as 75%. The hydrogen production for the dewatered sludge and dried sludge are 56% and 32%, respectively. However, the pyrolysis for the dried sludge produces higher carbon dioxide and other gases, while higher methane and carbon dioxide are given to 74% and 53%, respectively. Tar also generates during the pyrolysis process, showing lower value for case of the dewatered sludge. Gravimetric tar is 195 g/m3, and selected light tar like benzene, naphthalene, anthracene, pyrene are 9.4 g/m3, 2.1 g/m3, 0.5 g/m3, 0.3 g/m3, respectively. After the pyrolysis process, residual char for the dewatered sludge and dried sludge remain 1g and 1.3g, showing weight reduction rate of 93% and 57%, respectively. Through the results, this could be known that the dewatered sludge can be used to produce a clean hydrogen-rich gas fuel without the drying process. Therefore, the IDPG technology can be applied effectively to the energy conversion for dewater sludge waste without a drying pretreatment. Acknowledgment: This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP) (No. 2015R1A2A2A03003044).

Keywords: pyrolysis, gasification, sewage sludge, tar generation, producer gas, sludge char, biomass energy

Procedia PDF Downloads 352
324 Evaluation of Commercial Herbicides for Weed Control and Yield under Direct Dry Seeded Rice Cultivation System in Pakistan

Authors: Sanaullah Jalil, Abid Majeed, Syed Haider Abbas

Abstract:

Direct dry seeded rice cultivation system is an emerging production technology in Pakistan. Weeds are a major constraint to the success of direct dry seeded rice (DDSR). Studies were carried out for two years during 2015 and 2016 to evaluate the performance of applications of pre-emergence herbicides (Top Max @ 2.25 lit/ha, Click @1.5 lit/ha and Pendimethaline @ 1.25 lit/ha) and post-emergence herbicides (Clover @ 200 g/ha, Pyranex Gold @ 250 g/ha, Basagran @ 2.50 lit/ha, Sunstar Gold @ 50 g/ha and Wardan @ 1.25 lit/ha) at rice research field area of National Agriculture Research Center (NARC), Islamabad. The experiments were laid out in Randomized Complete Block Design (RCBD) with three replications. All evaluated herbicides reduced weed density and biomass by a significant amount. The net plot size was 2.5 x 5 m with 10 rows. Basmati-385 was used as test variety of rice. Data indicated that Top Max and Click provided best weed control efficiency but suppressed the germination of rice seed which causes the lowest grain yield production (680.6 kg/ha and 314.5 kg/ha respectively). A weedy check plot contributed 524.7 kg/ha paddy yield with highest weed density. Pyranex Gold provided better weed control efficiency and contributed to significantly higher paddy yield 5116.6 kg/ha than that of all other herbicide applications followed by the Clover which give paddy yield 4241.7 kg/ha. The results of our study suggest that pre-emergence herbicides provided best weed control but not fit for direct dry seeded rice (DDSR) cultivation system, and therefore post-emergence herbicides (Pyranex Gold and Clover) can be suggested for weed control and higher yield.

Keywords: pyranex gold, clover, direct dry seeded rice (DDSR), yield

Procedia PDF Downloads 261
323 Deficit Drip Irrigation in Organic Cultivation of Aromatic Plant

Authors: Vasileios A. Giouvanis, Christos D. Papanikolaou, Dimitrios S. Dimakas, Maria A. Sakellariou-Makrantonaki

Abstract:

In countries with limited water resources, where the irrigation demands are higher than the 70% of the total water use, the demand for fresh water increases while the quality of this natural resource is downgraded. The aromatic and pharmaceutical plants hold a high position in the culture of the most civilizations through the centuries. The ‘Mountain Tea,’ species of the Greek flora, is part of a series of aromatic plants and herbs that are famous for their pharmaceutical properties as well as their byproducts and their essential oils. The aim of this research was to study the effects of full and deficit irrigation on the growing and productive characteristics of organically cultivated ‘Mountain Tea’ (Sideritis raeseri). The research took place at the University of Thessaly farm in Velestino, Magnesia - Central Greece, during the year 2017, which was the third growing season. The experiment consisted of three treatments in three replications. The experimental design was a fully randomized complete block. Surface drip irrigation was used to irrigate the experimental plots. In the first treatment, the 75% (deficit irrigation) of the daily water needs was applied. In the second treatment, the 100% (full irrigation) of the daily water needs was applied. The third treatment was not irrigated (rainfed). The crop water needs were calculated according to the daily measured evapotranspiration (ETc) using the Penman-Monteith method (FAO 56). The plants’ height, fresh and dry biomass production were measured. The results showed that only the irrigated ‘Mountain Tea’ can be cultivated at low altitude areas with satisfactory results. Moreover, there are no statistically significant differences (P < 0.05) at the growing and productive characteristics between full and deficit irrigation treatments, which proves that by deficit irrigation, an important amount of irrigation water can be saved.

Keywords: mountain tea, surface drip irrigation, deficit irrigation, water saving

Procedia PDF Downloads 163
322 In Vitro and in Vivo Evaluation of Nano Collagen Molecules to Enhance Mesenchymal Stem Cells Differentiate into Insulin Producing Cells

Authors: Chin-Tsu Ma, Yi-Jhen Wu, Hsia Ying Cheng, Han Hsiang Huang, Shyh Ming Kuo

Abstract:

The use of specific molecules including nutrients and pharmacological agents has been tried in modulation of stem cells differentiation (MSCs) to insulin producing cells. The aim of this study is to investigate the ability of nano collagen molecules (nutrient or scaffold) to enhance the MSCs differentiation into insulin-producing cells in combination with nicotinamide and exendin-4 (pharmacological agents) in vitro and in vivo. The results demonstrated that the cells exhibit morphologically islet-like clusters after treatment with nano collagen molecules, nicotinamide and exendin-4. MSCs extra treated with nano collagen molecules showed significant increases in Nkx6.1 and insulin mRNA expression at 14-d and 21-d culture compared with those merely treated with nicotinamide and exendin-4. Early 7-day elevation in PDX-1 mRNA expression was observed. Furthermore, the MSCs exposed to nano collagen molecules produced the highest secretion of insulin (p < 0.05). Type-2 diabetes induced by high-fat diet and low dose of streptozotocin in rat model was built in this study. This rat exhibited higher food intake, water intake, lower glucose tolerance, lower-insulin tolerance, and higher HbA1C (significant increases, p < 0.01) as compared with the normal rat that demonstrated the model of type-2 diabetes was successfully built. Biopsy examinations also showed that obvious destruction of islet. After injection of differentiated MSCs into the destructed pancreas of diabetes rat, more regenerated islet were observed at the rats that treated with nano collagen molecules and exhibited much lower HbA1C as compared with the normal rat and diabetes rat after 4 weeks (significant deceases, p < 0.001). These results indicate that the culturing MSCs with nano collagen molecules, nicotinamide, and exendin-4 are beneficial for MSCs differentiation into islet-like cells. These nano collagen molecules may lead to alternations or up-regulation of gene expression and influence the differentiated outcomes induced by nicotinamide and exendin-4.

Keywords: nano collagen molecules, nicotinamide, MSCs, diabetes

Procedia PDF Downloads 410
321 Modeling of a Pilot Installation for the Recovery of Residual Sludge from Olive Oil Extraction

Authors: Riad Benelmir, Muhammad Shoaib Ahmed Khan

Abstract:

The socio-economic importance of the olive oil production is significant in the Mediterranean region, both in terms of wealth and tradition. However, the extraction of olive oil generates huge quantities of wastes that may have a great impact on land and water environment because of their high phytotoxicity. Especially olive mill wastewater (OMWW) is one of the major environmental pollutants in olive oil industry. This work projects to design a smart and sustainable integrated thermochemical catalytic processes of residues from olive mills by hydrothermal carbonization (HTC) of olive mill wastewater (OMWW) and fast pyrolysis of olive mill wastewater sludge (OMWS). The byproducts resulting from OMWW-HTC treatment are a solid phase enriched in carbon, called biochar and a liquid phase (residual water with less dissolved organic and phenolic compounds). HTC biochar can be tested as a fuel in combustion systems and will also be utilized in high-value applications, such as soil bio-fertilizer and as catalyst or/and catalyst support. The HTC residual water is characterized, treated and used in soil irrigation since the organic and the toxic compounds will be reduced under the permitted limits. This project’s concept includes also the conversion of OMWS to a green diesel through a catalytic pyrolysis process. The green diesel is then used as biofuel in an internal combustion engine (IC-Engine) for automotive application to be used for clean transportation. In this work, a theoretical study is considered for the use of heat from the pyrolysis non-condensable gases in a sorption-refrigeration machine for pyrolysis gases cooling and condensation of bio-oil vapors.

Keywords: biomass, olive oil extraction, adsorption cooling, pyrolisis

Procedia PDF Downloads 90
320 The Impact of Protein Content on Athletes’ Body Composition

Authors: G. Vici, L. Cesanelli, L. Belli, R. Ceci, V. Polzonetti

Abstract:

Several factors contribute to success in sport and diet is one of them. Evidence-based sport nutrition guidelines underline the importance of macro- and micro-nutrients’ balance and timing in order to improve athlete’s physical status and performance. Nevertheless, a high content of proteins is commonly found in resistance training athletes’ diet with carbohydrate intake that is not enough or not well planned. The aim of the study was to evaluate the impact of different protein and carbohydrate diet contents on body composition and sport performance on a group of resistance training athletes. Subjects were divided as study group (n=16) and control group (n=14). For a period of 4 months, both groups were subjected to the same resistance training fitness program with study group following a specific diet and control group following an ab libitum diet. Body compositions were evaluated trough anthropometric measurement (weight, height, body circumferences and skinfolds) and Bioimpedence Analysis. Physical strength and training status of individuals were evaluated through the One Repetition Maximum test (RM1). Protein intake in studied group was found to be lower than in control group. There was a statistically significant increase of body weight, free fat mass and body mass cell of studied group respect to the control group. Fat mass remains almost constant. Statistically significant changes were observed in quadriceps and biceps circumferences, with an increase in studied group. The MR1 test showed improvement in study group’s strength but no changes in control group. Usually people consume hyper-proteic diet to achieve muscle mass development. Through this study, it was possible to show that protein intake fixed at 1,7 g/kg/d can meet the individual's needs. In parallel, the increased intake of carbohydrates, focusing on quality and timing of assumption, has enabled the obtainment of desired results with a training protocol supporting a hypertrophic strategy. Therefore, the key point seems related to the planning of a structured program both from a nutritional and training point of view.

Keywords: body composition, diet, exercise, protein

Procedia PDF Downloads 222
319 Arginase Enzyme Activity in Human Serum as a Marker of Cognitive Function: The Role of Inositol in Combination with Arginine Silicate

Authors: Katie Emerson, Sara Perez-Ojalvo, Jim Komorowski, Danielle Greenberg

Abstract:

The purpose of this study was to evaluate arginase activity levels in response to combinations of an inositol-stabilized arginine silicate (ASI; Nitrosigine®), L-arginine, and Inositol. Arginine acts as a vasodilator that promotes increased blood flow resulting in enhanced delivery of oxygen and nutrients to the brain and other tissues. ASI alone has been shown to improve performance on cognitive tasks. Arginase, found in human serum, catalyzes the conversion of arginine to ornithine and urea, completing the last step in the urea cycle. Decreasing arginase levels maintains arginine and results in increased nitric oxide production. This study aimed to determine the most effective combination of ASI, L-arginine and inositol for minimizing arginase levels and therefore maximize ASI’s effect on cognition. Serum was taken from untreated healthy donors by separation from clotted factors. Arginase activity of serum in the presence or absence of test products was determined (QuantiChrom™, DARG-100, Bioassay Systems, Hayward CA). The remaining ultra-filtrated serum units were harvested and used as the source for the arginase enzyme. ASI alone or combined with varied levels of Inositol were tested as follows: ASI + inositol at 0.25 g, 0.5 g, 0.75 g, or 1.00 g. L-arginine was also tested as a positive control. All tests elicited changes in arginase activity demonstrating the efficacy of the method used. Adding L-arginine to serum from untreated subjects, with or without inositol only had a mild effect. Adding inositol at all levels reduced arginase activity. Adding 0.5 g to the standardized amount of ASI led to the lowest amount of arginase activity as compared to the 0.25g 0.75g or 1.00g doses of inositol or to L-arginine alone. The outcome of this study demonstrates an interaction of the pairing of inositol with ASI on the activity of the enzyme arginase. We found that neither the maximum nor minimum amount of inositol tested in this study led to maximal arginase inhibition. Since the inhibition of arginase activity is desirable for product formulations looking to maintain arginine levels, the most effective amount of inositol was deemed preferred. Subsequent studies suggest this moderate level of inositol in combination with ASI leads to cognitive improvements including reaction time, executive function, and concentration.

Keywords: arginine, inositol, arginase, cognitive benefits

Procedia PDF Downloads 111
318 Growth Response and Nutrient Utilization of African Mud Catfish Clarias gariepinus (Burchell, 1822) Fingerlings Fed Processed Macroalgae and Macroalgae-Based Formulated Feeds

Authors: A. O Amosu, A. M Hammed, G. W. Maneveldt, D. V. Robertson-Andersson

Abstract:

In aquaculture, feed utilization is an important factor affecting growth of the target species, and thus the success of the aquaculture operation. Growth of C. gariepinus fingerlings (weight 1.60 ± 0.05 g; length 4.50 ± 0.07cm) was monitored in a closed door hatchery for a period of 21 days in an experiment consisting of 4 treatments stocked at 20 fish/10 litre tanks, fed in triplicate twice daily (08:30, 17:30) at 4% body weight with weight changes recorded every 3 days. Treatments were: 1) FeedX; 2) 35% crude protein diet + non enriched Ulva spp (11.18% crude protein) (CD + NEU); 3) 35% crude protein diet + enriched Ulva spp (11.98% crude protein)(CD +EU) and 4) control diet of 35% crude protein (CD). The production of Ulva spp. biomass was cultivated for a period of 3 months. The result shows that the fish fed macroalgal enriched diet had good growth, though no significant difference (p > 0.05) was recorded amongst the weight gain, %weight gain, specific growth rates and nitrogen metabolism of diets CD + NEU, CD + EU and CD. Significant differences (p < 0.05), were, however, found in the food conversion ratio (FCR) and gross food conversion ratio (gFCR) among the fingerlings across all the different experimental diets. The best FCRs were recorded for control diet (0.79 ± 2.39) and the Ulva enriched (1.75 ± 1.34) diets. The results suggest that the fingerlings were able to utilize Ulva supplemented with control diet better than the FeedX. We have shown that Ulva supplemented diets are good substitutes for formulated and commercial feeds, with potential to be successful fish feed in aquaculture systems.

