Search results for: mean mixture pressure
4131 Non-Linear Transformation of Bulk Acoustic Waves at Oblique Incidence on Plane Solid Boundary
Authors: Aleksandr I. Korobov, Natalia V. Shirgina, Aleksey I. Kokshaiskiy
Abstract:
The transformation of two types of acoustic waves can occur on a flat interface between two solids at oblique incidence of longitudinal and shear bulk acoustic waves (BAW). This paper presents the results of experimental studies of the properties of reflection and propagation of longitudinal wave and generation of second and third longitudinal and shear harmonics of BAW at oblique incidence of longitudinal BAW on a flat rough boundary between two solids. The experimental sample was a rectangular isosceles pyramid made of D16 aluminum alloy with the plane parallel bases cylinder made of D16 aluminum alloy pressed to the base. The piezoelectric lithium niobate transducer with a resonance frequency of 5 MHz was secured to one face of the pyramid to generate a longitudinal wave. Longitudinal waves emitted by this transducer felt at an angle of 45° to the interface between two solids and reflected at the same angle. On the opposite face of the pyramid, and on the flat side of the cylinder was attached longitudinal transducer with resonance frequency of 10 MHz or the shear transducer with resonance frequency of 15 MHz. These transducers also effectively received signal at a frequency of 5 MHz. In the spectrum of the transmitted and reflected BAW was observed shear and longitudinal waves at a frequency of 5 MHz, as well as longitudinal harmonic at a frequency harmonic of 10 MHz and a shear harmonic at frequency of 15 MHz. The effect of reversing changing of external pressure applied to the rough interface between two solids on the value of the first and higher harmonics of the BAW at oblique incidence on the interface of the longitudinal BAW was experimentally investigated. In the spectrum of the reflected signal from the interface, there was a decrease of amplitudes of the first harmonics of the signal, and non-monotonic dependence of the second and third harmonics of shear wave with an increase of the static pressure applied to the interface. In the spectrum of the transmitted signal growth of the first longitudinal and shear harmonic amplitude and non-monotonic dependence - first increase and then decrease in the amplitude of the second and third longitudinal shear harmonic with increasing external static pressure was observed. These dependencies were hysteresis at reversing changing of external pressure. When pressure applied to the border increased, acoustic contact between the surfaces improves. This increases the energy of the transmitted elastic wave and decreases the energy of the reflected wave. The second longitudinal acoustic harmonics generation was associated with the Hertz nonlinearity on the interface of two pressed rough surfaces, the generation of the third harmonic was caused by shear hysteresis nonlinearity due to dry friction on a rough interface. This study was supported by the Russian Science Foundation (project №14-22-00042).Keywords: generation of acoustic harmonics, hysteresis nonlinearity, Hertz nonlinearity, transformation of acoustic waves
Procedia PDF Downloads 3814130 Computational Fluids Dynamics Investigation of the Effect of Geometric Parameters on the Ejector Performance
Authors: Michel Wakim, Rodrigo Rivera Tinoco
Abstract:
Supersonic ejector is an economical device that use high pressure vapor to compress a low pressure vapor without any rotating parts or external power sources. Entrainment ratio is a major characteristic of the ejector performance, so the ejector performance is highly dependent on its geometry. The aim of this paper is to design ejector geometry, based on pre-specified operating conditions, and to study the flow behavior inside the ejector by using computational fluid dynamics ‘CFD’ by using ‘ANSYS FLUENT 15.0’ software. In the first section; 1-D mathematical model is carried out to predict the ejector geometry. The second part describes the flow behavior inside the designed model. CFD is the most reliable tool to reveal the mixing process at different parts of the supersonic turbulent flow and to study the effect of the geometry on the effective ejector area. Finally, the results show the effect of the geometry on the entrainment ratio.Keywords: computational fluids dynamics, ejector, entrainment ratio, geometry optimization, performance
Procedia PDF Downloads 2814129 Performance Analysis of a Shell and Tube Heat Exchanger in the Organic Rankine Cycle Power Plant
Authors: Yogi Sirodz Gaos, Irvan Wiradinata
Abstract:
In the 500 kW Organic Rankine Cycle (ORC) power plant in Indonesia, an AFT (according to the Tubular Exchanger Manufacturers Association – TEMA) type shell and tube heat exchanger device is used as a pre-heating system for the ORC’s hot water circulation system. The pre-heating source is a waste heat recovery of the brine water, which is tapped from a geothermal power plant. The brine water itself has 5 MWₜₕ capacities, with average temperature of 170ᵒC, and 7 barg working pressure. The aim of this research is to examine the performance of the heat exchanger in the ORC system in a 500 kW ORC power plant. The data for this research were collected during the commissioning on the middle of December 2016. During the commissioning, the inlet temperature and working pressure of the brine water to the shell and tube type heat exchanger was 149ᵒC, and 4.4 barg respectively. Furthermore, the ΔT for the hot water circulation of the ORC system to the heat exchanger was 27ᵒC, with the inlet temperature of 140ᵒC. The pressure in the hot circulation system was dropped slightly from 7.4ᵒC to 7.1ᵒC. The flow rate of the hot water circulation was 80.5 m³/h. The presentation and discussion of a case study on the performance of the heat exchanger on the 500 kW ORC system is presented as follows: (1) the heat exchange duty is 2,572 kW; (2) log mean temperature of the heat exchanger is 13.2ᵒC; (3) the actual overall thermal conductivity is 1,020.6 W/m².K (4) the required overall thermal conductivity is 316.76 W/m².K; and (5) the over design for this heat exchange performance is 222.2%. An analysis of the heat exchanger detailed engineering design (DED) is briefly discussed. To sum up, this research concludes that the shell and tube heat exchangers technology demonstrated a good performance as pre-heating system for the ORC’s hot water circulation system. Further research need to be conducted to examine the performance of heat exchanger system on the ORC’s hot water circulation system.Keywords: shell and tube, heat exchanger, organic Rankine cycle, performance, commissioning
