Search results for: machine resistance training
8332 Customer Churn Prediction by Using Four Machine Learning Algorithms Integrating Features Selection and Normalization in the Telecom Sector
Authors: Alanoud Moraya Aldalan, Abdulaziz Almaleh
Abstract:
A crucial component of maintaining a customer-oriented business as in the telecom industry is understanding the reasons and factors that lead to customer churn. Competition between telecom companies has greatly increased in recent years. It has become more important to understand customers’ needs in this strong market of telecom industries, especially for those who are looking to turn over their service providers. So, predictive churn is now a mandatory requirement for retaining those customers. Machine learning can be utilized to accomplish this. Churn Prediction has become a very important topic in terms of machine learning classification in the telecommunications industry. Understanding the factors of customer churn and how they behave is very important to building an effective churn prediction model. This paper aims to predict churn and identify factors of customers’ churn based on their past service usage history. Aiming at this objective, the study makes use of feature selection, normalization, and feature engineering. Then, this study compared the performance of four different machine learning algorithms on the Orange dataset: Logistic Regression, Random Forest, Decision Tree, and Gradient Boosting. Evaluation of the performance was conducted by using the F1 score and ROC-AUC. Comparing the results of this study with existing models has proven to produce better results. The results showed the Gradients Boosting with feature selection technique outperformed in this study by achieving a 99% F1-score and 99% AUC, and all other experiments achieved good results as well.Keywords: machine learning, gradient boosting, logistic regression, churn, random forest, decision tree, ROC, AUC, F1-score
Procedia PDF Downloads 1338331 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe
Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati
Abstract:
This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).Keywords: loop heat pipe, nanofluid, optimization, thermal resistance
Procedia PDF Downloads 4578330 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents
Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux
Abstract:
The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants
Procedia PDF Downloads 2168329 Effects of Aging on Ultra: Triathlon Performance
Authors: Richard S. Jatau, Kankanala Venkateswarlu, Bulus Kpame
Abstract:
The purpose of this critical review is to find out what is known and what is unknown about the effects of aging on endurance performance, especially on ultra- triathlon performance. It has been shown that among master’s athlete’s peak levels of performance decreased by 50% by age 50 it has also been clearly revealed that age associated atrophy, weakness and fatigability cannot be halted, although year round athletic training can slow down this age associated decline. Studies have further revealed that 30% to 50% decrease in skeletal muscle mass between ages 40 and 80 years, which is accompanied by an equal or even greater decline in strength and power and an increase in muscle weakness and fatigability. Studies on ultra- triathlon athletes revealed that 30 to 39 year old showed fastest time, with athletes in younger and older age groups were slower. It appears that the length of the endurance performance appears to influence age related endurance performance decline in short distance triathlons. A significant decline seems to start at the age of 40 to 50 years, whereas in long distance triathlons this decline seems to start after the age of 65 years. However, it is not clear whether this decline is related in any way to the training methods used, the duration of training, or the frequency of training. It’s also not clear whether the triathlon athletes experience more injuries due to long hours of training. It’s also not clear whether these athletes used performance enhancing drugs to enhance their performance. It’s not also clear whiles there has been tremendous increase in the number of athletes specializing in triathlon. On the basis of our experience and available research evidence we have provided answers to some of these questions. We concluded that aging associated decline in ultra–endurance performance is inevitable although it can be slowed down.Keywords: aging, triathlon, atrophy, endurance
Procedia PDF Downloads 3728328 Impact of Minimalism in Dance Education on the Development of Aesthetic Sensibilities
Authors: Meghamala Nugehally
Abstract:
