Search results for: degradation study
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 51088

Search results for: degradation study

49888 The Impact of Air Pollution on Health and the Environment: The Case of Cement Beni-Saf, Western Algeria

Authors: N. Hachemi, I. Benmehdi, O. Hasnaoui

Abstract:

The air like water is an essential element for living beings. Each day, a man breathes about 20m3 of air. It originally consists of a set of gas whose presence and concentrations correspond to the needs of life. This study focuses on air pollution by smoke and dust emitted from the chimney of the cement works of Beni Saf, pathological and their impact on the environment. Dust of the cement plant are harmless to permissible levels for living organisms, but the two combined phenomena namely the release of dust and aridity of the climate, which severely marked area of Beni Saf; have contributed adverse effects in on human health and the degradation of vegetation cover and species especially weakened by environmental stress. The most visible impact is certainly the deposition of dust on the surrounding areas of the cement factory, and seriously affecting the aesthetics of the landscape. Health problems are more important inside and outside the factory. Among the diseases notable caused by the cement works are: deafness, heart disease, asthma and mental. The dust of the cement works is mainly composed of fine particles of limestone, clay, free lime, silicates and also loaded of the gases such as carbon dioxide gas CO2. The accumulation of this gas in the atmosphere is directly involved in the phenomenon of increasing of greenhouse effect. Some gases, for example, are directly toxic. They can change the climate, changing precipitation types and become a greater source of stress by drought, etc. The environment also suffers from air pollution indirectly; it is more precisely the acid rain. They are produced by the combustion of non-metals in air. Acid rain has consequences for contaminating the soil, weakening the flora, fauna and acidifies lakes. Finally, the pollution problems are multiple and specific dust. It can worsen and change, it has reached epidemic proportions quantitatively and qualitatively disturbing and unpredictable.

Keywords: atmospheric pollution, cement, dust, environment

Procedia PDF Downloads 340
49887 Static Headspace GC Method for Aldehydes Determination in Different Food Matrices

Authors: A. Mandić, M. Sakač, A. Mišan, B. Šojić, L. Petrović, I. Lončarević, B. Pajin, I. Sedej

Abstract:

Aldehydes as secondary lipid oxidation products are highly specific to the oxidative degradation of particular polyunsaturated fatty acids present in foods. Gas chromatographic analysis of those volatile compounds has been widely used for monitoring of the deterioration of food products. Developed static headspace gas chromatography method using flame ionization detector (SHS GC FID) was applied to monitor the aldehydes present in processed foods such as bakery, meat and confectionary products. Five selected aldehydes were determined in samples without any sample preparation, except grinding for bakery and meat products. SHS–GC analysis allows the separation of propanal, pentanal, hexanal, heptanal and octanal, within 15min. Aldehydes were quantified in fresh and stored samples, and the obtained range of aldehydes in crackers was 1.62±0.05-9.95±0.05mg/kg, in sausages 6.62±0.46-39.16±0.39mg/kg; and in cocoa spread cream 0.48±0.01-1.13±0.02mg/kg. Referring to the obtained results, the following can be concluded, proposed method is suitable for different types of samples, content of aldehydes varies depending on the type of a sample, and differs in fresh and stored samples of the same type.

Keywords: lipid oxidation, aldehydes, crackers, sausage, cocoa cream spread

Procedia PDF Downloads 430
49886 An Ecological Reading of Indian Regional Literature: A Comparative Ecocritical Analysis of Punjabi Poet Shiv Kumar Batalvi and Surjit Patar's Poetry

Authors: Zameerpal Kaur

Abstract:

Ecocriticism comes into existence in 1990s, it tries to explore the relationship of literature with the natural world and further it examines the role that natural surroundings and environment play in the minds of the creative writers during their imagination and creative process. The present study is an attempt to focus on the comparative ecocritical analysis of Shiv Kumar Batalvi and Surjit Patar’s selected poetry in the theoretical framework of ecocriticism in order to shed light on the poet’s vigilant views about the relationship of human life and nature. Shiv Kumar Batalvi is a renowned modern Punjabi poet. He is essentially a poet of nature and love. His opinions towards nature support his position to be considered as a major representative of recent environmental issues and ecocritical concerns in Punjabi literature. He is one of the most outstanding modern Punjabi poets, is endowed with the most artistic temperament in whose poetry nature always has a dominating existence. He seems to consciously portray the scenes of natural surroundings into his poetry; in fact the titles of his poems in themselves signify his love for the nature. Surjit Patar, an imminent modern Punjabi poet tries to present a different picture of nature into his poems; he also uses to write poems about contemporary problems. Surjit Patar’s radical quarrel with the modern cultural context makes him reject all the absolutes and finalities in the form of transcendental reason and religion, history and evolution, he freely writes about the deterioration of nature at selfish materialistic society. He is modern poet who weaves the natural imagery with the syntax of his poems. Patar’s work reflects a universal voice that is dribbled with nuanced humanism and a sense of modernity that seemed neither dated, nor trapped in regional boundaries. Through his poetry he has given a voice to the fragile, disrupting borders, disturbing the status quo. An attempt to analyse the poetic works of above said poets from ecocritical perspective as well as especially focussing on various aspects of ecocriticism like ecocentric ethics, ecoaesthetics, anthropomorphism etc. has been made throughout the comparative study of the selected works.

Keywords: anthropocentrism, degradation, environment and literature, nature

Procedia PDF Downloads 471
49885 Simple and Scalable Thermal-Assisted Bar-Coating Process for Perovskite Solar Cell Fabrication in Open Atmosphere

Authors: Gizachew Belay Adugna

Abstract:

Perovskite solar cells (PSCs) shows rapid development as an emerging photovoltaic material; however, the fast device degradation due to the organic nature, mainly hole transporting material (HTM) and lack of robust and reliable upscaling process for photovoltaic module hindered its commercialization. Herein, HTM molecules with/without fluorine-substituted cyclopenta[2,1-b;3,4-b’]dithiophene derivatives (HYC-oF, HYC-mF, and HYC-H) were developed for PSCs application. The fluorinated HTM molecules exhibited better hole mobility and overall charge extraction in the devices mainly due to strong molecular interaction and packing in the film. Thus, the highest power conversion efficiency (PCE) of 19.64% with improved long stability was achieved for PSCs based on HYC-oF HTM. Moreover, the fluorinated HYC-oF demonstrated excellent film processability in a larger-area substrate (10 cm×10 cm) prepared sequentially with the absorption perovskite underlayer via a scalable bar coating process in ambient air and owned a higher PCE of 18.49% compared to the conventional spiro-OMeTAD (17.51%). The result demonstrates a facile development of HTM towards stable and efficient PSCs for future industrial-scale PV modules.