Procedia PDF Downloads 1454128 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows
Authors: A. P. Joshi, H. V. Warrior, J. P. Panda
Abstract:
This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson critical number
Procedia PDF Downloads 1694127 Microfluidic Method for Measuring Blood Viscosity
Authors: Eunseop Yeom
Abstract:
Many cardiovascular diseases, such as thrombosis and atherosclerosis, can change biochemical molecules in plasma and red blood cell. These alterations lead to excessive increase of blood viscosity contributing to peripheral vascular diseases. In this study, a simple microfluidic-based method is used to measure blood viscosity. Microfluidic device is composed of two parallel side channels and a bridge channel. To estimate blood viscosity, blood samples and reference fluid are separately delivered into each inlet of two parallel side channels using pumps. An interfacial line between blood samples and reference fluid occurs by blocking the outlet of one side-channel. Since width for this interfacial line is determined by pressure ratio between blood and reference flows, blood viscosity can be estimated by measuring width for this interfacial line. This microfluidic-based method can be used for evaluating variations in the viscosity of animal models with cardiovascular diseases under flow conditions.Keywords: blood viscosity, microfluidic chip, pressure, shear rate
Procedia PDF Downloads 3754126 Experimental Study on Hardness and Impact Strength of Polyethylene/Carbon Composites
Authors: Armin Najipour, A. M. Fattahi
Abstract:
The aim of this research was to investigate the effect of the addition of multi walled carbon nanotubes on the mechanical properties of polyethylene/carbon nanotube nanocomposites. To do so, polyethylene and carbon nanotube were mixed in different weight percentages containing 0, 0.5, 1, and 1.5% carbon nanotube in two screw extruder apparatus by fusion. Then the nanocomposite samples were molded in injection apparatus according to ASTM: D6110 standard. The effects of carbon nanotube addition in 4 different levels and injection pressure in 2 levels on the hardness and impact strength of the nanocomposite samples were investigated. The results showed that the addition of carbon nanotube had a significant effect on improving hardness and impact strength of the nanocomposite samples such that by adding 1% w/w carbon nanotube, the impact strength and hardness of the samples improved to 74% and 46.7% respectively. Also, according to the results, the effect of injection pressure on the results was much less than that of carbon nanotube weight percentage.Keywords: carbon nanotube, injection molding, mechanical properties, nanocomposite, polyethylene
Procedia PDF Downloads 3244125 Experimental Study on the Preparation of Pelletizing of the Panzhihua's Fine Ilmenite Concentrate
Authors: Han Kexi, Lv Xuewei, Song Bing
Abstract:
This paper focuses on the preparation of pelletizing with the Panzhihua ilmenite concentrate to satisfy the requirement of smelting titania slag. The effects of the moisture content, mixing time of raw materials, pressure of pellet, roller rotating speed of roller, drying temperature and time on the pelletizing yield and compressive strength were investigated. The experimental results show that the moister content was controlled at 2.0%~2.5%, mixing time at 20 min, the pressure of the ball forming machine at 13~15 mpa, the pelletizing yield can reach up 85%. When the roller rotating speed is 6~8 r/min while the drying temperature and time respectively is 350 ℃ and 40~60 min, the compressive strength of pelletizing more than 1500 N. The preparation of pelletizing can meet the requirement of smelting titania slag.Keywords: Panzhihua fine ilmenite concentrate, pelletizing, pelletizing yield, compressive strength, drying
Procedia PDF Downloads 2194124 Experimental Study of the Efficacy and Emission Properties of a Compression Ignition Engine Running on Fuel Additives with Varying Engine Loads
Authors: Faisal Mahroogi, Mahmoud Bady, Yaser H. Alahmadi, Ahmed Alsisi, Sunny Narayan, Muhammad Usman Kaisan
Abstract:
The Kingdom of Saudi Arabia established Saudi Vision 2030, an initiative of the government with the goal of promoting more socioeconomic as well as cultural diversity. The kingdom, which is dedicated to sustainable development and clean energy, uses cutting-edge approaches to address energy-related issues, including the circular carbon economy (CCE) and a more varied energy mix. In order for Saudi Arabia to achieve its Vision 2030 goal of having a net zero future by 2060, sustainability is essential. By addressing the energy and climate issues of the modern world with responsibility and innovation, Vision 2030 is turning into a global role model for the transition to a sustainable future. As per the Ambitions of the National Environment Strategy of the Saudi Ministry of Environment, Agriculture, and Water (MEWA), raising environmental compliance across all sectors and reducing pollution and adverse environmental impacts are critical focus areas. As a result, the current study presents an experimental analysis of the performance and exhaust emissions of a diesel engine running mostly on waste cooking oil (WCO). A one-cylinder direct-injection diesel engine with constant speed and natural aspiration is the engine type utilized. Research was done on how the engine performed and emission parameters when fueled with a mixture of 10% butanol, 10% diesel, 10% WCO, and 10% diethyl ether (D70B10W10DD10). The study's findings demonstrated that engine emissions of nitrogen oxides (NOX) and carbon monoxide (CO) varied significantly depending on the load being applied. The brake thermal efficiency, cylinder pressure, and the brake power of the engine were all impacted by load change.Keywords: ICE, waste cooking oil, fuel additives, butanol, combustion, emission characteristics
Procedia PDF Downloads 724123 Effect pH on Chemical and Physical Properties of Iranian Fetta Cheese
Authors: M. Dezyani, R. Ezzati, H. Mirzaei
Abstract:
The objectives of this study were to determine the effect of pH on chemical, structural, and functional properties of Fetta cheese, and to relate changes in structure to changes in cheese unctionality. Fetta cheese was obtained from a cheese-production facility and stored at 4°C. Ten days after manufacture, the cheese was cut into blocks that were vacuum-packaged and stored for 4 d at 4°C. Cheese blocks were then high-pressure injected one, three, or five times with a 20% (wt/wt) glucono-δ-lactone solution. Successive injections were performed 24 h apart. Cheese blocks were then analyzed after 40 d of storage at 4°C. Acidulant injection decreased cheese pH from 5.3 in the uninjected cheese to 4.7 after five injections. Decreased pH increased the content of soluble calcium and slightly decreased the total calcium content of cheese. At the highest level, injection of acidulant promoted syneresis. Thus, after five injections, the moisture content of cheese decreased from 34 to 31%, which esulted in decreased cheese weight. Lowered cheese pH, 4.7 compared with 5.3, also resulted in contraction of the protein matrix. Acidulant injection decreased cheese hardness and cohesiveness, and the cheese became more crumbly.Keywords: calcium, high-pressure injection, protein matrix, syneresis
Procedia PDF Downloads 4864122 Prevalence of Barodontalgia among Aircrews Working in Kingdom of Saudi Arabia and Knowledge of Dental Interns about This Phenomena
Authors: Ali Saleh Al-Rafedah, Ahmed Mohammed Al-Quthami, Tariq Jalal Al-Ashawi, Talal Nasser Motar Al-Enez
Abstract:
Introduction: Barodontalgia is essentially dental pain provoked by changes in atmospheric pressure which usually disappear when the affected person reaches normal pressure zone. Barodontalgia has been recognized as a potential cause of aircrew-member vertigo and sudden incapacitation, which could jeopardize the safety of flight. Objective: The current study aimed to investigate the incidence of this phenomena among aircrews in Kingdom of Saudi Arabia. It also aimed to assess the knowledge of dental interns toward this phenomena. Material and Method: A 120 questionnaire consists of 17 questions were distributed to different of Aircrews working in commercial and governmental centers in different areas of KSA. Another questionnaire also distributed to 240 interns in different institutes in KSA. Results: Out of 120 questionnaire distributed to aircrews, 48 has been returned back (40%) and the participants were mainly pilots. The results showed that about 33% of the participants had this pain at least once during flying and the incidence of this pain was not associated with any age group. Most of the pain experience were during descending and at altitude between 10.000-20.000 feet (63%). The pain completely relieved after landing in most of the cases. Regarding pain scores, the majority of the participants reported moderate scores of severity (%65) and about 85% of them had visited the physician or dentist to investigate the existing oral problem. Among dental interns in KSA, our finding indicated lack of knowledge regarding this phenomena since only 23 % of the participants have an idea about this phenomena. Conclusion and recommendation: The incidence of Barodontalgia among aircrews in Saudi Arabia is considerably high and further studies should be carried out for better understanding of this phenomena. Significant lack of knowledge among dental interns about the Barodontalgia has been highlighted and inclusion of it in the teaching of clinical and preclinical curriculum is recommended.Keywords: Barodontalgia/dental, atmospheric pressure, incapacitation, Saudi Arabia
Procedia PDF Downloads 2454121 Experimental Investigation on the Efficiency of Expanded Polystyrene Geofoam Post and Beam System in Protecting Lifelines
Authors: Masood Abdollahi, Seyed Naser Moghaddas Tafreshi
Abstract:
Expanded polystyrene (EPS) geofoam is a cellular geosynthetic material that can be used to protect lifelines (e.g. pipelines, electricity cables, etc.) below ground. Post and beam system is the most recent configuration of EPS blocks which can be implemented for this purpose. It provides a void space atop lifelines which allows settlement of the loading surface with imposing no pressure on the lifelines system. This paper investigates the efficiency of the configuration of post-beam system subjected to static loading. To evaluate the soil surface settlement, beam deformation and transferred pressure over the beam, laboratory tests using two different densities for EPS blocks are conducted. The effect of geogrid-reinforcing the cover soil on system response is also investigated. The experimental results show favorable performance of EPS post and beam configuration in protecting underground lifelines.Keywords: beam deformation, EPS block, laboratory test, post-Beam system, soil surface settlement
Procedia PDF Downloads 2404120 Case-Based Reasoning Application to Predict Geological Features at Site C Dam Construction Project
Authors: Shahnam Behnam Malekzadeh, Ian Kerr, Tyson Kaempffer, Teague Harper, Andrew Watson
Abstract:
The Site C Hydroelectric dam is currently being constructed in north-eastern British Columbia on sub-horizontal sedimentary strata that dip approximately 15 meters from one bank of the Peace River to the other. More than 615 pressure sensors (Vibrating Wire Piezometers) have been installed on bedding planes (BPs) since construction began, with over 80 more planned before project completion. These pressure measurements are essential to monitor the stability of the rock foundation during and after construction and for dam safety purposes. BPs are identified by their clay gouge infilling, which varies in thickness from less than 1 to 20 mm and can be challenging to identify as the core drilling process often disturbs or washes away the gouge material. Without the use of depth predictions from nearby boreholes, stratigraphic markers, and downhole geophysical data, it is difficult to confidently identify BP targets for the sensors. In this paper, a Case-Based Reasoning (CBR) method was used to develop an empirical model called the Bedding Plane Elevation Prediction (BPEP) to help geologists and geotechnical engineers to predict geological features and bedding planes at new locations in a fast and accurate manner. To develop CBR, a database was developed based on 64 pressure sensors already installed on key bedding planes BP25, BP28, and BP31 on the Right Bank, including bedding plane elevations and coordinates. Thirteen (20%) of the most recent cases were selected to validate and evaluate the accuracy of the developed model, while the similarity was defined as the distance between previous cases and recent cases to predict the depth of significant BPs. The average difference between actual BP elevations and predicted elevations for above BPs was ±55cm, while the actual results showed that 69% of predicted elevations were within ±79 cm of actual BP elevations while 100% of predicted elevations for new cases were within ±99cm range. Eventually, the actual results will be used to develop the database and improve BPEP to perform as a learning machine to predict more accurate BP elevations for future sensor installations.Keywords: case-based reasoning, geological feature, geology, piezometer, pressure sensor, core logging, dam construction
