Search results for: line ampacity prediction
3640 Machine Learning Techniques in Seismic Risk Assessment of Structures
Authors: Farid Khosravikia, Patricia Clayton
Abstract:
The main objective of this work is to evaluate the advantages and disadvantages of various machine learning techniques in two key steps of seismic hazard and risk assessment of different types of structures. The first step is the development of ground-motion models, which are used for forecasting ground-motion intensity measures (IM) given source characteristics, source-to-site distance, and local site condition for future events. IMs such as peak ground acceleration and velocity (PGA and PGV, respectively) as well as 5% damped elastic pseudospectral accelerations at different periods (PSA), are indicators of the strength of shaking at the ground surface. Typically, linear regression-based models, with pre-defined equations and coefficients, are used in ground motion prediction. However, due to the restrictions of the linear regression methods, such models may not capture more complex nonlinear behaviors that exist in the data. Thus, this study comparatively investigates potential benefits from employing other machine learning techniques as statistical method in ground motion prediction such as Artificial Neural Network, Random Forest, and Support Vector Machine. The results indicate the algorithms satisfy some physically sound characteristics such as magnitude scaling distance dependency without requiring pre-defined equations or coefficients. Moreover, it is shown that, when sufficient data is available, all the alternative algorithms tend to provide more accurate estimates compared to the conventional linear regression-based method, and particularly, Random Forest outperforms the other algorithms. However, the conventional method is a better tool when limited data is available. Second, it is investigated how machine learning techniques could be beneficial for developing probabilistic seismic demand models (PSDMs), which provide the relationship between the structural demand responses (e.g., component deformations, accelerations, internal forces, etc.) and the ground motion IMs. In the risk framework, such models are used to develop fragility curves estimating exceeding probability of damage for pre-defined limit states, and therefore, control the reliability of the predictions in the risk assessment. In this study, machine learning algorithms like artificial neural network, random forest, and support vector machine are adopted and trained on the demand parameters to derive PSDMs for them. It is observed that such models can provide more accurate estimates of prediction in relatively shorter about of time compared to conventional methods. Moreover, they can be used for sensitivity analysis of fragility curves with respect to many modeling parameters without necessarily requiring more intense numerical response-history analysis.Keywords: artificial neural network, machine learning, random forest, seismic risk analysis, seismic hazard analysis, support vector machine
Procedia PDF Downloads 1033639 The Implementation of Level of Service for Development of Kuala Lumpur Transit Information System using GIS
Authors: Mokhtar Azizi
Abstract:
Due to heavy traffic and congested roads, it is crucial that the most popular main public transport services in Kuala Lumpur i.e. Putra LRT, Star LRT, KTM Commuter, KL Monorail and Rapid Bus must be continuously monitored and improved to fulfill the rider’s requirement and kept updated by the transit agencies. Evaluation on the current status of the services has been determined out by calculating the transit supportive area (TSA) and level of service (LOS) for each transit station. This research study has carried out the TSA and LOS mapping based on GIS techniques. The detailed census data of the region along the line of services has been collected from the Department of Statistics Malaysia for this purpose. The service coverage has been decided by 400 meters buffer zone for bus stations and 800 meters for rails station and railways in measurement the Quality of Service along the line of services. All the required information has been calculated by using the customized GIS software called Kuala Lumpur Transit Information System (KLTIS). The transit supportive area was calculated with the employment density at least 10 job/hectare or household density at 7.5 unit/hectare and total area covered by transit supportive area is 22516 hectare and the total area that is not supported by transit is 1718 hectare in Kuala Lumpur. The level of service is calculated with the percentage of transit supportive area served by transit for each station. In overall the percentage transit supportive areas served by transit for all the stations were less than 50% which falls in a very low level of service category. This research has proven its benefit by providing the current transit services operators with vital information for improvement of existing public transport services.Keywords: service coverage, transit supportive area, level of service, transit system