Keywords: perovskite solar cells, upscaling film coating, power conversion efficiency, solution processing

Procedia PDF Downloads 75
49884 Sustainable Design of Coastal Bridge Networks in the Presence of Multiple Flood and Earthquake Risks

Authors: Riyadh Alsultani, Ali Majdi

Abstract:

It is necessary to develop a design methodology that includes the possibility of seismic events occurring in a region, the vulnerability of the civil hydraulic structure, and the effects of the occurrence hazard on society, environment, and economy in order to evaluate the flood and earthquake risks of coastal bridge networks. This paper presents a design approach for the assessment of the risk and sustainability of coastal bridge networks under time-variant flood-earthquake conditions. The social, environmental, and economic indicators of the network are used to measure its sustainability. These consist of anticipated loss, downtime, energy waste, and carbon dioxide emissions. The design process takes into account the possibility of happening in a set of flood and earthquake scenarios that represent the local seismic activity. Based on the performance of each bridge as determined by fragility assessments, network linkages are measured. The network's connections and bridges' damage statuses after an earthquake scenario determine the network's sustainability and danger. The sustainability measures' temporal volatility and the danger of structural degradation are both highlighted. The method is shown using a transportation network in Baghdad, Iraq.

Keywords: sustainability, Coastal bridge networks, flood-earthquake risk, structural design

Procedia PDF Downloads 96
49883 Application of Flory Paterson’s Theory on the Volumetric Properties of Liquid Mixtures: 1,2-Dichloroethane with Aliphatic and Cyclic Ethers

Authors: Linda Boussaid, Farid Brahim Belaribi

Abstract:

The physico-chemical properties of liquid materials in the industrial field, in general, and in that of the chemical industries, in particular, constitutes a prerequisite for the design of equipment, for the resolution of specific problems (related to the techniques of purification and separation, at risk in the transport of certain materials, etc.) and, therefore, at the production stage. Chloroalkanes, ethers constitute three chemical families having an industrial, theoretical and environmental interest. For example, these compounds are used in various applications in the chemical and pharmaceutical industries. In addition, they contribute to the particular thermodynamic behavior (deviation from ideality, association, etc.) of certain mixtures which constitute a severe test for predictive theoretical models. Finally, due to the degradation of the environment in the world, a renewed interest is observed for ethers, because some of their physicochemical properties could contribute to lower pollution (ethers would be used as additives in aqueous fuels.). This work is a thermodynamic, experimental and theoretical study of the volumetric properties of liquid binary systems formed from compounds belonging to the chemical families of chloroalkanes, ethers, having an industrial, theoretical and environmental interest. Experimental determination of the densities and excess volumes of the systems studied, at different temperatures in the interval [278.15-333.15] K and at atmospheric pressure, using an AntonPaar vibrating tube densitometer of the DMA5000 type. This contribution of experimental data, on the volumetric properties of the binary liquid mixtures of 1,2-dichloroethane with an ether, supplemented by an application of the theoretical model of Prigogine-Flory-Patterson PFP, will probably contribute to the enrichment of the thermodynamic database and the further development of the theory of Flory in its Prigogine-Flory-Patterson (PFP) version, for a better understanding of the thermodynamic behavior of these liquid binary mixtures

Keywords: prigogine-flory-patterson (pfp), propriétés volumétrique , volume d’excés, ethers

Procedia PDF Downloads 92
49882 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria

Authors: Rinat Arbel-Goren, Joel Stavans

Abstract:

Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.

Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript

Procedia PDF Downloads 164
49881 Modeling of Foundation-Soil Interaction Problem by Using Reduced Soil Shear Modulus

Authors: Yesim Tumsek, Erkan Celebi

Abstract:

In order to simulate the infinite soil medium for soil-foundation interaction problem, the essential geotechnical parameter on which the foundation stiffness depends, is the value of soil shear modulus. This parameter directly affects the site and structural response of the considered model under earthquake ground motions. Strain-dependent shear modulus under cycling loads makes difficult to estimate the accurate value in computation of foundation stiffness for the successful dynamic soil-structure interaction analysis. The aim of this study is to discuss in detail how to use the appropriate value of soil shear modulus in the computational analyses and to evaluate the effect of the variation in shear modulus with strain on the impedance functions used in the sub-structure method for idealizing the soil-foundation interaction problem. Herein, the impedance functions compose of springs and dashpots to represent the frequency-dependent stiffness and damping characteristics at the soil-foundation interface. Earthquake-induced vibration energy is dissipated into soil by both radiation and hysteretic damping. Therefore, flexible-base system damping, as well as the variability in shear strengths, should be considered in the calculation of impedance functions for achievement a more realistic dynamic soil-foundation interaction model. In this study, it has been written a Matlab code for addressing these purposes. The case-study example chosen for the analysis is considered as a 4-story reinforced concrete building structure located in Istanbul consisting of shear walls and moment resisting frames with a total height of 12m from the basement level. The foundation system composes of two different sized strip footings on clayey soil with different plasticity (Herein, PI=13 and 16). In the first stage of this study, the shear modulus reduction factor was not considered in the MATLAB algorithm. The static stiffness, dynamic stiffness modifiers and embedment correction factors of two rigid rectangular foundations measuring 2m wide by 17m long below the moment frames and 7m wide by 17m long below the shear walls are obtained for translation and rocking vibrational modes. Afterwards, the dynamic impedance functions of those have been calculated for reduced shear modulus through the developed Matlab code. The embedment effect of the foundation is also considered in these analyses. It can easy to see from the analysis results that the strain induced in soil will depend on the extent of the earthquake demand. It is clearly observed that when the strain range increases, the dynamic stiffness of the foundation medium decreases dramatically. The overall response of the structure can be affected considerably because of the degradation in soil stiffness even for a moderate earthquake. Therefore, it is very important to arrive at the corrected dynamic shear modulus for earthquake analysis including soil-structure interaction.