Procedia PDF Downloads 844119 Sociocultural Influences on Men of Color’s Body Image Concerns: A Structural Equation Modeling Study
Authors: Zikun Li, Regine Talleyrand
Abstract:
Negative body image is one of the most common causes of eating disorders, and it is not only happening to women. Regardless of the increasing attention that researchers and practitioners have been paying to the male population and their body image concerns, men of color have yet to be fully represented or studied. Given the consensus that the sociocultural experiences of people of color may play a significant role in their health and well-being, this study focused on assessing the mechanism through which sociocultural factors may influence men of color’s perceptions of body image. In particular, this study focused on untangling how interpersonal and media pressure, as well as ethnic-racial identities and perceptions, would impact body dissatisfaction in terms of muscularity, body fat, and height in men of color and how this mechanism is moderated across different ethnic-racial groups. The structural equation modeling approach was therefore applied to achieve the research goal. With the sample size of 181 self-identified Black, Indigenous, and People of Color male participants aged 20-50 (M=33.33, SD=6.9) through surveying on Amazon’s MTurk platform, the proposed model achieved a modestly acceptable model fit with the pooled sample, X2(836) = 1412.184, CFI = 0.900, RMSEA = 0.062 [0.056, 0.067]. And SRMR = 0.088, And it explained 89.5% of the variance in body dissatisfaction. The results showed that of all the direct effects on body dissatisfaction, interpersonal appearance pressure exhibited the strongest effect (β = 0.410***), followed by media appearance pressure (β = 0.272**) and self-hatred feeling (β = 0.245**). The ethnic-racial related factors (i.e., stereotype endorsement, ethnic-racial salience, and nationalistic assimilation) statistically influenced body dissatisfaction through the mediators of media appearance pressure and/or self-hatred feeling. Furthermore, the moderation analysis between Black/African American men and non-Black/African American men revealed the substantial differences in how ethnic/racial identity impacts one’s perception of body image, and the Black/African American men were found to be influenced by sociocultural factors at a higher level, compared with their counterparts. The impacts of demographic characteristics (i.e., SES, weight, height) on body dissatisfaction were also examined. Instead of considering interpersonal appearance pressure and media pressure as two subscales under one construct, this study considered them as two separate and distinct sociocultural factors. The good model fit to the data indicates this rationality and encourages scholars to reconsider the impacts of two sources of social pressures on body dissatisfaction. In addition, this study also provided empirical evidence of the moderation effect existing within the population of men of color, which reveals the heterogeneity existing across different ethnic-racial groups and implies the necessity to study individual ethnic-racial groups so as to better understand the mechanism of sociocultural influences on men of color’s body dissatisfaction. These findings strengthened the current understanding of the body image concerns exciting among men of color and meanwhile provided empirical evidence for practitioners to provide tailored health prevention and treatment options for this growing population in the United States.Keywords: men of color, body image concerns, sociocultural factors, structural equation modeling
Procedia PDF Downloads 734118 Rotor Radial Vent Pumping in Large Synchronous Electrical Machines
Authors: Darren Camilleri, Robert Rolston
Abstract:
Rotor radial vents make use of the pumping effect to increase airflow through the active material thus reduce hotspot temperatures. The effect of rotor radial pumping in synchronous machines has been studied previously. This paper presents the findings of previous studies and builds upon their theories using a parametric numerical approach to investigate the rotor radial pumping effect. The pressure head generated by the poles and radial vent flow-rate were identified as important factors in maximizing the benefits of the pumping effect. The use of Minitab and ANSYS Workbench to investigate the key performance characteristics of radial pumping through a Design of Experiments (DOE) was described. CFD results were compared with theoretical calculations. A correlation for each response variable was derived through a statistical analysis. Findings confirmed the strong dependence of radial vent length on vent pressure head, and radial vent cross-sectional area was proved to be significant in maximising radial vent flow rate.Keywords: CFD, cooling, electrical machines, regression analysis
Procedia PDF Downloads 3144117 Calibration of Mini TEPC and Measurement of Lineal Energy in a Mixed Radiation Field Produced by Neutrons
Authors: I. C. Cho, W. H. Wen, H. Y. Tsai, T. C. Chao, C. J. Tung
Abstract:
Tissue-equivalent proportional counter (TEPC) is a useful instrument used to measure radiation single-event energy depositions in a subcellular target volume. The quantity of measurements is the microdosimetric lineal energy, which determines the relative biological effectiveness, RBE, for radiation therapy or the radiation-weighting factor, WR, for radiation protection. TEPC is generally used in a mixed radiation field, where each component radiation has its own RBE or WR value. To reduce the pile-up effect during radiotherapy measurements, a miniature TEPC (mini TEPC) with cavity size in the order of 1 mm may be required. In the present work, a homemade mini TEPC with a cylindrical cavity of 1 mm in both the diameter and the height was constructed to measure the lineal energy spectrum of a mixed radiation field with high- and low-LET radiations. Instead of using external radiation beams to penetrate the detector wall, mixed radiation fields were produced by the interactions of neutrons with TEPC walls that contained small plugs of different materials, i.e. Li, B, A150, Cd and N. In all measurements, mini TEPC was placed at the beam port of the Tsing Hua Open-pool Reactor (THOR). Measurements were performed using the propane-based tissue-equivalent gas mixture, i.e. 55% C3H8, 39.6% CO2 and 5.4% N2 by partial pressures. The gas pressure of 422 torr was applied for the simulation of a 1 m diameter biological site. The calibration of mini TEPC was performed using two marking points in the lineal energy spectrum, i.e. proton edge and electron edge. Measured spectra revealed high lineal energy (> 100 keV/m) peaks due to neutron-capture products, medium lineal energy (10 – 100 keV/m) peaks from hydrogen-recoil protons, and low lineal energy (< 10 keV/m) peaks of reactor photons. For cases of Li and B plugs, the high lineal energy peaks were quite prominent. The medium lineal energy peaks were in the decreasing order of Li, Cd, N, A150, and B. The low lineal energy peaks were smaller compared to other peaks. This study demonstrated that internally produced mixed radiations from the interactions of neutrons with different plugs in the TEPC wall provided a useful approach for TEPC measurements of lineal energies.Keywords: TEPC, lineal energy, microdosimetry, radiation quality
Procedia PDF Downloads 4724116 Preparation and Study of Pluronic F127 Monolayers at Air-Water Interface
Authors: Neha Kanodia, M. Kamil
Abstract:
Properties of mono layers of Pluronic F127 at air/water interface have been investigated by using Langmuir trough method. Pluronic F127 is a triblock copolymer of poly (ethyleneoxide) (PEO groups)– poly (propylene oxide) (PO groups)–poly(ethylene oxide) (PEO groups). Surface pressure versus mean molecular area isotherms is studied. The isotherm of the mono layer showed the characteristics of a pancake-to-brush transition upon compression of the mono layer. The effect of adding surfactant (SDS) to polymer and the effect of increasing loading on polymer was also studied. The effect of repeated compression and expansion cycle (or hysteresis curve) is investigated to know about stability of the film formed. Static elasticity of mono layer gives information about molecular arrangement, phase structure and phase transition.Keywords: surface-pressure, mean molecular area isotherms, hysteresis, static elasticity
Procedia PDF Downloads 4534115 Study of Synergetic Effect by Combining Dielectric Barrier Discharge (DBD) Plasma and Photocatalysis for Abatement of Pollutants in Air Mixture System: Influence of Some Operating Conditions and Identification of Byproducts
Authors: Wala Abou Saoud, Aymen Amine Assadi, Monia Guiza, Abdelkrim Bouzaza, Wael Aboussaoud, Abdelmottaleb Ouederni, Dominique Wolbert
Abstract:
Volatile organic compounds (VOCs) constitute one of the most important families of chemicals involved in atmospheric pollution, causing damage to the environment and human health, and need, consequently, to be eliminated. Among the promising technologies, dielectric barrier discharge (DBD) plasma - photocatalysis coupling reveals very interesting prospects in terms of process synergy of compounds mineralization’s, with low energy consumption. In this study, the removal of organic compounds such butyraldehyde (BUTY) and dimethyl disulfide (DMDS) (exhaust gasses from animal quartering centers.) in air mixture using DBD plasma coupled with photocatalysis was tested, in order to determine whether or not synergy effect was present. The removal efficiency of these pollutants, a selectivity of CO₂ and CO, and byproducts formation such as ozone formation were investigated in order to evaluate the performance of the combined process. For this purpose, a series of experiments were carried out in a continuous reactor. Many operating parameters were also investigated such as the specific energy of discharge, the inlet concentration of pollutant and the flowrate. It appears from this study that, the performance of the process has enhanced and a synergetic effect is observed. In fact, we note an enhancement of 10 % on removal efficiency. It is interesting to note that the combined system leads to better CO₂ selectivity than for plasma. Consequently, intermediates by-products have been reduced due to various other species (O•, N, OH•, O₂•-, O₃, NO₂, NOx, etc.). Additionally, the behavior of combining DBD plasma and photocatalysis has shown that the ozone can be easily also decomposed in presence of photocatalyst.Keywords: combined process, DBD plasma, photocatalysis, pilot scale, synergetic effect, VOCs
Procedia PDF Downloads 3354114 Preparation and Characterization of Road Base Material Based on Kazakhstan Production Waste
Authors: K. K. Kaidarova, Ye. K. Aibuldinov, Zh. B. Iskakova, G. Zh. Alzhanova, S. Zh. Zayrova
Abstract:
Currently, the existing road infrastructure of Kazakhstan needs the reconstruction of existing highways and the construction of new roads. The solution to this problem can be achieved by replacing traditional building materials with industrial waste, which in their chemical and mineralogical composition are close to natural raw materials and can partially or completely replace some natural binding materials in road construction. In this regard, the purpose of this study is to develop building materials based on the red sludge of the Pavlodar aluminum plant, blast furnace slag of the Karaganda Metallurgical Plant, lime production waste of the Pavlodar Aluminum Plant as a binder for natural loam. Changes in physical and mechanical properties were studied for uniaxial compression strength, linear expansion coefficient, water resistance, and frost resistance of the samples. Nine mixtures were formed with different percentages of these wastes 1-20:25:4; 2-20:25:6; 3-20:25:8; 4-30:30:4; 5-30:30:6; 6-30:30:8; 7-40:35:4; 8-40:35:6; 9-40:35:8 and the mixture identifier were labeled based on the waste content and composition number. The results of strength measurement during uniaxial compression of the samples showed an almost constant increase in strength and amounted to 0.67–3.56 MPa after three days and 3.33–7.38 MPa after 90 days. This increase in compressive strength is a consequence of the addition of lime and becomes more pronounced over time. The water resistance of the developed materials after 90 days was 7.12 MPa, and the frost resistance for the same period was 7.35 MPa. The maximum values of strength determination were shown by a sample of the composition 9-40:35:8. The study of the mineral composition showed that there was no contamination with heavy metals or dangerous substances. It was determined that road materials made of red sludge, blast furnace slag, lime production waste, and natural loam mixture could be used due to their strength indicators and environmental characteristics.Keywords: production waste, uniaxial compression, water resistance of materials, frost resistance of samples