Keywords: aquaculture, clarias gariepinus, growth, macroalgae, nutrient, ulva

Procedia PDF Downloads 701
317 Potential of Castor Bean (Ricinus Communis L.) for Phytoremediation of Soils Contaminated with Heavy Metals

Authors: Violina Angelova, Mariana Perifanova-Nemska, Krasimir Ivanov

Abstract:

The aim of this research was to investigate the potential for the use of Ricinus communis L. (castor oil plant) to remediate metal-polluted sites. This study was performed in industrially polluted soils containing high concentrations of Zn, Pb and Cd, situated at different distances (0.3, 2.0 and 15.0 km) from the source of pollution - the Non-Ferrous Metal Works near Plovdiv, Bulgaria. On reaching commercial ripeness, the castor oil plants were gathered and the contents of heavy metals in their different parts – roots, stems, leaves and seeds, were determined after dry ashing. Physico-chemical characterization, total, DTPA extractable and water-soluble metals in rhizospheric soil samples were carried. Translocation factors (TFs) were also determined. The quantitative measurements were carried out with ICP. A soxhlet extraction was used for the extraction of the oil, using hexane as solvent. The oil was recovered by simple distillation of the solvent. The residual oil obtained was investigated for physicochemical parameters and fatty acid composition. Bioaccumulation factor and translocation factor values (BAF and TF > 1) were greater than one suggesting efficient accumulation in the shoot. The castor oil plant may be preferred as a good candidate for phytoremediation (phytoextraction). These results indicate that R. communis has good potential for removing Pb from contaminated soils attributed to its fast growth, high biomass, strong absorption and accumulation for Pb. The concentrations of heavy metals in the oil were low as seed coats accumulated the highest concentrations of Cd and Pb. In addition, the result of the fatty acid composition analysis confirms the oil to be of good quality and can be used for industrial purposes such as cosmetics, soaps and paint.

Keywords: castor bean, heavy metals, phytoremediation, polluted soils

Procedia PDF Downloads 241
316 The Role of Heat Pumps in the Decarbonization of European Regions

Authors: Domenico M. Mongelli, Michele De Carli, Laura Carnieletto, Filippo Busato

Abstract:

Europe's dependence on imported fossil fuels has been particularly highlighted by the Russian invasion of Ukraine. Limiting this dependency with a massive replacement of fossil fuel boilers with heat pumps for building heating is the goal of this work. Therefore, with the aim of diversifying energy sources and evaluating the potential use of heat pump technologies for residential buildings with a view to decarbonization, the quantitative reduction in the consumption of fossil fuels was investigated in all regions of Europe through the use of heat pumps. First, a general overview of energy consumption in buildings in Europe has been assessed. The consumption of buildings has been addressed to the different uses (heating, cooling, DHW, etc.) as well as the different sources (natural gas, oil, biomass, etc.). The analysis has been done in order to provide a baseline at the European level on the current consumptions and future consumptions, with a particular interest in the future increase of cooling. A database was therefore created on the distribution of residential energy consumption linked to air conditioning among the various energy carriers (electricity, waste heat, gas, solid fossil fuels, liquid fossil fuels, and renewable sources) for each region in Europe. Subsequently, the energy profiles of various European cities representative of the different climates are analyzed in order to evaluate, in each European climatic region, which energy coverage can be provided by heat pumps in replacement of natural gas and solid and liquid fossil fuels for air conditioning of the buildings, also carrying out the environmental and economic assessments for this energy transition operation. This work aims to make an innovative contribution to the evaluation of the potential for introducing heat pump technology for decarbonization in the air conditioning of buildings in all climates of the different European regions.

Keywords: heat pumps, heating, decarbonization, energy policies

Procedia PDF Downloads 129
315 The Climate Change and Soil Degradation in the Czech Republic

Authors: Miroslav Dumbrovsky

Abstract:

The paper deals with impacts of climate change with the main emphasis on land degradation, agriculture and forestry management in the landscape. Land degradation, due to adverse effect of farmers activities, as a result of inappropriate conventional technologies, was a major issue in the Czech Republic during the 20th century and will remain for solving in the 21st century. The importance of land degradation is very high because of its impact on crop productivity and many other adverse effects. Land degradation through soil degradation is causing losses on crop productivity and quality of the environment, through decreasing quality of soil and water (especially water resources). Negative effects of conventional farming practices are increased water erosion, as well as crusting and compaction of the topsoil and subsoil. Soil erosion caused by water destructs the soil’s structure, reduces crop productivity due to deterioration in soil physical and chemical properties such as infiltration rate, water-holding capacity, loss of nutrients needed for crop production, and loss of soil carbon. Water erosion occurs on fields with row crops (maize, sunflower), especially during the rainfall period from April to October. Recently there is a serious problem of greatly expanded production of biofuels and bioenergy from field crops. The result is accelerated soil degradation. The damages (on and off- site) are greater than the benefits. An effective soil conservation requires an appropriate complex system of measures in the landscape. They are also important to continue to develop new sophisticated methods and technologies for decreasing land degradation. The system of soil conservation solving land degradation depend on the ability and the willingness of land users to apply them. When we talk about land degradation, it is not just a technical issue but also an economic and political issue. From a technical point of view, we have already made many positive steps, but for successful solving the problem of land degradation is necessary to develop suitable economic and political tools to increase the willingness and ability of land users to adopt conservation measures.

Keywords: land degradation, soil erosion, soil conservation, climate change

Procedia PDF Downloads 375
314 Technological Characterization of Lactic Acid Bacteria Isolated from Algerian's Goat's Milk

Authors: A. Cheriguene, F. Chougrani

Abstract:

A total of 153 wild lactic acid bacteria were isolated from goat’s milk collected from different areas in Western Algeria. The strains were identified using phenotypical, biochemical and physiological properties. API system and SDS-PAGE technique was also used in identification of the strains. Six genera were found Enterococcus (41.83%), Lactobacillus (29.40%), Lactococcus (19.60%), Leuconostoc (4.57%), Streptococcus thermophilus (3.26%) and Pediococcus (1.30%). The most abundant species were Enterococcus faecium (24 isolates), Enterococcus durans (22 isolates), Lactococcus lactis subsp. lactis (25 isolates), Lactobacillus rhamnosus (09 isolates) and Lactobacillus delbrueckii subsp. bulgaricus (07 isolates). The strains were screened for production and technological properties such as acid production, aminopeptidase activity, autolytic properties, antimicrobial activity and exopolysaccharide production. In general most tested isolates showed a good biomass separation when collected by centrifugation; as for the production of the lactic acid, results revealed that our strains are weakly acidifying; nevertheless, lactococci showed a best acidifying activity compared to lactobacilli. Aminopeptidase activity was also weak in most strains; but, it was generally higher for lactobacilli compared to lactococci, where we recorded 30 units for Lactobacillus delbrueckii subsp. bulgaricus M14. Autolytic activity was generally higher for most strains, more particularly lactobacilli where we recorded values of 71.13% and 70% of autolysis rate respectively in Lactobacillus rhamnosus strains 9S10 and 9S7. Antimicrobial activity was detected in 50% of the isolates, particularly in lactobacilli where 80% of strains tested were able to inhibit the growth of other strains. Two strains could produce exopolysaccharides, E. faecium 8M6 and E. durans 7S8. Some strains were able to maintain two or three technological characteristics together.

Keywords: lactic acid bacteria, technological properties, acidification, aminopeptidase acivity (AP), autolysis

Procedia PDF Downloads 429
313 Interaction Effects of Dietary Ginger, Zingiber Officinale, on Plasma Protein Fractions in Rainbow Trout, Oncorhynchus Mykiss

Authors: Ali Taheri Mirghaed, Sara Ahani, Ashkan Zargar, Seyyed Morteza Hoseini

Abstract:

Diseases are the major challenges in intensive aquaculture that cause significant annual losses. Antibiotic-therapy is a common way to control bacterial disease in fish, and oxytetracycline (OTC) is the only oral antibiotic in aquaculture approved FDA. OTC has been found to have negative effects on fish, such as oxidative stress and immune-suppression, thus, it is necessary to mitigate such effects. Medicinal herbs have various benefits on fish, including antioxidant, immunostimulant, and anti-microbial effects. Therefore, we hypothesized if dietary ginger meal (GM) interacts with dietary OTC by monitoring plasma protein fractions in rainbow trout. The study was conducted as a 2 × 2 factorial design, including diets containing 0 and 1% GM and 0 and 1.66 % OTC (corresponding to 100 mg/kg fish biomass per day). After ten days treating the fish (60 g individual weight) with these feeds, blood samples were taken from al treatments (n =3). Plasma was separated by centrifugation, and protein fractions were determined by electrophoresis. The results showed that OTC and GM had interaction effects on total protein (P<0.001), albumin (P<0.001), alpha-1 fraction (P=0.010), alpha-2 fraction (P=0.001), beta-2 fraction (P=0.014), and gamma fraction (P<0.001). Beta-1 fraction was significantly (P=0.030) affected by dietary GM. GM decreased plasma total protein, albumin, and beta-2 but increased beta-1 fraction. OTC significantly decreased total protein (P<0.001), albumin (P=0.001), alpha-2 fraction (P<0.001), beta-2 fraction (P=0.004), and gamma fraction (P<0.001) but had no significant effects on alpha-1 and beta-1 fractions. Dietary GM inhibited/suppressed the effects of dietary OTC on the plasma total protein and protein fractions. In conclusion, adding 1% GM to diet can mitigate the negative effects of dietary OTC on plasma proteins. Thus, GM may boost health of rainbow trout during the period of medication with OTC.

Keywords: ginger, plasma protein electrophoresis, dietary additive, rainbow trout

Procedia PDF Downloads 90
312 Experimental Evaluation of 10 Ecotypes of Toxic and Non-Toxic Jatropha curcas as Raw Material to Produce Biodiesel in Morelos State, Mexico

Authors: Guadalupe Pérez, Jorge Islas, Mirna Guevara, Raúl Suárez

Abstract:

Jatropha curcas is a perennial oleaginous plant that is currently considered an energy crop with high potential as an environmentally sustainable biofuel. During the last decades, research in biofuels has grown in tropical and subtropical regions in Latin America. However, as far we know, there are no reports on the growth and yield patterns of Jatropha curcas under the specific agro climatic scenarios of the State of Morelos, Mexico. This study presents the results of 52 months monitoring of 10 toxic and non-toxic ecotypes of Jatropha curcas (E1M, E2M, E3M, E4M, E5M, E6O, E7O, E8O, E9C, E10C) in an experimental plantation with minimum watering and fertilization resources. The main objective is to identify the ecotypes with the highest potential as biodiesel raw material in the select region, by developing experimental information. Specifically, we monitored biophysical and growth parameters, including plant survival and seed production (at the end of month 52), to study the performance of each ecotype and to establish differences among the variables of morphological growth, net seed oil content, and toxicity. To analyze the morphological growth, a statistical approach to the biophysical parameters was used; the net seed oil content -80 to 192 kg/ha- was estimated with the first harvest; and the toxicity was evaluated by examining the phorbol ester concentration (µg/L) in the oil extracted from the seeds. The comparison and selection of ecotypes was performed through a methodology developed based on the normalization of results. We identified four outstanding ecotypes (E1M, E2M, E3M, and E4M) that can be used to establish Jatropha curcas as energy crops in the state of Morelos for feasible agro-industrial production of biodiesel and other products related to the use of biomass.