Keywords: clay soil, impedance functions, soil-foundation interaction, sub-structure approach, reduced shear modulus

Procedia PDF Downloads 272
49880 A Sustainable Approach for Waste Management: Automotive Waste Transformation into High Value Titanium Nitride Ceramic

Authors: Mohannad Mayyas, Farshid Pahlevani, Veena Sahajwalla

Abstract:

Automotive shredder residue (ASR) is an industrial waste, generated during the recycling process of End-of-life vehicles. The large increasing production volumes of ASR and its hazardous content have raised concerns worldwide, leading some countries to impose more restrictions on ASR waste disposal and encouraging researchers to find efficient solutions for ASR processing. Although a great deal of research work has been carried out, all proposed solutions, to our knowledge, remain commercially and technically unproven. While the volume of waste materials continues to increase, the production of materials from new sustainable sources has become of great importance. Advanced ceramic materials such as nitrides, carbides and borides are widely used in a variety of applications. Among these ceramics, a great deal of attention has been recently paid to Titanium nitride (TiN) owing to its unique characteristics. In our study, we propose a new sustainable approach for ASR management where TiN nanoparticles with ideal particle size ranging from 200 to 315 nm can be synthesized as a by-product. In this approach, TiN is thermally synthesized by nitriding pressed mixture of automotive shredder residue (ASR) incorporated with titanium oxide (TiO2). Results indicated that TiO2 influences and catalyses degradation reactions of ASR and helps to achieve fast and full decomposition. In addition, the process resulted in titanium nitride (TiN) ceramic with several unique structures (porous nanostructured, polycrystalline, micro-spherical and nano-sized structures) that were simply obtained by tuning the ratio of TiO2 to ASR, and a product with appreciable TiN content of around 85% was achieved after only one hour nitridation at 1550 °C.

Keywords: automotive shredder residue, nano-ceramics, waste treatment, titanium nitride, thermal conversion

Procedia PDF Downloads 297
49879 Polymeric Sustained Biodegradable Patch Formulation for Wound Healing

Authors: Abhay Asthana, Gyati Shilakari Asthana

Abstract:

It’s the patient compliance and stability in combination with controlled drug delivery and biocompatibility that forms the core feature in present research and development of sustained biodegradable patch formulation intended for wound healing. The aim was to impart sustained degradation, sterile formulation, significant folding endurance, elasticity, biodegradability, bio-acceptability and strength. The optimized formulation was developed using component including polymers including Hydroxypropyl methyl cellulose, Ethylcellulose, and Gelatin, and Citric Acid PEG Citric acid (CPEGC) triblock dendrimers and active Curcumin. Polymeric mixture dissolved in geometric order in suitable medium through continuous stirring under ambient conditions. With continued stirring Curcumin was added with aid of DCM and Methanol in optimized ratio to get homogenous dispersion. The dispersion was sonicated with optimum frequency and for given time and later casted to form a patch form. All steps were carried out under under strict aseptic conditions. The formulations obtained in the acceptable working range were decided based on thickness, uniformity of drug content, smooth texture and flexibility and brittleness. The patch kept on stability using butter paper in sterile pack displayed folding endurance in range of 20 to 23 times without any evidence of crack in an optimized formulation at room temperature (RT) (24 ± 2°C). The patch displayed acceptable parameters after stability study conducted in refrigerated conditions (8±0.2°C) and at RT (24 ± 2°C) upto 90 days. Further, no significant changes were observed in critical parameters such as elasticity, biodegradability, drug release and drug content during stability study conducted at RT 24±2°C for 45 and 90 days. The drug content was in range 95 to 102%, moisture content didn’t exceeded 19.2% and patch passed the content uniformity test. Percentage cumulative drug release was found to be 80% in 12h and matched the biodegradation rate as drug release with correlation factor R2>0.9. The biodegradable patch based formulation developed shows promising results in terms of stability and release profiles.

Keywords: sustained biodegradation, wound healing, polymers, stability

Procedia PDF Downloads 332
49878 Traumatic Osteoarthritis Induces Mechanical Hyperalgesia through IL-1β/TNF-α-Mediated Upregulation of the Sema4D Gene Expression

Authors: Hsiao-Chien Tsai, Yu-Pin Chen, Ruei-Ming Chen

Abstract:

Introduction: Osteoarthritis (OA) is characterized by joint destruction and causes chronic disability. One of the prominent symptoms is pain. Alleviating the pain is necessary and urgent for the therapy of OA patients. However, currently, understanding the mechanisms that drive OA-induced pain remains challenging, which hampers the optimistic management of pain in OA patients. Semaphorin 4D (Sema4D) participates in axon guidance pathway and bone remodeling, thus, may play a role in the regulation of pain in OA. In this study, we have established a rat model of OA to find out the mechanisms of OA-induced pain and to deliberate the roles of Sema4D. Methods: Behavioral changes and the pro-inflammatory cytokines (IL-1β, TNF-α, and IL-17) associated with pain were measured during the development of OA. Sema4D expression in cartilage and synovial membrane at 1, 4, and 12 weeks after inducing OA was analyzed. To assess if Sema4D is related to the neurogenesis in OA as an axon repellant, we analyzed the expression of PGP9.5 as well. Results: Synovitis and cartilage degradation were evident histologically during the development of OA. Mechanical hyperalgesia was most severe at week 1, then persisted thereafter. It was associated with stress coping strategies. Similar to the pain behavioral results, levels of IL-1β and TNF-α in synovial lavage fluid were significantly elevated in the OA group at weeks 1 and 4, respectively. Sema4D expression in cartilage and the synovial membrane was also enhanced in the OA group and was correlated with pain and pro-inflammatory cytokines. The marker of neurogenesis, PGP9.5, was also enhanced during the development of OA. Discussion: OA induced mechanical hyperalgesia, which might be through upregulating IL-1β/TNF-α-mediated Sema4D expressions. If anti-Sema4D treatment could reduce OA-induced mechanical hyperalgesia and prevent the subsequent progression of OA needs to be further investigated. Significance: OA can induce mechanical hyperalgesia through upregulation of IL-1β/TNF-α-mediated Sema4D and PGP9.5 expressions. And the upregulation of Sema4D may indicate the severity or active status of OA and OA-induced pain.