Procedia PDF Downloads 1234113 Critical Heights of Sloped Unsupported Trenches in Unsaturated Sand
Authors: Won Taek Oh, Adin Richard
Abstract:
Workers are often required to enter unsupported trenches during the construction process, which may present serious risks. Trench failures can result in death or damage to adjacent properties, therefore trenches should be excavated with extreme precaution. Excavation work is often done in unsaturated soils, where the critical height (i.e. maximum depth that can be excavated without failure) of unsupported trenches can be more reliably estimated by considering the influence of matric suction. In this study, coupled stress/pore-water pressure analyses are conducted to investigate the critical height of sloped unsupported trenches considering the influence of pore-water pressure redistribution caused by excavating. Four different wall slopes (1.5V:1H, 2V:1H, 3V:1H, and 90°) and a vertical trench with the top 0.3 m sloped 1:1 were considered in the analyses with multiple depths of the ground water table in a sand. For comparison, the critical heights were also estimated using the limit equilibrium method for the same excavation scenarios used in the coupled analyses.Keywords: critical height, matric suction, unsaturated soil, unsupported trench
Procedia PDF Downloads 1224112 Development of Ceramic Spheres Buoyancy Modules for Deep-Sea Oil Exploration
Authors: G. Blugan, B. Jiang, J. Thornberry, P. Sturzenegger, U. Gonzenbach, M. Misson, D. Cartlidge, R. Stenerud, J. Kuebler
Abstract:
Low-cost ceramic spheres were developed and manufactured from the engineering ceramic aluminium oxide. Hollow spheres of 50 mm diameter with a wall thickness of 0.5-1.0 mm were produced via an adapted slip casting technique. It was possible to produce the spheres with good repeatability and with no defects or failures in the spheres due to the manufacturing process. The spheres were developed specifically for use in buoyancy devices for deep-sea exploration conditions at depths of 3000 m below sea level. The spheres with a 1.0 mm wall thickness exhibit a buoyancy of over 54% while the spheres with a 0.5 mm wall thickness exhibit a buoyancy of over 73%. The mechanical performance of the spheres was confirmed by performing a hydraulic burst pressure test on individual spheres. With a safety factor of 3, all spheres with 1.0 mm wall thickness survived a hydraulic pressure of greater than 150 MPa which is equivalent to a depth of more than 5000 m below sea level. The spheres were then incorporated into a buoyancy module. These hollow aluminium oxide ceramic spheres offer an excellent possibility of deep-sea exploration to depths greater than the currently used technology.Keywords: buoyancy, ceramic spheres, deep-sea, oil exploration
Procedia PDF Downloads 4214111 Delivery of Ginseng Extract Containing Phytosome Loaded Microsphere System: A Preclinical Approach for Treatment of Neuropathic Pain in Rodent Model
Authors: Nitin Kumar
Abstract:
Purpose: The current research work focuses mainly on evolving a delivery system for ginseng extract (GE), which in turn will ameliorate the neuroprotective potential by means of enhancing the ginsenoside (Rb1) bio-availability (BA). For more noteworthy enhancement in oral bioavailability (OBA) along with pharmacological properties, the drug carriers’ performance can be strengthened by utilizing phytosomes-loaded microspheres (PM) delivery system. Methods: For preparing the disparate phytosome complexes (F1, F2, and F3), an aqueous extract of ginseng roots (GR) along with phospholipids were reacted in disparate ratio. Considering the outcomes, F3 formulation (spray-dried) was chosen for preparing the phytosomes powder (PP), PM, and extract microspheres (EM). PM was made by means of loading of F3 into Gum Arabic (GA) in addition to maltodextrin polymer mixture, whereas EM was prepared by means of the addition of extract directly into the same polymer mixture. For investigating the neuroprotective effect (NPE) in addition to their pharmacokinetic (PK) properties, PP, PM, and EM formulations were assessed. Results: F3 formulation gave enhanced entrapment efficiency (EE) (i.e., 50.61%) along with good homogeneity of spherical shaped particle size (PS) (42.58 ± 1.4 nm) with least polydispersity index (PDI) (i.e., 0.193 ± 0.01). The sustained release (up to 24 h) of ginsenoside Rb1 (GRb1) is revealed by the dissolution study of PM. A significantly (p < 0.05) greater anti-oxidant (AO) potential of PM can well be perceived as of the diminution in the lipid peroxidase level in addition to the rise in the glutathione superoxide dismutase (SOD) in addition to catalase levels. It also showed a greater neuroprotective potential exhibiting significant (p < 0.05) augmentation in the nociceptive threshold together with the diminution in damage to nerves. A noteworthy enhancement in the relative BA (157.94%) of GRb1 through the PM formulation can well be seen in the PK studies. Conclusion: It is exhibited that the PM system is an optimistic and feasible strategy to enhance the delivery of GE for the effectual treatment of neuropathic pain.Keywords: ginseng, neuropathic, phytosome, pain
Procedia PDF Downloads 1904110 Capture of Co₂ From Natural Gas Using Modified Imidazolium Ionic Liquids
Authors: Alaa A. Ghanem, S. E. M. Desouky
Abstract:
Natural gas (NG) is considered one of the most essential global energy sources. NG fields are often far away from the market, and a long-distance transporting pipeline usually is required. Production of NG with high content of CO₂ leads to severe problems such as equipment corrosion along with the production line until refinery.in addition to a high level of toxicity and decreasing in calorific value of the NG. So it is recommended to remove or decrease the CO₂ percent to meet transport specifications. This can be reached using different removal techniques such as physical and chemical absorption, pressure swing adsorption, membrane separation, or low-temperature separation. Many solvents and chemicals are being used to capture carbon dioxide on a large scale; among them, Ionic liquids have great potential due to their tunable properties; low vapour pressure, low melting point, and sensible thermal stability. In this research, three modifiedimidazolium ionic liquids will be synthesized and characterized using different tools of analysis such as FT-IR, 1H NMR. Thermal stability and surface activity will be studied. The synthesized compounds will be evaluated as selective solvents for CO₂ removal from natural gas using PVT cell.Keywords: natural gas, CO₂ capture, imidazolium ionic liquid, PVT cell
Procedia PDF Downloads 1784109 Hemodynamics of a Cerebral Aneurysm under Rest and Exercise Conditions
Authors: Shivam Patel, Abdullah Y. Usmani
Abstract:
Physiological flow under rest and exercise conditions in patient-specific cerebral aneurysm models is numerically investigated. A finite-volume based code with BiCGStab as the linear equation solver is used to simulate unsteady three-dimensional flow field through the incompressible Navier-Stokes equations. Flow characteristics are first established in a healthy cerebral artery for both physiological conditions. The effect of saccular aneurysm on cerebral hemodynamics is then explored through a comparative analysis of the velocity distribution, nature of flow patterns, wall pressure and wall shear stress (WSS) against the reference configuration. The efficacy of coil embolization as a potential strategy of surgical intervention is also examined by modelling coil as a homogeneous and isotropic porous medium where the extended Darcy’s law, including Forchheimer and Brinkman terms, is applicable. The Carreau-Yasuda non-Newtonian blood model is incorporated to capture the shear thinning behavior of blood. Rest and exercise conditions correspond to normotensive and hypertensive blood pressures respectively. The results indicate that the fluid impingement on the outer wall of the arterial bend leads to abnormality in the distribution of wall pressure and WSS, which is expected to be the primary cause of the localized aneurysm. Exercise correlates with elevated flow velocity, vortex strength, wall pressure and WSS inside the aneurysm sac. With the insertion of coils in the aneurysm cavity, the flow bypasses the dilatation, leading to a decline in flow velocities and WSS. Particle residence time is observed to be lower under exercise conditions, a factor favorable for arresting plaque deposition and combating atherosclerosis.Keywords: 3D FVM, Cerebral aneurysm, hypertension, coil embolization, non-Newtonian fluid
Procedia PDF Downloads 2374108 Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy
Authors: Isao Tomita
Abstract:
The detection of environmental gases, 12CO_2, 13CO_2, and CH_4, using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic 13CO_2 of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary 12CO_2 peaks. In addition, the detection of 12CO_2 peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.Keywords: environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure
Procedia PDF Downloads 4254107 High Pressure Torsion Deformation Behavior of a Low-SFE FCC Ternary Medium Entropy Alloy
Authors: Saumya R. Jha, Krishanu Biswas, Nilesh P. Gurao
Abstract:
Several recent investigations have revealed medium entropy alloys exhibiting better mechanical properties than their high entropy counterparts. This clearly establishes that although a higher entropy plays a vital role in stabilization of particular phase over complex intermetallic phases, configurational entropy is not the primary factor responsible for the high inherent strengthening in these systems. Above and beyond a high contribution from friction stresses and solid solution strengthening, strain hardening is an important contributor to the strengthening in these systems. In this regard, researchers have developed severe plastic deformation (SPD) techniques like High Pressure Torsion (HPT) to incorporate very high shear strain in the material, thereby leading to ultrafine grained (UFG) microstructures, which cause manifold increase in the strength. The presented work demonstrates a meticulous study of the variation in mechanical properties at different radial displacements from the center of HPT tested equiatomic ternary FeMnNi synthesized by casting route, which is a low stacking fault energy FCC alloy that shows significantly higher toughness than its high entropy counterparts like Cantor alloy. The gradient in grain sizes along the radial direction of these specimens has been modeled using microstructure entropy for predicting the mechanical properties, which has also been validated by indentation tests. The dislocation density is computed by FEM simulations for varying strains and validated by analyzing synchrotron diffraction data. Thus, the proposed model can be utilized to predict the strengthening behavior of similar systems deformed by HPT subjected to varying loading conditions.Keywords: high pressure torsion, severe plastic deformation, configurational entropy, dislocation density, FEM simulation
Procedia PDF Downloads 1564106 Experimental and Numerical Study on Energy Absorption Characteristic of a Coupler Rubber Buffer Used in Rail Vehicles
Authors: Zhixiang Li, Shuguang Yao, Wen Ma
Abstract:
Coupler rubber buffer has been widely applied on the high-speed trains and the main function of the rubber buffer is dissipating the impact energy between vehicles. The rubber buffer consists of two groups of rubbers, which are both pre-compressed and then installed into the frame body. This work focuses on the energy absorption capacity of each group of buffers particularly. The quasi-static compression tests were carried out to obtain the pre-compression force and the load-defection response of the buffers. Then a finite element (FE) model was constructed using Ls_dyna program. The rubber material was modeled with a tabulated method easily, in which no more material constants need to be fitted. The simulation results agreed with the experimental results well. Numerical study of the buffers was performed using the validated FE model and the influence of the initial pressure on the buffers was obtained. In addition, the interaction between the two groups of buffers was also investigated and the optimum distribution of the two was found.Keywords: initial pressure, rubber buffer, simulation, tabulated method