This paper hypothesises and draws inferences on the impact of minimalism in dance education on the development of artistic and aesthetic sensibilities in individuals in the age group of 5-18 yrs of age. This research and conclusions are within the context of Indian Classical Dance, which is based on Indian theories of aesthetics drawn from the Natyashastra, an ancient treatise on Indian dance and drama. The research employs training methods handed down through a strict one-on-one teacher-student tradition known as the Guru-Shishya Parampara. Aesthetic principles used are defined, and basic theories from the Natyashastra are explained to provide background for the research design. The paper also discusses dance curriculum design and training methodology design within the context of these aesthetic theories. The scope of the research is limited to two genres of Indian classical forms: Bharatanatyam and Odissi. A brief description of these dance forms is given as background and dance aesthetics specific to these forms are described. The research design includes individual case studies of subjects studied, independent predetermined attributes for observations and a qualitative scoring methodology devised for the purpose of the study. The study describes the training techniques used and contrasts minimal solo training techniques with the more elaborate group training techniques. Study groups were divided and the basis for the division are discussed. Study observations are recorded and presented as evidences. The results inform the conclusion and set the stage for further research in this area.Keywords: dance aesthetics, dance education, Indian classical dance, minimalism
Procedia PDF Downloads 2278327 Impacts of International Training Program in Pedagogy in Higher Education in the United States on Visiting Scholars in China
Authors: Yuliang Liu, Thomas Lavallee, Mary Weishaar, Gretchen Fricke, Huaibo Xin
Abstract:
The longitudinal study was designed to investigate the impacts of the International Training Program in Pedagogy (ITPP) at a midwestern institution in the United States on the visiting scholars from China from 2012-18. The study used the survey research method and involved 48 visiting scholars from Northwest Normal University in China in those eight ITPP cohorts. The results of both quantitative and qualitative data were critically examined and indicated both types of data sources revealed similar findings. It was found that the ITPP has significantly affected all scholars' instruction in China. International implications resulted from the study.Keywords: international training program in pedagogy, visiting scholars, survey research method, International implications
Procedia PDF Downloads 2108326 Temperamental Determinants of Eye-Hand Coordination Formation in the Special Aerial Gymnastics Instruments (SAGI)
Authors: Zdzisław Kobos, Robert Jędrys, Zbigniew Wochyński
Abstract:
Motor activity and good health are sine qua non determinants of a proper practice of the profession, especially aviation. Therefore, candidates to the aviation are selected according their psychomotor ability by both specialist medical commissions. Moreover, they must past an examination of the physical fitness. During the studies in the air force academy, eye-hand coordination is formed in two stages. The future aircraft pilots besides all-purpose physical education must practice specialist training on SAGI. Training includes: looping, aerowheel, and gyroscope. Aim of the training on the above listed apparatuses is to form eye-hand coordination during the tasks in the air. Such coordination is necessary to perform various figures in the real flight. Therefore, during the education of the future pilots, determinants of the effective ways of this important parameter of the human body functioning are sought for. Several studies of the sport psychology indicate an important role of the temperament as a factor determining human behavior during the task performance and acquiring operating skills> Polish psychologist Jan Strelau refers to the basic, relatively constant personality features which manifest themselves in the formal characteristics of the human behavior. Temperament, being initially determined by the inborn physiological mechanisms, changes in the course of maturation and some environmental factors and concentrates on the energetic level and reaction characteristics in time. Objectives. This study aimed at seeking a relationship between temperamental features and eye-hand coordination formation during training on SAGI. Material and Methods: Group of 30 students of pilotage was examined in two situations. The first assessment of the eye-hand coordination level was carried out before the beginning of a 30-hour training on SAGI. The second assessment was carried out after training completion. Training lasted for 2 hours once a week. Temperament was evaluated with The Formal Characteristics of Behavior − Temperament Inventory (FCB-TI) developed by Bogdan Zawadzki and Jan Strelau. Eye-hand coordination was assessed with a computer version of the Warsaw System of Psychological Tests. Results: It was found that the training on SAGI increased the level of eye-hand coordination in the examined students. Conclusions: Higher level of the eye-hand coordination was obtained after completion of the training. Moreover, a relationship between eye-hand coordination level and selected temperamental features was statistically significant.Keywords: temperament, eye-hand coordination, pilot, SAGI
Procedia PDF Downloads 4398325 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.Keywords: clay, coal, resistance to compression, insulating bricks
Procedia PDF Downloads 3288324 Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials
Authors: Ankita Srivastava, Bhupendra S. Butola, Abhijit Majumdar