Keywords: traumatic osteoarthritis, mechanical hyperalgesia, Sema4D, inflammatory cytokines

Procedia PDF Downloads 78
49877 Using the Combination of Food Waste and Animal Waste as a Reliable Energy Source in Rural Guatemala

Authors: Jina Lee

Abstract:

Methane gas is a common byproduct in any process of rot and degradation of organic matter. This gas, when decomposition occurs, is emitted directly into the atmosphere. Methane is the simplest alkane hydrocarbon that exists. Its chemical formula is CH₄. This means that there are four atoms of hydrogen and one of carbon, which is linked by covalent bonds. Methane is found in nature in the form of gas at normal temperatures and pressures. In addition, it is colorless and odorless, despite being produced by the rot of plants. It is a non-toxic gas, and the only real danger is that of burns if it were to ignite. There are several ways to generate methane gas in homes, and the amount of methane gas generated by the decomposition of organic matter varies depending on the type of matter in question. An experiment was designed to measure the efficiency, such as a relationship between the amount of raw material and the amount of gas generated, of three different mixtures of organic matter: 1. food remains of home; 2. animal waste (excrement) 3. equal parts mixing of food debris and animal waste. The results allowed us to conclude which of the three mixtures is the one that grants the highest efficiency in methane gas generation and which would be the most suitable for methane gas generation systems for homes in order to occupy less space generating an equal amount of gas.

Keywords: alternative energy source, energy conversion, methane gas conversion system, waste management

Procedia PDF Downloads 168
49876 Effective Environmental Planning Management (EPM) as Panacea to Sustainable Urban Development

Authors: Jegede Kehinde Jacob, Ola Akeem Bayonle, Adewale Yemi Yekeen

Abstract:

The rapid rate of urban growth in most developing countries of the world in recent times is alarming. Mass movement of people from rural areas to the urban centres, the consequence of the uncontrolled rapid urbanisation resulting to many un-conforming environmental challenges such as inadequate infrastructure, land, water and air pollution, poor environmental sanitation, poor and inadequate housing, urban degradation, sprawl and slums, urban violence, crime, robbery and prostitution as well as many other social vices that make the cities unsustainable. The resultant effects of all these are abysmal failure in the management of cities on the part of the governing authorities and other relevant stakeholders as well as unconducive and unwholesome condition of living of the people. This paper attempts to examine holistically the issue of environmental planning management (EPM) process development and management concept with a view for dynamic and interactive approach for various stakeholders as partners in achieving sustainable cities of our dream. The areas of discussion including conceptual and contextual issues, sustainable cities concept, good urban governance including literature review. The paper goes further to examine opportunities and challenges of built environment generally, the nature and context of environmental problems in particular, the role and duties of environmental planning and management (EPM) process in sustainable urban development. The paper further reviewed briefly the various levels of institutionalisation of EPM process with a typical case study of sustainable Ibadan project (SIP). The paper concludes with a list of recommendations to ensure effective and lasting solutions to cities problems through initiation of EPM process achievable in a sustainable manner.

Keywords: built environment, environmental planning, sustainable cities, sustainable development, urbanization

Procedia PDF Downloads 266
49875 Effect of Thinning Practice on Carbon Storage in Soil Forest Northern Tunisia

Authors: Zouhaier Nasr, Mohamed Nouri

Abstract:

The increase in greenhouse gases since the pre-industrial period is a real threat to disrupting the balance of marine and terrestrial ecosystems. Along with the oceans, forest soils are considered to be the planet's second-largest carbon sink. North African forests have been subject to alarming degradation for several decades. The objective of this investigation is to determine and quantify the effect of thinning practiced in pine forests in northern Tunisia on the storage of organic carbon in the trees and in the soil. The plot planted in 1989 underwent thinning in 2005 on to plots; the density is therefore 1600 trees/ha in control and 400 trees/ha in thinning. Direct dendrometric measurements (diameter, height, branches, stem) were taken. In the soil part, six profiles of 1m / 1m / 1m were used for soil and root samples and biomass and organic matter measurements. The measurements obtained were statistically processed by appropriate software. The results clearly indicate that thinning improves tree growth, so the diameter increased from 24.3 cm to 30.1 cm. Carbon storage in the trunks was 35% more and 25% for the whole tree. At ground level, the thinned plot shows a slight increase in soil organic matter and quantity of carbon per tree, exceeding the control by 10 to 25%.

Keywords: forest, soil, carbon, climate change, Tunisia

Procedia PDF Downloads 133
49874 Molecular Profiling of an Oleaginous Trebouxiophycean Alga Parachlorella kessleri Subjected to Nutrient Deprivation

Authors: Pannaga Pavan Jutur

Abstract:

Parachlorella kessleri, a marine unicellular green alga belonging to class Trebouxiophyceae, accumulates large amounts of oil, i.e., lipids under nutrient-deprived (-N, -P, and -S) conditions. Understanding their metabolic imprints is important for elucidating the physiological mechanisms of lipid accumulations in this microalga subjected to nutrient deprivation. Metabolic and lipidomic profiles were obtained respectively using gas chromatography-mass spectrometry (GC-MS) of P. kessleri under nutrient starvation (-N, -P and -S) conditions. Relative quantities of more than 100 metabolites were systematically compared in all these three starvation conditions. Our results demonstrate that in lipid metabolism, the quantities of neutral lipids increased significantly followed by the decrease in other metabolites involved in photosynthesis, nitrogen assimilation, etc. In conclusion, the metabolomics and lipidomic profiles have identified a few common metabolites such as citric acid, valine, and trehalose to play a significant role in the overproduction of oil by this microalga subjected to nutrient deprivation. Understanding the entire system through untargeted metabolome profiling will lead to identifying relevant metabolites involved in the biosynthesis and degradation of precursor molecules that may have the potential for biofuel production, aiming towards the vision of tomorrow’s bioenergy needs.

