Short-Path Near-Infrared Laser Detection of Environmental Gases by Wavelength-Modulation Spectroscopy

Authors : Isao Tomita

Abstract : The detection of environmental gases, $12CO_2$, $13CO_2$, and CH_4 , using near-infrared semiconductor lasers with a short laser path length is studied by means of wavelength-modulation spectroscopy. The developed system is compact and has high sensitivity enough to detect the absorption peaks of isotopic $13CO_2$ of a 3-% CO_2 gas at 2 um with a path length of 2.4 m, where its peak size is two orders of magnitude smaller than that of the ordinary $12CO_2$ peaks. In addition, the detection of $12CO_2$ peaks of a 385-ppm (0.0385-%) CO_2 gas in the air is made at 2 um with a path length of 1.4 m. Furthermore, in pursuing the detection of an ancient environmental CH_4 gas confined to a bubble in ice at the polar regions, measurements of the absorption spectrum for a trace gas of CH_4 in a small area are attempted. For a 100-% CH_4 gas trapped in a 1 mm^3 glass container, the absorption peaks of CH_4 are obtained at 1.65 um with a path length of 3 mm, and also the gas pressure is extrapolated from the measured data.

Keywords : environmental gases, Near-Infrared Laser Detection, Wavelength-Modulation Spectroscopy, gas pressure **Conference Title :** ICECECE 2014 : International Conference on Electrical, Computer, Electronics and Communication Engineering

Conference Location : Kyoto, Japan **Conference Dates :** November 13-14, 2014