Abstract:
Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics.Keywords: body armor, impact resistance, Kevlar, shear thickening fluid
Procedia PDF Downloads 2388323 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach
Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas
Abstract:
Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)
Procedia PDF Downloads 728322 Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation
Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives
Abstract:
This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.Keywords: asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation
Procedia PDF Downloads 2838321 Resilient Machine Learning in the Nuclear Industry: Crack Detection as a Case Study
Authors: Anita Khadka, Gregory Epiphaniou, Carsten Maple
Abstract:
There is a dramatic surge in the adoption of machine learning (ML) techniques in many areas, including the nuclear industry (such as fault diagnosis and fuel management in nuclear power plants), autonomous systems (including self-driving vehicles), space systems (space debris recovery, for example), medical surgery, network intrusion detection, malware detection, to name a few. With the application of learning methods in such diverse domains, artificial intelligence (AI) has become a part of everyday modern human life. To date, the predominant focus has been on developing underpinning ML algorithms that can improve accuracy, while factors such as resiliency and robustness of algorithms have been largely overlooked. If an adversarial attack is able to compromise the learning method or data, the consequences can be fatal, especially but not exclusively in safety-critical applications. In this paper, we present an in-depth analysis of five adversarial attacks and three defence methods on a crack detection ML model. Our analysis shows that it can be dangerous to adopt machine learning techniques in security-critical areas such as the nuclear industry without rigorous testing since they may be vulnerable to adversarial attacks. While common defence methods can effectively defend against different attacks, none of the three considered can provide protection against all five adversarial attacks analysed.Keywords: adversarial machine learning, attacks, defences, nuclear industry, crack detection
Procedia PDF Downloads 1578320 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control
Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi
Abstract:
In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.Keywords: impedance control, control system, robots, interaction
Procedia PDF Downloads 4298319 Innovative In-Service Training Approach to Strengthen Health Care Human Resources and Scale-Up Detection of Mycobacterium tuberculosis
Authors: Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Tsegahun Manyazewal, Francesco Marinucci, Getachew Belay, Abraham Tesfaye, Gonfa Ayana, Amaha Kebede, Yewondwossen Tadesse, Susan Lehman, Zelalem Temesgen
Abstract:
In-service health trainings in Sub-Saharan Africa are mostly content-centered with higher disconnection with the real practice in the facility. This study intended to evaluate in-service training approach aimed to strengthen health care human resources. A combined web-based and face-to-face training was designed and piloted in Ethiopia with the diagnosis of tuberculosis. During the first part, which lasted 43 days, trainees accessed web-based material and read without leaving their work; while the second part comprised a one-day hands-on evaluation. Trainee’s competency was measured using multiple-choice questions, written-assignments, exercises and hands-on evaluation. Of 108 participants invited, 81 (75%) attended the course and 71 (88%) of them successfully completed. Of those completed, 73 (90%) scored a grade from A to C. The approach was effective to transfer knowledge and turn it into practical skills. In-service health training should transform from a passive one-time-event to a continuous behavioral change of participants and improvements on their actual work.Keywords: Ethiopia, health care, Mycobacterium tuberculosis, training
Procedia PDF Downloads 5028318 Remote Training with Self-Assessment in Electrical Engineering
Authors: Zoja Raud, Valery Vodovozov
Abstract:
The paper focuses on the distance laboratory organisation for training the electrical engineering staff and students in the fields of electrical drive and power electronics. To support online knowledge acquisition and professional enhancement, new challenges in remote education based on an active learning approach with self-assessment have been emerged by the authors. Following the literature review and explanation of the improved assessment methodology, the concept and technological basis of the labs arrangement are presented. To decrease the gap between the distance study of the up-to-date equipment and other educational activities in electrical engineering, the improvements in the following-up the learners’ progress and feedback composition are introduced. An authoring methodology that helps to personalise knowledge acquisition and enlarge Web-based possibilities is described. Educational management based on self-assessment is discussed.Keywords: advanced training, active learning, distance learning, electrical engineering, remote laboratory, self-assessment