Keywords: algae, biofuels, nutrient stress, omics

Procedia PDF Downloads 277
49873 Hydroxyapatite from Biowaste for the Reinforcement of Polymer

Authors: John O. Akindoyo, M. D. H. Beg, Suriati Binti Ghazali, Nitthiyah Jeyaratnam

Abstract:

Regeneration of bone due to the many health challenges arising from traumatic effects of bone loss, bone tumours and other bone infections is fast becoming indispensable. Over the period of time, some approaches have been undertaken to mitigate this challenge. This includes but not limited to xenografts, allografts, autografts as well as artificial substitutions like bioceramics, synthetic cements and metals. However, most of these techniques often come along with peculiar limitation and problems such as morbidity, availability, disease transmission, collateral site damage or absolute rejection by the body as the case may be. Hydroxyapatite (HA) is very compatible and suitable for this application. However, most of the common methods for HA synthesis are expensive and environmentally unfriendly. Extraction of HA from bio-wastes have been perceived not only to be cost effective, but also environment-friendly. In this research, HA was produced from bio-waste: namely bovine bones through a combination of hydrothermal chemical processes and ordinary calcination techniques. Structure and property of the HA was carried out through different characterization techniques (such as TGA, FTIR, DSC, XRD and BET). The synthesized HA was found to possess similar properties to stoichiometric HA with highly desirable thermal, degradation, structural and porous properties. This material is unique for its potential minimal cost, environmental friendliness and property controllability. It is also perceived to be suitable for tissue and bone engineering applications.

Keywords: biomaterial, biopolymer, bone, hydroxyapatite

Procedia PDF Downloads 322
49872 Hybrid Treatment Method for Decolorization of Mixed Dyes: Rhodamine-B, Brilliant Green and Congo Red

Authors: D. Naresh Yadav, K. Anand Kishore, Bhaskar Bethi, Shirish H. Sonawane, D. Bhagawan

Abstract:

The untreated industrial wastewater discharged into the environment causes the contamination of soil, water and air. Advanced treatment methods for enhanced wastewater treatment are attracting substantial interest among the currently employed unit processes in wastewater treatment. The textile industry is one of the predominant in wastewater production at current industrialized situation. The refused dyes at textile industry need to be treated in proper manner before its discharge into water bodies. In the present investigation, hybrid treatment process has been developed for the treatment of synthetic mixed dye wastewater. Photocatalysis and ceramic nanoporous membrane are mainly used for process integration to minimize the fouling and increase the flux. Commercial semiconducting powders (TiO2 and ZnO) has used as a nano photocatalyst for the degradation of mixed dye in the hybrid system. Commercial ceramic nanoporous tubular membranes have been used for the rejection of dye and suspended catalysts. Photocatalysis with catalyst has shown the average of 34% of decolorization (RB-32%, BG-34% and CR-36%), whereas ceramic nanofiltration has shown the 56% (RB-54%, BG-56% and CR-58%) of decolorization. Integration of photocatalysis and ceramic nanofiltration has shown 96% (RB-94%, BG-96% and CR-98%) of dye decolorization over 90 min of operation.

Keywords: photocatalysis, ceramic nanoporous membrane, wastewater treatment, advanced oxidation process, process integration

Procedia PDF Downloads 264
49871 Intelligent Platform for Photovoltaic Park Operation and Maintenance

Authors: Andreas Livera, Spyros Theocharides, Michalis Florides, Charalambos Anastassiou

Abstract:

A main challenge in the quest for ensuring quality of operation, especially for photovoltaic (PV) systems, is to safeguard the reliability and optimal performance by detecting and diagnosing potential failures and performance losses at early stages or before the occurrence through real-time monitoring, supervision, fault detection, and predictive maintenance. The purpose of this work is to present the functionalities and results related to the development and validation of a software platform for PV assets diagnosis and maintenance. The platform brings together proprietary hardware sensors and software algorithms to enable the early detection and prediction of the most common and critical faults in PV systems. It was validated using field measurements from operating PV systems. The results showed the effectiveness of the platform for detecting faults and losses (e.g., inverter failures, string disconnections, and potential induced degradation) at early stages, forecasting PV power production while also providing recommendations for maintenance actions. Increased PV energy yield production and revenue can be thus achieved while also minimizing operation and maintenance (O&M) costs.

Keywords: failure detection and prediction, operation and maintenance, performance monitoring, photovoltaic, platform, recommendations, predictive maintenance

Procedia PDF Downloads 52
49870 Application of Thermoplastic Microbioreactor to the Single Cell Study of Budding Yeast to Decipher the Effect of 5-Hydroxymethylfurfural on Growth

Authors: Elif Gencturk, Ekin Yurdakul, Ahmet Y. Celik, Senol Mutlu, Kutlu O. Ulgen

Abstract:

Yeast cells are generally used as a model system of eukaryotes due to their complex genetic structure, rapid growth ability in optimum conditions, easy replication and well-defined genetic system properties. Thus, yeast cells increased the knowledge of the principal pathways in humans. During fermentation, carbohydrates (hexoses and pentoses) degrade into some toxic by-products such as 5-hydroxymethylfurfural (5-HMF or HMF) and furfural. HMF influences the ethanol yield, and ethanol productivity; it interferes with microbial growth and is considered as a potent inhibitor of bioethanol production. In this study, yeast single cell behavior under HMF application was monitored by using a continuous flow single phase microfluidic platform. Microfluidic device in operation is fabricated by hot embossing and thermo-compression techniques from cyclo-olefin polymer (COP). COP is biocompatible, transparent and rigid material and it is suitable for observing fluorescence of cells considering its low auto-fluorescence characteristic. The response of yeast cells was recorded through Red Fluorescent Protein (RFP) tagged Nop56 gene product, which is an essential evolutionary-conserved nucleolar protein, and also a member of the box C/D snoRNP complexes. With the application of HMF, yeast cell proliferation continued but HMF slowed down the cell growth, and after HMF treatment the cell proliferation stopped. By the addition of fresh nutrient medium, the yeast cells recovered after 6 hours of HMF exposure. Thus, HMF application suppresses normal functioning of cell cycle but it does not cause cells to die. The monitoring of Nop56 expression phases of the individual cells shed light on the protein and ribosome synthesis cycles along with their link to growth. Further computational study revealed that the mechanisms underlying the inhibitory or inductive effects of HMF on growth are enriched in functional categories of protein degradation, protein processing, DNA repair and multidrug resistance. The present microfluidic device can successfully be used for studying the effects of inhibitory agents on growth by single cell tracking, thus capturing cell to cell variations. By metabolic engineering techniques, engineered strains can be developed, and the metabolic network of the microorganism can thus be manipulated such that chemical overproduction of target metabolite is achieved along with the maximum growth/biomass yield.  

Keywords: COP, HMF, ribosome biogenesis, thermoplastic microbioreactor, yeast

Procedia PDF Downloads 171
49869 The Reef as Multiple: Coral Reefs between Exploitation and Protection along the Mexican Riviera Maya

Authors: Laura Otto

Abstract:

Sargasso algae currently threatens both livelihoods and marine eco systems along the Riviera Maya in Mexico. While the area was previously known for its white beaches, pristine waters, and intact, colorful reefs, the algae has turned the beaches into ‘stinky stretches of sand,’ made the water brown, and has led to reef degradation causing coral colonies to die off in vast amounts. Drawing on ethnographic research in the area, this paper shows how the reef was exploited for tourism before the Sargasso algae landed, and reef protection played a minor role among hoteliers, tourists, and tour operators. However, since Sargasso began arriving in large quantities, the reef has taken on new significance. Both natural science research and the everyday handling of Sargasso along the coast show that an intact reef provides a natural barrier for the algae and keeps them from reaching the beaches. Clean beaches are important to various local actors–among them, hotel operators, tourists, environmentalists – and against the backdrop of beach commodification, reefs are now taking on new meaning. The paper consequently discusses the commodification of beaches as more-than-human entanglements and illuminates which new human-environment relationships are currently emerging in the Anthropocene.

Keywords: anthropocene, human-environment-relations, fieldwork, mexico

Procedia PDF Downloads 219
49868 Reducing Phytic Acid in Rice Grain by Targeted Mutagenesis of a Phospholipase D Gene

Authors: Muhammad Saad Shoaib Khan, Rasbin Basnet, Qingyao Shu

Abstract:

Phospholipids are one of the major classes of lipid comprising 10% of total grain lipid in rice. Phospholipids are the main phosphorus containing lipid in the rice endosperm, contributing to rice palatability and seed storage property. However, in the rice grain, the majority of phosphorus occur in the form of phytic acid and are highly abundant in the bran. Phytic acid, also known as hexaphosphorylated inositol (IP6), are strong chelating agents which reduces the bioavailability of essential dietary nutrients and are therefore less desirable by rice breeders. We used the CRISPR/Cas9 system to generate mutants of a phospholipase D gene (PLDα1), which is responsible for the degradation of phospholipids into phosphatidic acid (PA). In the mutants, we found a significant reduction in the concentration of phytic acid in the grain as compared to the wild-type. The biochemical analysis of the PLDα1 mutants showed that the decrease in production of phosphatidic acid is due to reduced accumulation of CDP-diacylglycerolderived phosphatidylinositol (PI), ultimately leading to lower accumulation of phytic acid in mutants. These results showed that loss of function of PLD in rice leads to lower production of phytic acid, suggesting the potential application of Ospldα1 in breeding rice with less phytic acid.

Keywords: CRISPR/Cas9, phospholipase D, phytic acid, rice

Procedia PDF Downloads 158
49867 Desulphurization of Waste Tire Pyrolytic Oil (TPO) Using Photodegradation and Adsorption Techniques

Authors: Moshe Mello, Hilary Rutto, Tumisang Seodigeng

Abstract:

The nature of tires makes them extremely challenging to recycle due to the available chemically cross-linked polymer and, therefore, they are neither fusible nor soluble and, consequently, cannot be remolded into other shapes without serious degradation. Open dumping of tires pollutes the soil, contaminates underground water and provides ideal breeding grounds for disease carrying vermins. The thermal decomposition of tires by pyrolysis produce char, gases and oil. The composition of oils derived from waste tires has common properties to commercial diesel fuel. The problem associated with the light oil derived from pyrolysis of waste tires is that it has a high sulfur content (> 1.0 wt.%) and therefore emits harmful sulfur oxide (SOx) gases to the atmosphere when combusted in diesel engines. Desulphurization of TPO is necessary due to the increasing stringent environmental regulations worldwide. Hydrodesulphurization (HDS) is the commonly practiced technique for the removal of sulfur species in liquid hydrocarbons. However, the HDS technique fails in the presence of complex sulfur species such as Dibenzothiopene (DBT) present in TPO. This study aims to investigate the viability of photodegradation (Photocatalytic oxidative desulphurization) and adsorptive desulphurization technologies for efficient removal of complex and non-complex sulfur species in TPO. This study focuses on optimizing the cleaning (removal of impurities and asphaltenes) process by varying process parameters; temperature, stirring speed, acid/oil ratio and time. The treated TPO will then be sent for vacuum distillation to attain the desired diesel like fuel. The effect of temperature, pressure and time will be determined for vacuum distillation of both raw TPO and the acid treated oil for comparison purposes. Polycyclic sulfides present in the distilled (diesel like) light oil will be oxidized dominantly to the corresponding sulfoxides and sulfone via a photo-catalyzed system using TiO2 as a catalyst and hydrogen peroxide as an oxidizing agent and finally acetonitrile will be used as an extraction solvent. Adsorptive desulphurization will be used to adsorb traces of sulfurous compounds which remained during photocatalytic desulphurization step. This desulphurization convoy is expected to give high desulphurization efficiency with reasonable oil recovery.