Procedia PDF Downloads 3763638 A Computational Approach for the Prediction of Relevant Olfactory Receptors in Insects
Authors: Zaide Montes Ortiz, Jorge Alberto Molina, Alejandro Reyes
Abstract:
Insects are extremely successful organisms. A sophisticated olfactory system is in part responsible for their survival and reproduction. The detection of volatile organic compounds can positively or negatively affect many behaviors in insects. Compounds such as carbon dioxide (CO2), ammonium, indol, and lactic acid are essential for many species of mosquitoes like Anopheles gambiae in order to locate vertebrate hosts. For instance, in A. gambiae, the olfactory receptor AgOR2 is strongly activated by indol, which accounts for almost 30% of human sweat. On the other hand, in some insects of agricultural importance, the detection and identification of pheromone receptors (PRs) in lepidopteran species has become a promising field for integrated pest management. For example, with the disruption of the pheromone receptor, BmOR1, mediated by transcription activator-like effector nucleases (TALENs), the sensitivity to bombykol was completely removed affecting the pheromone-source searching behavior in male moths. Then, the detection and identification of olfactory receptors in the genomes of insects is fundamental to improve our understanding of the ecological interactions, and to provide alternatives in the integrated pests and vectors management. Hence, the objective of this study is to propose a bioinformatic workflow to enhance the detection and identification of potential olfactory receptors in genomes of relevant insects. Applying Hidden Markov models (Hmms) and different computational tools, potential candidates for pheromone receptors in Tuta absoluta were obtained, as well as potential carbon dioxide receptors in Rhodnius prolixus, the main vector of Chagas disease. This study showed the validity of a bioinformatic workflow with a potential to improve the identification of certain olfactory receptors in different orders of insects.Keywords: bioinformatic workflow, insects, olfactory receptors, protein prediction
Procedia PDF Downloads 1483637 Prevalence and Genetic Determinant of Drug Resistant Tuberculosis among Patients Completing Intensive Phase of Treatment in a Tertiary Referral Center in Nigeria
Authors: Aminu Bashir Mohammad, Agwu Ezera, Abdulrazaq G. Habib, Garba Iliyasu
Abstract:
Background: Drug resistance tuberculosis (DR-TB) continues to be a challenge in developing countries with poor resources. Routine screening for primary DR-TB before commencing treatment is not done in public hospitals in Nigeria, even with the large body of evidence that shows a high prevalence of primary DR-TB. Data on drug resistance and its genetic determinant among follow up TB patients is lacking in Nigeria. Hence the aim of this study was to determine the prevalence and genetic determinant of drug resistance among follow up TB patients in a tertiary hospital in Nigeria. Methods: This was a cross-sectional laboratory-based study conducted on 384 sputum samples collected from consented follow-up tuberculosis patients. Standard microbiology methods (Zeil-Nielsen staining and microscopy) and PCR (Line Probe Assay)] were used to analyze the samples collected. Person’s Chi-square was used to analyze the data generated. Results: Out of three hundred and eighty-four (384) sputum samples analyzed for mycobacterium tuberculosis (MTB) and DR-TB twenty-five 25 (6.5%) were found to be AFB positive. These samples were subjected to PCR (Line Probe Assay) out of which 18(72%) tested positive for DR-TB. Mutations conferring resistance to rifampicin (rpo B) and isoniazid (katG, and or inhA) were detected in 12/18(66.7%) and 6/18(33.3%), respectively. Transmission dynamic of DR-TB was not significantly (p>0.05) dependent on demographic characteristics. Conclusion: There is a need to strengthened the laboratory capacity for diagnosis of TB and drug resistance testing and make these services available, affordable, and accessible to the patients who need them.Keywords: drug resistance tuberculosis, genetic determinant, intensive phase, Nigeria
Procedia PDF Downloads 2843636 Effects of Foreign-language Learning on Bilinguals' Production in Both Their Languages
Authors: Natalia Kartushina
Abstract:
Foreign (second) language (L2) learning is highly promoted in modern society. Students are encouraged to study abroad (SA) to achieve the most effective learning outcomes. However, L2 learning has side effects for native language (L1) production, as L1 sounds might show a drift from the L1 norms towards those of the L2, and this, even after a short period of L2 learning. L1 assimilatory drift has been attributed to a strong perceptual association between similar L1 and L2 sounds in the mind of L2 leaners; thus, a change in the production of an L2 target leads to the change in the production of the related L1 sound. However, nowadays, it is quite common that speakers acquire two languages from birth, as, for example, it is the case for many bilingual communities (e.g., Basque and Spanish in the Basque Country). Yet, it remains to be established how FL learning affects native production in individuals who have two native languages, i.e., in simultaneous or very early bilinguals. Does FL learning (here a third language, L3) affect bilinguals’ both languages or only one? What factors determine which of the bilinguals’ languages is more susceptible to change? The current study examines the effects of L3 (English) learning on the production of vowels in the two native languages of simultaneous Spanish-Basque bilingual adolescents enrolled into the Erasmus SA English program. Ten bilingual speakers read five Spanish and Basque consonant-vowel-consonant-vowel words two months before their SA and the next day after their arrival back to Spain. Each word contained the target vowel in the stressed syllable and was repeated five times. Acoustic analyses measuring vowel openness (F1) and backness (F2) were performed. Two possible outcomes were considered. First, we predicted that L3 learning would affect the production of only one language and this would be the language that would be used the most in contact with English during the SA period. This prediction stems from the results of recent studies showing that early bilinguals have separate phonological systems for each of their languages; and that late FL learner (as it is the case of our participants), who tend to use their L1 in language-mixing contexts, have more L2-accented L1 speech. The second possibility stated that L3 learning would affect both of the bilinguals’ languages in line with the studies showing that bilinguals’ L1 and L2 phonologies interact and constantly co-influence each other. The results revealed that speakers who used both languages equally often (balanced users) showed an F1 drift in both languages toward the F1 of the English vowel space. Unbalanced speakers, however, showed a drift only in the less used language. The results are discussed in light of recent studies suggesting that the amount of language use is a strong predictor of the authenticity in speech production with less language use leading to more foreign-accented speech and, eventually, to language attrition.Keywords: language-contact, multilingualism, phonetic drift, bilinguals' production
Procedia PDF Downloads 1073635 Modified Weibull Approach for Bridge Deterioration Modelling
Authors: Niroshan K. Walgama Wellalage, Tieling Zhang, Richard Dwight
Abstract:
State-based Markov deterioration models (SMDM) sometimes fail to find accurate transition probability matrix (TPM) values, and hence lead to invalid future condition prediction or incorrect average deterioration rates mainly due to drawbacks of existing nonlinear optimization-based algorithms and/or subjective function types used for regression analysis. Furthermore, a set of separate functions for each condition state with age cannot be directly derived by using Markov model for a given bridge element group, which however is of interest to industrial partners. This paper presents a new approach for generating Homogeneous SMDM model output, namely, the Modified Weibull approach, which consists of a set of appropriate functions to describe the percentage condition prediction of bridge elements in each state. These functions are combined with Bayesian approach and Metropolis Hasting Algorithm (MHA) based Markov Chain Monte Carlo (MCMC) simulation technique for quantifying the uncertainty in model parameter estimates. In this study, factors contributing to rail bridge deterioration were identified. The inspection data for 1,000 Australian railway bridges over 15 years were reviewed and filtered accordingly based on the real operational experience. Network level deterioration model for a typical bridge element group was developed using the proposed Modified Weibull approach. The condition state predictions obtained from this method were validated using statistical hypothesis tests with a test data set. Results show that the proposed model is able to not only predict the conditions in network-level accurately but also capture the model uncertainties with given confidence interval.Keywords: bridge deterioration modelling, modified weibull approach, MCMC, metropolis-hasting algorithm, bayesian approach, Markov deterioration models