Procedia PDF Downloads 3268317 EEG Neurofeedback Training – Healing the Wounded Brain
Authors: Jamuna Rajeswaran
Abstract:
In the past two decades, with a population of more than a billion. India is passing through a major socio-demographic and epidemiological transition with consequent changes in health scenario. TBI constitute significant burden on health care resources in India The impact on a person and family can be devastating. Patients with TBI experience persistent cognitive deficits, emotional changes, which contribute to the disruption of life activities. The recovery of TBI would be maximized by appropriate rehabilitation. Neurofeedback is an emerging neuroscience-based clinical application. Sixty patients were recruited for this study after obtaining informed consent. Rivermead Head Injury Follow-up Questionnaire, Rivermead Post Concussion Symptoms Questionnaire and Visual Analog Scale were used to assess the behavioral and symptomotolgy associated with post TBI. Neuropsychological assessment was carried out using NIMHANS neuropsychological battery 2004. The Intervention group received neurofeedback training and the waitlist group did not receive any treatment during this phase. Patients were allocated to intervention and waitlist group at random. There were 30 patients in each group. Patients were given 20 sessions of NFT Patients were trained on the O1 and O2 channels for alpha theta training. Each session was of 40 minutes duration with 5-6 sessions per week. The post-training assessment was carried out for the intervention group after 20 sessions of NFT. The waitlist group underwent assessment after one month. Results showed neurofeedback training is effective in ameliorating deficits in cognitive functions and quality of life in patients with TBI. Improvements were corroborated by the clinical interview with patients and significant others post NFT.Keywords: assessment, rehabilitation, cognition, EEG neurofeedback
Procedia PDF Downloads 2618316 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.Keywords: CAM, multi-axis milling machining, transformation matrix, rotation angles
Procedia PDF Downloads 4808315 Numerical Assessment on the Unsaturated Behavior of Silty Sand
Authors: Seyed Abolhassan Naeini, Ali Namaei
Abstract:
This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test
Procedia PDF Downloads 1188314 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari
Authors: Shashank Tiwari
Abstract:
The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.Keywords: capsule, drug delivery, dosages, solid, tablet
Procedia PDF Downloads 4368313 Rule Insertion Technique for Dynamic Cell Structure Neural Network
Authors: Osama Elsarrar, Marjorie Darrah, Richard Devin
Abstract:
This paper discusses the idea of capturing an expert’s knowledge in the form of human understandable rules and then inserting these rules into a dynamic cell structure (DCS) neural network. The DCS is a form of self-organizing map that can be used for many purposes, including classification and prediction. This particular neural network is considered to be a topology preserving network that starts with no pre-structure, but assumes a structure once trained. The DCS has been used in mission and safety-critical applications, including adaptive flight control and health-monitoring in aerial vehicles. The approach is to insert expert knowledge into the DCS before training. Rules are translated into a pre-structure and then training data are presented. This idea has been demonstrated using the well-known Iris data set and it has been shown that inserting the pre-structure results in better accuracy with the same training.Keywords: neural network, self-organizing map, rule extraction, rule insertion
Procedia PDF Downloads 1708312 From Self-Regulation to Self-Efficacy: Student Empowerment in Translator Training
Authors: Paulina Pietrzak
Abstract:
The understanding of the role of the contemporary translator is fraught with contradictions and idealistic visions of individuals who, by definition, should be fully competent and versatile. In spite of the fact that lots of translation researchers have probed into the identification and exploration of the concept of translator competence, little study has been devoted to its metacognitive aspects. Due to the dynamic nature of the translator’s occupation, it is difficult to predict what specific skills will prove useful for novice translators in their professional career. Thus, it is crucial that the translator is self-regulated enough to adapt to changing job demands and effectively function in the contemporary, highly dynamic, translation market. The objective of the presentation is to investigate the role and nature of the translator’s self-regulation. It will also demonstrate the results of a pilot study into translation trainees’ self-regulatory skills and explore implications of these findings for translator training in relation to theories of student empowerment.Keywords: cognitive translation research, translator competence, self-regulatory skills, translator training
Procedia PDF Downloads 2048311 A Molding Surface Auto-inspection System
Authors: Ssu-Han Chen, Der-Baau Perng
Abstract:
Molding process in IC manufacturing secures chips against the harms done by hot, moisture or other external forces. While a chip was being molded, defects like cracks, dilapidation, or voids may be embedding on the molding surface. The molding surfaces the study poises to treat and the ones on the market, though, differ in the surface where texture similar to defects is everywhere. Manual inspection usually passes over low-contrast cracks or voids; hence an automatic optical inspection system for molding surface is necessary. The proposed system is consisted of a CCD, a coaxial light, a back light as well as a motion control unit. Based on the property of statistical textures of the molding surface, a series of digital image processing and classification procedure is carried out. After training of the parameter associated with above algorithm, result of the experiment suggests that the accuracy rate is up to 93.75%, contributing to the inspection quality of IC molding surface.Keywords: molding surface, machine vision, statistical texture, discrete Fourier transformation
Procedia PDF Downloads 4308310 Detecting Music Enjoyment Level Using Electroencephalogram Signals and Machine Learning Techniques
Authors: Raymond Feng, Shadi Ghiasi
Abstract:
An electroencephalogram (EEG) is a non-invasive technique that records electrical activity in the brain using scalp electrodes. Researchers have studied the use of EEG to detect emotions and moods by collecting signals from participants and analyzing how those signals correlate with their activities. In this study, researchers investigated the relationship between EEG signals and music enjoyment. Participants listened to music while data was collected. During the signal-processing phase, power spectral densities (PSDs) were computed from the signals, and dominant brainwave frequencies were extracted from the PSDs to form a comprehensive feature matrix. A machine learning approach was then taken to find correlations between the processed data and the music enjoyment level indicated by the participants. To improve on previous research, multiple machine learning models were employed, including K-Nearest Neighbors Classifier, Support Vector Classifier, and Decision Tree Classifier. Hyperparameters were used to fine-tune each model to further increase its performance. The experiments showed that a strong correlation exists, with the Decision Tree Classifier with hyperparameters yielding 85% accuracy. This study proves that EEG is a reliable means to detect music enjoyment and has future applications, including personalized music recommendation, mood adjustment, and mental health therapy.Keywords: EEG, electroencephalogram, machine learning, mood, music enjoyment, physiological signals
Procedia PDF Downloads 608309 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting
Authors: A. Mohammed, R. Lewis, M. Marshall
Abstract:
Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.Keywords: solid particle erosion, PVD-coatings, steel, erosion testing
Procedia PDF Downloads 2458308 Development of a Decision-Making Method by Using Machine Learning Algorithms in the Early Stage of School Building Design
Authors: Rajaian Hoonejani Mohammad, Eshraghi Pegah, Zomorodian Zahra Sadat, Tahsildoost Mohammad
Abstract:
Over the past decade, energy consumption in educational buildings has steadily increased. The purpose of this research is to provide a method to quickly predict the energy consumption of buildings using separate evaluation of zones and decomposing the building to eliminate the complexity of geometry at the early design stage. To produce this framework, machine learning algorithms such as Support vector regression (SVR) and Artificial neural network (ANN) are used to predict energy consumption and thermal comfort metrics in a school as a case. The database consists of more than 55000 samples in three climates of Iran. Cross-validation evaluation and unseen data have been used for validation. In a specific label, cooling energy, it can be said the accuracy of prediction is at least 84% and 89% in SVR and ANN, respectively. The results show that the SVR performed much better than the ANN.Keywords: early stage of design, energy, thermal comfort, validation, machine learning
Procedia PDF Downloads 718307 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis
Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec
Abstract:
The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design
Procedia PDF Downloads 2298306 Autonomous Kuka Youbot Navigation Based on Machine Learning and Path Planning
Authors: Carlos Gordon, Patricio Encalada, Henry Lema, Diego Leon, Dennis Chicaiza
Abstract:
The following work presents a proposal of autonomous navigation of mobile robots implemented in an omnidirectional robot Kuka Youbot. We have been able to perform the integration of robotic operative system (ROS) and machine learning algorithms. ROS mainly provides two distributions; ROS hydro and ROS Kinect. ROS hydro allows managing the nodes of odometry, kinematics, and path planning with statistical and probabilistic, global and local algorithms based on Adaptive Monte Carlo Localization (AMCL) and Dijkstra. Meanwhile, ROS Kinect is responsible for the detection block of dynamic objects which can be in the points of the planned trajectory obstructing the path of Kuka Youbot. The detection is managed by artificial vision module under a trained neural network based on the single shot multibox detector system (SSD), where the main dynamic objects for detection are human beings and domestic animals among other objects. When the objects are detected, the system modifies the trajectory or wait for the decision of the dynamic obstacle. Finally, the obstacles are skipped from the planned trajectory, and the Kuka Youbot can reach its goal thanks to the machine learning algorithms.Keywords: autonomous navigation, machine learning, path planning, robotic operative system, open source computer vision library
Procedia PDF Downloads 1758305 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete
Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim
Abstract:
Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.Keywords: high strength concrete, mineral admixture, fire resistance, social disaster
Procedia PDF Downloads 1438304 Assessing the Impact of Quinoa Cultivation Adopted to Produce a Secure Food Crop and Poverty Reduction by Farmers in Rural Pakistan
Authors: Ejaz Ashraf, Raheel Babar, Muhammad Yaseen, Hafiz Khurram Shurjeel, Nosheen Fatima
Abstract:
Main purpose of this study was to assess adoption level of farmers for quinoa cultivation after they had been taught through training and visit extension approach. At this time of the 21st century, population structure, climate change, food requirements and eating habits of people are changing rapidly. In this scenario, farmers must play their key role in sustainable crop development and production through adoption of new crops that may also be helpful to overcome the issue of food insecurity as well as reducing poverty in rural areas. Its cultivation in Pakistan is at the early stages and there is a need to raise awareness among farmers to grow quinoa crops. In the middle of the 2015, a training and visit extension approach was used to raise awareness and convince farmers to grow quinoa in the area. During training and visit extension program, 80 farmers were randomly selected for the training of quinoa cultivation. Later on, these farmers trained 60 more farmers living into their neighborhood. After six months, a survey was conducted with all 140 farmers to assess the impact of the training and visit program on adoption level of respondents for the quinoa crop. The survey instrument was developed with the help of literature review and other experts of the crop. Validity and reliability of the instrument were checked before complete data collection. The data were analyzed by using SPSS. Multiple regression analysis was used for interpretation of the results from the survey, which indicated that factors like information/ training, change in agronomic and plant protection practices play a key role in the adoption of quinoa cultivation by respondents. In addition, the model explains more than 50% of variation in the adoption level of respondents. It is concluded that farmers need timely information for improved knowledge of agronomic and plant protection practices to adopt cultivation of the quinoa crop in the area.Keywords: farmers, quinoa, adoption, contact, training and visit
Procedia PDF Downloads 3558303 Optimizing Data Integration and Management Strategies for Upstream Oil and Gas Operations
Authors: Deepak Singh, Rail Kuliev
Abstract:
The abstract highlights the critical importance of optimizing data integration and management strategies in the upstream oil and gas industry. With its complex and dynamic nature generating vast volumes of data, efficient data integration and management are essential for informed decision-making, cost reduction, and maximizing operational performance. Challenges such as data silos, heterogeneity, real-time data management, and data quality issues are addressed, prompting the proposal of several strategies. These strategies include implementing a centralized data repository, adopting industry-wide data standards, employing master data management (MDM), utilizing real-time data integration technologies, and ensuring data quality assurance. Training and developing the workforce, “reskilling and upskilling” the employees and establishing robust Data Management training programs play an essential role and integral part in this strategy. The article also emphasizes the significance of data governance and best practices, as well as the role of technological advancements such as big data analytics, cloud computing, Internet of Things (IoT), and artificial intelligence (AI) and machine learning (ML). To illustrate the practicality of these strategies, real-world case studies are presented, showcasing successful implementations that improve operational efficiency and decision-making. In present study, by embracing the proposed optimization strategies, leveraging technological advancements, and adhering to best practices, upstream oil and gas companies can harness the full potential of data-driven decision-making, ultimately achieving increased profitability and a competitive edge in the ever-evolving industry.Keywords: master data management, IoT, AI&ML, cloud Computing, data optimization
Procedia PDF Downloads 68