Keywords: adsorption, asphaltenes, photocatalytic oxidation, pyrolysis

Procedia PDF Downloads 273
49866 Physico-chemical and Biological Characterization of Urban Municipal Landfill Leachate and Treatment by Ozone Process

Authors: Ramdani Nadia, Kheddaoui Abdelkrim, Nemmich Said, Tilmatine Amar

Abstract:

The waste production nationwide is increasing every year, on account of therapid urbanization and growing populations, also consumption modes. Algerian political authorities have chosen Technical Landfill Centres (TLC) as a competitive and safe technique of waste management. However, storing these wastes in a bad way poses several environmental challenges, especially in the Department of Saïda, the latter have significant groundwaters. The major problem registered on this Landfill is the leachate resulting from the degradation of buried wastes which were disposed off the outside of the leachate basin and present a source of pollution for the local groundwaters by heavy metals and pathogenic germs. The present paper investigates the leachate treatment ozone process produced by Dielectric Barrier Discharge (DBD) under high potential. The experimental results obtained allowed us to show the efficiency of the treatment process by ozone based on the micro pollutant analysis (DCO, DBO5 , COT, heavy metals) and microbial analysis, after ozonation treatment. The results show that 80% of micro pollutants are eliminated and 100% destruction of all bacteria which reveals the high efficiency of the process.

Keywords: landfill, leachate, treatment, ozone, polluants, bacteria, micropolluant

Procedia PDF Downloads 24
49865 Cultural Landscape Planning – A Case of Chettinad Village Clusters

Authors: Adhithy Menon E., Biju C. A.

Abstract:

In the 1960s, the concept of preserving heritage monuments was first introduced. During the 1990s, the concept of cultural landscapes gained importance, highlighting the importance of culture and heritage. Throughout this paper, we examine the second category of the cultural landscape, which is an organically evolving landscape as it represents a web of tangible, intangible, and ecological heritage and the ways in which they can be rejuvenated. Cultural landscapes in various regions, such as the Chettinad Village clusters, are in serious decline, which is identified through the Heritage Passport program of this area (2007). For this reason, it is necessary to conduct a detailed analysis of the factors that contribute to this degradation to ensure its protection in the future. An analysis of the cultural landscape of the Chettinad Village clusters and its impact on the community is presented in this paper. The paper follows the first objective, which is to understand cultural landscapes and their different criteria and categories. It is preceded by the study of various methods for protecting cultural landscapes. To identify a core area of intervention based on the parameters of Cultural Landscapes and Community Based Tourism, a study and analysis of the regional context of Chettinad village clusters considering tourism development must first be conducted. Lastly, planning interventions for integrating community-based tourism in Chettinad villages for the purpose of rejuvenating the cultural landscapes of the villages as well as their communities. The major findings include the importance of the local community in protecting cultural landscapes. The parameters identified to have an impact on Chettinad Village clusters are a community (community well-being, local maintenance, and enhancement, demand, alternative income for community, public participation, awareness), tourism (location and physical access, journey time, tourist attractions), integrity (natural factors, natural disasters, demolition of structures, deterioration of materials) authenticity (sense of place, living elements, building techniques, artistic expression, religious context) disaster management (natural disasters) and environmental impact (pollution). This area can be restored to its former glory and preserved as part of the cultural landscape for future generations by focusing on and addressing these parameters within the identified core area of the Chettinad Villages cluster (Kanadukathan TP, Kothamangalam, Kottaiyur, Athangudi, Karikudi, and Palathur).

Keywords: Chettinad village clusters, community, cultural landscapes, organically evolved.

Procedia PDF Downloads 83
49864 Biochar and Food Security in Central Uganda

Authors: Nataliya Apanovich, Mark Wright

Abstract:

Uganda is among the poorest but fastest growing populations in the world. Its annual population growth of 3% puts additional stress through land fragmentation, agricultural intensification, and deforestation on already highly weathered tropical (Ferralsol) soils. All of these factors lead to decreased agricultural yields and consequently diminished food security. The central region of Uganda, Buganda Kingdom, is especially vulnerable in terms of food security as its high population density coupled with mismanagement of natural resources led to gradual loss of its soil and even changes in microclimate. These changes are negatively affecting livelihoods of smallholder farmers who comprise 80% of all population in Uganda. This research focuses on biochar for soil remediation in Masaka District, Uganda. If produced on a small scale from locally sourced materials, biochar can increase the quality of soil in a cost and time effective manner. To assess biochar potential, 151 smallholder farmers were interviewed on the types of crops grown, agricultural residues produced and their use, as well as on attitudes towards biochar use and its production on a small scale. The interviews were conducted in 7 sub-counties, 32 parishes, and 92 villages. The total farmland covered by the study was 606.2 kilometers. Additional information on the state of agricultural development and environmental degradation in the district was solicited from four local government officials via informal interviews. This project has been conducted in collaboration with the international agricultural research institution, Makerere University in Kampala, Uganda. The results of this research can have implications on the way farmers perceive the value of their agricultural residues and what they decide to do with them. The underlying objective is to help smallholders in degraded soils increase their agricultural yields through the use of biochar without diverting the already established uses of agricultural residues to a new soil management practice.

Keywords: agricultural residues, biochar, central Uganda, food security, soil erosion, soil remediation

Procedia PDF Downloads 284
49863 Investigation of Chord Protocol in Peer to Peer Wireless Mesh Network with Mobility

Authors: P. Prasanna Murali Krishna, M. V. Subramanyam, K. Satya Prasad

Abstract:

File sharing in networks are generally achieved using Peer-to-Peer (P2P) applications. Structured P2P approaches are widely used in adhoc networks due to its distributed and scalability features. Efficient mechanisms are required to handle the huge amount of data distributed to all peers. The intrinsic characteristics of P2P system makes for easier content distribution when compared to client-server architecture. All the nodes in a P2P network act as both client and server, thus, distributing data takes lesser time when compared to the client-server method. CHORD protocol is a resource routing based where nodes and data items are structured into a 1- dimensional ring. The structured lookup algorithm of Chord is advantageous for distributed P2P networking applications. Though, structured approach improves lookup performance in a high bandwidth wired network it could contribute to unnecessary overhead in overlay networks leading to degradation of network performance. In this paper, the performance of existing CHORD protocol on Wireless Mesh Network (WMN) when nodes are static and dynamic is investigated.