Procedia PDF Downloads 7263634 Design of a Standard Weather Data Acquisition Device for the Federal University of Technology, Akure Nigeria
Authors: Isaac Kayode Ogunlade
Abstract:
Data acquisition (DAQ) is the process by which physical phenomena from the real world are transformed into an electrical signal(s) that are measured and converted into a digital format for processing, analysis, and storage by a computer. The DAQ is designed using PIC18F4550 microcontroller, communicating with Personal Computer (PC) through USB (Universal Serial Bus). The research deployed initial knowledge of data acquisition system and embedded system to develop a weather data acquisition device using LM35 sensor to measure weather parameters and the use of Artificial Intelligence(Artificial Neural Network - ANN)and statistical approach(Autoregressive Integrated Moving Average – ARIMA) to predict precipitation (rainfall). The device is placed by a standard device in the Department of Meteorology, Federal University of Technology, Akure (FUTA) to know the performance evaluation of the device. Both devices (standard and designed) were subjected to 180 days with the same atmospheric condition for data mining (temperature, relative humidity, and pressure). The acquired data is trained in MATLAB R2012b environment using ANN, and ARIMAto predict precipitation (rainfall). Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Correction Square (R2), and Mean Percentage Error (MPE) was deplored as standardize evaluation to know the performance of the models in the prediction of precipitation. The results from the working of the developed device show that the device has an efficiency of 96% and is also compatible with Personal Computer (PC) and laptops. The simulation result for acquired data shows that ANN models precipitation (rainfall) prediction for two months (May and June 2017) revealed a disparity error of 1.59%; while ARIMA is 2.63%, respectively. The device will be useful in research, practical laboratories, and industrial environments.Keywords: data acquisition system, design device, weather development, predict precipitation and (FUTA) standard device
Procedia PDF Downloads 883633 A Novel Epitope Prediction for Vaccine Designing against Ebola Viral Envelope Proteins
Authors: Manju Kanu, Subrata Sinha, Surabhi Johari
Abstract:
Viral proteins of Ebola viruses belong to one of the best studied viruses; however no effective prevention against EBOV has been developed. Epitope-based vaccines provide a new strategy for prophylactic and therapeutic application of pathogen-specific immunity. A critical requirement of this strategy is the identification and selection of T-cell epitopes that act as vaccine targets. This study describes current methodologies for the selection process, with Ebola virus as a model system. Hence great challenge in the field of ebola virus research is to design universal vaccine. A combination of publicly available bioinformatics algorithms and computational tools are used to screen and select antigen sequences as potential T-cell epitopes of supertypes Human Leukocyte Antigen (HLA) alleles. MUSCLE and MOTIF tools were used to find out most conserved peptide sequences of viral proteins. Immunoinformatics tools were used for prediction of immunogenic peptides of viral proteins in zaire strains of Ebola virus. Putative epitopes for viral proteins (VP) were predicted from conserved peptide sequences of VP. Three tools NetCTL 1.2, BIMAS and Syfpeithi were used to predict the Class I putative epitopes while three tools, ProPred, IEDB-SMM-align and NetMHCII 2.2 were used to predict the Class II putative epitopes. B cell epitopes were predicted by BCPREDS 1.0. Immunogenic peptides were identified and selected manually by putative epitopes predicted from online tools individually for both MHC classes. Finally sequences of predicted peptides for both MHC classes were looked for common region which was selected as common immunogenic peptide. The immunogenic peptides were found for viral proteins of Ebola virus: epitopes FLESGAVKY, SSLAKHGEY. These predicted peptides could be promising candidates to be used as target for vaccine design.Keywords: epitope, b cell, immunogenicity, ebola
Procedia PDF Downloads 3123632 Thermo-Mechanical Analysis of Composite Structures Utilizing a Beam Finite Element Based on Global-Local Superposition
Authors: Andre S. de Lima, Alfredo R. de Faria, Jose J. R. Faria