Keywords: biodiesel production, Jatropha curcas, seed oil content, toxic and non-toxic ecotypes

Procedia PDF Downloads 133
311 Effect of Diet Inulin Prebiotic on Growth, Reproductive Performance, Carcass Composition and Resistance to Environmental Stresses in Zebra Danio (Danio rerio)

Authors: Ehsan Ahmadifar

Abstract:

In this research, the effects of different levels (control group (T0), (T1)1, (T2)2 and (T3)3 gr Inulin per Kg diet) of prebiotic Inulin as nutritional supplement on Danio rerio were investigated for 4 month. Since the beginning of feeding larvae until adult (average weight: 67.1 g, length: 4.5 cm) were fed with experimental diets. The survival rate of fish had no significant effect on rate survival (P > 0.05). The highest food conversion ratio (FCR) was in control group and the lowest was observed in T3. Treatment of T3 significantly caused the best feed conversion ratio in Zebra fish (P < 0.05). By increasing the inulin diet during the experiment, specific growth rate increased. The highest and the lowest body weight gain and condition factor were observed in T3 and control, respectively (P < 0.05). Adding 3 gr inulin in Zebra fish diet can improve the performance of the growth indices and final biomass, also this prebiotic can be considered as a suitable supplement for Cyprinidae diet. In the first sampling stage for feeding fish, fat and muscle protein was significantly higher than the second sampling stage (P < 0.05). Given that the second stage fish were full sexual maturity, the amount of fat in muscle decreased (P < 0.05). Moisture and ash levels were significantly (P < 0.05) higher in the second stage sampling than the first stage. Overall, different stage of living affected on muscle chemical composition muscle. Reproductive performance in treatment T2 and T3 were significantly higher than other treatments (P < 0.05). According to the results, the prebiotic inulin does not have a significant impact on the sex ratio in zebrafish (P > 0.05). Based on histology of the gonads, the use of dietary inulin accelerates the process of gonad development in zebrafish.

Keywords: inulin, zebrafish, reproduction, histology

Procedia PDF Downloads 305
310 Peach as a Potential Functional Food: Biological Activity and Important Phenolic Compound Source

Authors: Luís R. Silva, Catarina Bento, Ana C. Gonçalves, Fábio Jesus, Branca M. Silva

Abstract:

Nowadays, the general population is more and more concerned about nutrition and the health implications of an unbalanced diet. Current knowledge regarding the health benefits and antioxidant properties of certain foods such as fruits and vegetables has gained the interest of both the general public and scientific community. Peach (Prunus persica (L.) Batsch) is one of the most consumed fruits worldwide, with low sugar contents and a broad range of nutrients essential to the normal functioning of the body. Six different peach cultivars from the Fundão region in Portugal were evaluated regarding their phenolic composition by LC-DAD and biological activity. The prepared extracts’ capacity to scavenge free-radicals was tested through the stable free radical DPPH• and nitric oxide (•NO). Additionally, antidiabetic potential and protective effects against peroxyl radical (ROO•) induced damage to erythrocytes were also tested. LC-DAD analysis allowed the identification of 17 phenolic compounds, among which 5-O-caffeoylquinic acids and 3-O-caffeoylquinic acids are pointed out as the most abundant. Regarding the antioxidant activity, all cultivars displayed concentration-dependent free-radical scavenging activity against both nitrogen species and DPPH•. In respect to α-glucosidase inhibitory activity, Royal Magister and Royal Glory presented the highest inhibitory activity (IC50 = 11.7 ± 1.4 and 17.1 ± 1.7 μg/mL, respectively), nevertheless all six cultivars presented higher activity than the control acarbose. As for the protective effect of Royal Lu extract on the oxidative damage induced in erythrocytes by ROO•, the results were quite promising showing inhibition IC50 values of 110.0 ± 4.5 μg/mL and 83.8 ± 6.5 μg/mL for hemolysis and hemoglobin oxidation, respectively. The demonstrated activity is of course associated to the peaches’ phenolic profile, rich in phenolic acids and flavonoids with high hydrogen donating capacity. These compounds have great industrial interest for the manufacturing of natural products. The following step would naturally be the extraction and isolation from the plant tissues and large-scale production through biotechnology techniques.

Keywords: antioxidants, functional food, phenolic compounds, peach

Procedia PDF Downloads 294