Procedia PDF Downloads 1494105 Pigging Operation in Two-Phase Flow Pipeline- Empirical and Simulation
Authors: Behnaz Jamshidi, Seyed Hassan Hashemabadi
Abstract:
The main objective of this study is to investigate on pigging operation of two phase flow pipeline and compare the empirical and simulation results for 108 km long , 0.7934 mm (32 inches) diameter sea line of "Phase 1 South Pars Gas Complex", located in south of Iran. The pigging time, pig velocity, the amount of slug and slug catcher pressure were calculated and monitored closely as the key parameters. Simulation was done by "OLGA" dynamic simulation software and obtained results were compared and validated with empirical data in real operation. The relative errors between empirical data and simulation of the process were 3 % and 9 % for pigging time and accumulated slug volume respectively. Simulated pig velocity and changes of slug catcher pressure were consistent with real values, too. It was also found the slug catcher and condensate stabilization units have been adequately sized for gas-liquid separation and handle the slug batch during transient conditions such as pigging and start up.Keywords: sea line, pigging, slug catcher, two-phase flow, dynamic simulation
Procedia PDF Downloads 5134104 An Experimental Study of the Parameters Affecting the Compression Index of Clay Soil
Authors: Rami Rami Mahmoud Bakr
Abstract:
The constant rate of strain (CRS) test is a rapid technique that effectively measures specific properties of cohesive soil, including the rate of consolidation, hydraulic conductivity, compressibility, and stress history. Its simple operation and frequent readings enable efficient definition, especially of the compression curve. However, its limitations include an inability to handle strain-rate-dependent soil behavior, initial transient conditions, and pore pressure evaluation errors. There are currently no effective techniques for interpreting CRS data. In this study, experiments were performed to evaluate the effects of different parameters on CRS results. Extensive tests were performed on two types of clay to analyze the soil behavior during strain consolidation at a constant rate. The results were used to evaluate the transient conditions and pore pressure system.Keywords: constant rate of strain (CRS), resedimented boston blue clay (RBBC), resedimented vicksburg buckshot clay (RVBC), compression index
Procedia PDF Downloads 464103 Tillage and Intercropping Effects on Growth and Yield of Groundnut in Maize/Groundnut Cropping System
Authors: Oyewole Charles Iledun, Shuaib Harira, Ezeogueri-Oyewole Anne Nnenna
Abstract:
Due to high population pressure/human activities competing for agricultural land, the need to maximize the productivity of available land has become necessary; this has not been achievable in the tropics with monoculture systems where a single harvest per season is the practice. Thus, this study evaluates intercropping combination and tillage practice on yield and yield components of groundnut in a mixture with maize. The trial was conducted in the rainy seasons of 2020 and 2021 at the Kogi State University Students’ Research and Demonstration Farm, Latitude 70 301 and Longitude 70 091 E in the Southern Guinea Savannah agro-ecological zone of Nigeria. Treatment consisted of three tillage practices [as main plot factor] and five intercropping combinations [subplot factor] assigned to a 3 x 5 Factorial experiment replicated four times. Data were collected for growth, development, yield components, and yield of groundnut. Data collected were subjected to Statistical Analysis in line with Factorial Experiments. Means found to be statistically significant at 5 % probability were separated using the LSD method. Regarding yield components and yield related parameters in groundnuts, better performance was observed in cole cropped groundnut plots compared to the intercropped plots. However, intercropping groundnut with maize was generally advantageous, with LER greater than unity. Among the intercrops, the highest LERs were observed when one row of maize was cropped with one row of groundnut, with the least LER recorded in intercropping two rows of maize with one row of groundnut. For the tillage operations, zero tillage gave the highest LERs in both seasons, while the least LERs were recorded when the groundnut was planted on ridges. Since the highest LERs were observed when one row of maize was intercropped with one row of groundnut, this level of crop combination is recommended for the study area, while ridging may not be necessary to get good groundnut yield, particularly under similar soil conditions as obtained in the experimental area, and with similar rainfall observed during the experimental period.Keywords: canopy height, leaf number, haulm yield / ha, pod yield / ha, harvest index and shelling percentage
Procedia PDF Downloads 354102 Effect of Density on the Shear Modulus and Damping Ratio of Saturated Sand in Small Strain
Authors: M. Kakavand, S. A. Naeini
Abstract:
Dynamic properties of soil in small strains, especially for geotechnical engineers, are important for describing the behavior of soil and estimation of the earth structure deformations and structures, especially significant structures. This paper presents the effect of density on the shear modulus and damping ratio of saturated clean sand at various isotropic confining pressures. For this purpose, the specimens were compared with two different relative densities, loose Dr = 30% and dense Dr = 70%. Dynamic parameters were attained from a series of consolidated undrained fixed – free type torsional resonant column tests in small strain. Sand No. 161 is selected for this paper. The experiments show that by increasing sand density and confining pressure, the shear modulus increases and the damping ratio decreases.Keywords: dynamic properties, shear modulus, damping ratio, clean sand, density, confining pressure, resonant column/torsional simple shear, TSS
Procedia PDF Downloads 125