Abstract:
Accurate prediction of thermal stresses is particularly important for laminated composite structures, as large temperature changes may occur during fabrication and field application. The normal transverse deformation plays an important role in the prediction of such stresses, especially for problems involving thick laminated plates subjected to uniform temperature loads. Bearing this in mind, the present study aims to investigate the thermo-mechanical behavior of laminated composite structures using a new beam element based on global-local superposition, accounting for through-the-thickness effects. The element formulation is based on a global-local superposition in the thickness direction, utilizing a cubic global displacement field in combination with a linear layerwise local displacement distribution, which assures zig-zag behavior of the stresses and displacements. By enforcing interlaminar stress (normal and shear) and displacement continuity, as well as free conditions at the upper and lower surfaces, the number of degrees of freedom in the model is maintained independently of the number of layers. Moreover, the proposed formulation allows for the determination of transverse shear and normal stresses directly from the constitutive equations, without the need of post-processing. Numerical results obtained with the beam element were compared to analytical solutions, as well as results obtained with commercial finite elements, rendering satisfactory results for a range of length-to-thickness ratios. The results confirm the need for an element with through-the-thickness capabilities and indicate that the present formulation is a promising alternative to such analysis.Keywords: composite beam element, global-local superposition, laminated composite structures, thermal stresses
Procedia PDF Downloads 1533631 Practical Modelling of RC Structural Walls under Monotonic and Cyclic Loading
Authors: Reza E. Sedgh, Rajesh P. Dhakal
Abstract:
Shear walls have been used extensively as the main lateral force resisting systems in multi-storey buildings. The recent development in performance based design urges practicing engineers to conduct nonlinear static or dynamic analysis to evaluate seismic performance of multi-storey shear wall buildings by employing distinct analytical models suggested in the literature. For practical purpose, application of macroscopic models to simulate the global and local nonlinear behavior of structural walls outweighs the microscopic models. The skill level, computational time and limited access to RC specialized finite element packages prevents the general application of this method in performance based design or assessment of multi-storey shear wall buildings in design offices. Hence, this paper organized to verify capability of nonlinear shell element in commercially available package (Sap2000) in simulating results of some specimens under monotonic and cyclic loads with very oversimplified available cyclic material laws in the analytical tool. The selection of constitutive models, the determination of related parameters of the constituent material and appropriate nonlinear shear model are presented in detail. Adoption of proposed simple model demonstrated that the predicted results follow the overall trend of experimental force-displacement curve. Although, prediction of ultimate strength and the overall shape of hysteresis model agreed to some extent with experiment, the ultimate displacement(significant strength degradation point) prediction remains challenging in some cases.Keywords: analytical model, nonlinear shell element, structural wall, shear behavior
Procedia PDF Downloads 4043630 Trauma Scores and Outcome Prediction After Chest Trauma
Authors: Mohamed Abo El Nasr, Mohamed Shoeib, Abdelhamid Abdelkhalik, Amro Serag
Abstract:
Background: Early assessment of severity of chest trauma, either blunt or penetrating is of critical importance in prediction of patient outcome. Different trauma scoring systems are widely available and are based on anatomical or physiological parameters to expect patient morbidity or mortality. Up till now, there is no ideal, universally accepted trauma score that could be applied in all trauma centers and is suitable for assessment of severity of chest trauma patients. Aim: Our aim was to compare various trauma scoring systems regarding their predictability of morbidity and mortality in chest trauma patients. Patients and Methods: This study was a prospective study including 400 patients with chest trauma who were managed at Tanta University Emergency Hospital, Egypt during a period of 2 years (March 2014 until March 2016). The patients were divided into 2 groups according to the mode of trauma: blunt or penetrating. The collected data included age, sex, hemodynamic status on admission, intrathoracic injuries, and associated extra-thoracic injuries. The patients outcome including mortality, need of thoracotomy, need for ICU admission, need for mechanical ventilation, length of hospital stay and the development of acute respiratory distress syndrome were also recorded. The relevant data were used to calculate the following trauma scores: 1. Anatomical scores including abbreviated injury scale (AIS), Injury severity score (ISS), New injury severity score (NISS) and Chest wall injury scale (CWIS). 