Keywords: wireless mesh network (WMN), structured P2P networks, peer to peer resource sharing, CHORD Protocol, DHT

Procedia PDF Downloads 481
49862 Role of Organic Wastewater Constituents in Iron Redox Cycling for Ferric Sludge Reuse in the Fenton-Based Treatment

Authors: J. Bolobajev, M. Trapido, A. Goi

Abstract:

The practical application of the Fenton-based treatment method for organic compounds-contaminated water purification is limited mainly because of the large amount of ferric sludge formed during the treatment, where ferrous iron (Fe(II)) is used as the activator of the hydrogen peroxide oxidation processes. Reuse of ferric sludge collected from clarifiers to substitute Fe(II) salts allows reducing the total cost of Fenton-type treatment technologies and minimizing the accumulation of hazardous ferric waste. Dissolution of ferric iron (Fe(III)) from the sludge to liquid phase at acidic pH and autocatalytic transformation of Fe(III) to Fe(II) by phenolic compounds (tannic acid, lignin, phenol, catechol, pyrogallol and hydroquinone) added or present as water/wastewater constituents were found to be essentially involved in the Fenton-based oxidation mechanism. Observed enhanced formation of highly reactive species, hydroxyl radicals, resulted in a substantial organic contaminant degradation increase. Sludge reuse at acidic pH and in the presence of ferric iron reductants is a novel strategy in the Fenton-based treatment application for organic compounds-contaminated water purification.

Keywords: ferric sludge recycling, ferric iron reductant, water treatment, organic pollutant

Procedia PDF Downloads 294
49861 Impacts of Human Settlement Development on Highland View Wetland in Bizana, South Africa

Authors: Fikile Xaki, Zendy Magayiyana

Abstract:

The increasing population and urbanization, with the demand for land and development, has had adverse impacts on wetland areas which has resulted in changing the hydrology and water chemistry of wetlands, affecting the water supply and water quality in urban areas like the Highland View, a residential area in Mbizana, South Africa. The settlement development in Highland View has led to wetland degradation due to land uses like agriculture and conversion of wetland for settlement development. Interviews with the local community were conducted to show how settlement development on wetland affects them. The results indicated that the environmental rights of people as according to Section 24 of the South African Constitution are compromised, and sustainable development was not put into consideration during development. With the results from the survey - through questionnaires for the Mbizana Local Municipality and the community, it was clear that the community needs education and capacity building on wetland management and conservation. Geographic Information Systems (GIS) was used to map physical properties of the Highland View wetland and houses built on the wetland. With all the information gathered from the research, it was clear that local municipality, together with hydrologists, needs to develop an environmental management framework to protect the wetlands.

Keywords: sustainable development, wetlands, human settlement, water

Procedia PDF Downloads 352
49860 Bacteriological Quality and Physicochemical Water Beaches of the City of Annaba (Mediterranean Sea)

Authors: Wahiba Boudraa, Farah Chettibbi, Meriem Aberkane, Fatma Djamaa, Moussa Houhamdi

Abstract:

The intensity of human activities in regions surrounding the Mediterranean Sea always has a strong long-term environmental impact resulting in coastal and marine degradation, as well as an aggravated risk of more serious damage. The available data on water quality show that most water resources in Algeria are polluted by uncontrolled discharges from municipal sewage and untreated industrial effluents. Annaba is a coastal town in Algeria; The Gulf of Annaba, responds to these changes as it receives the continental inputs and urban waste, industrial without prior treatment of a highly industrialized and urbanized city, subject to the same environmental problems that know the rest of the Algerian coast. In later year, the beaches of bacterial enumeration process waters showed relatively high levels of bacterial indicators of fecal contamination (group D streptococci, total and fecal coliforms), which reflect the risks to people attending these beaches. During the twelve months of our study, we isolated from three beaches in the city of Annaba (St. Cloud, El-Kettara, and Djenane El Bey) a number of pathogenic microorganisms considered, namely: Salmonella, Aeromonas, Citrobacter, Yersinia, Enterococcus, and E.coli. The microbial count revealed elevated levels of coliform bacteria, fecal coliforms and fecal streptococci quite high especially in urban beaches (St. Cloud and El-Kettara). They are widely popular during the summer by many vacationers. For the physico-chemical parameters, there exist some weak values which increase during the pluvial period, hivernal and festival saison. These values remain, nevertheless, weak to be able to cause an organic or metallic pollution.

Keywords: quality microbiology, pollution of water, fecal contamination, physico-chemistry, beaches of Annaba city, Algeria.

Procedia PDF Downloads 346
49859 Dynamic Properties of Recycled Concrete Aggregate from Resonant Column Tests

Authors: Wojciech Sas, Emil Soból, Katarzyna Gabryś, Andrzej Głuchowski, Alojzy Szymański

Abstract:

Depleting of natural resources is forcing the man to look for alternative construction materials. One of them is recycled concrete aggregates (RCA). RCA from the demolition of buildings and crushed to proper gradation can be a very good replacement for natural unbound granular aggregates, gravels or sands. Physical and the mechanical properties of RCA are well known in the field of basic civil engineering applications, but to proper roads and railways design dynamic characteristic is need as well. To know maximum shear modulus (GMAX) and the minimum damping ratio (DMIN) of the RCA dynamic loads in resonant column apparatus need to be performed. The paper will contain literature revive about alternative construction materials and dynamic laboratory research technique. The article will focus on dynamic properties of RCA, but early studies conducted by the authors on physical and mechanical properties of this material also will be presented. The authors will show maximum shear modulus and minimum damping ratio. Shear modulus and damping ratio degradation curves will be shown as well. From exhibited results conclusion will be drawn at the end of the article.

Keywords: recycled concrete aggregate, shear modulus, damping ratio, resonant column

Procedia PDF Downloads 399