2. Physiological scores including revised trauma score (RTS), Acute physiology and chronic health evaluation II (APACHE II) score. 3. Combined score including Trauma and injury severity score (TRISS ) and 4. Chest-Specific score Thoracic trauma severity score (TTSS). All these scores were analyzed statistically to detect their sensitivity, specificity and compared regarding their predictive power of mortality and morbidity in blunt and penetrating chest trauma patients. Results: The incidence of mortality was 3.75% (15/400). Eleven patients (11/230) died in blunt chest trauma group, while (4/170) patients died in penetrating trauma group. The mortality rate increased more than three folds to reach 13% (13/100) in patients with severe chest trauma (ISS of >16). The physiological scores APACHE II and RTS had the highest predictive value for mortality in both blunt and penetrating chest injuries. The physiological score APACHE II followed by the combined score TRISS were more predictive for intensive care admission in penetrating injuries while RTS was more predictive in blunt trauma. Also, RTS had a higher predictive value for expectation of need for mechanical ventilation followed by the combined score TRISS. APACHE II score was more predictive for the need of thoracotomy in penetrating injuries and the Chest-Specific score TTSS was higher in blunt injuries. The anatomical score ISS and TTSS score were more predictive for prolonged hospital stay in penetrating and blunt injuries respectively. Conclusion: Trauma scores including physiological parameters have a higher predictive power for mortality in both blunt and penetrating chest trauma. They are more suitable for assessment of injury severity and prediction of patients outcome.Keywords: chest trauma, trauma scores, blunt injuries, penetrating injuries
Procedia PDF Downloads 4203629 Poverty Eradication Program in Malaysia
Authors: Ibrahim Mamat, Wan Mohd Zaifurin Wan Nawang
Abstract:
Malaysia's poverty eradication program is a long-term plan that was initially implemented by the government after the riots of the races on May 13, 1969. The incident broke out due to the huge economic gap between the majority of Malaysians,Malays and non-Malays minorities. As a result of the event, the government drafted the New Economic Policy(NEP) in 1970 to reduce the differences in economic status among races in Malaysia. At the end of this policy period (NEP) in 1990, the incidence of poverty in Malaysia was around 6.5 per cent. The incidence of poverty in Malaysia continued to decline to 0.6 per cent (2014) through some other policy after the NEP. The decline in poverty has been the result of the government's efforts to implement the New Economic Policy (1970-1990), National Development Policy (1991-2000), NationalVision Policy (2001-2010), and National Transformation Policy (2011-2020).This article also explains the meaning, concepts and measurements of poverty in order to identify the Poverty Level and measure the Poverty Index using various dimensions. This explanation is very important for a country like Malaysia who has some people living below the poverty line. In such a context, an effective poverty eradication policy can benefit the poor.Consequently, this article examines the continuing involvement of the government and non-governmental organizations through the empowerment program of the hardcore poor to change their lifestyle and culture as well as the vicious circle of poverty is indispensable to ensure that poverty eradication programs are in line with current economic and social changes. In addition, the involvement of non-governmental organizations and the State Islamic Religious Council to provide assistance to the poor is appropriate as the institution has its own distinctive interpretation of poverty to determine the type of assistance, criteria and so on to enable the rights of the poor to be ensured and protected.Keywords: economic policy, poor, poverty eradication, poverty program
Procedia PDF Downloads 2263628 The Development of a Nanofiber Membrane for Outdoor and Activity Related Purposes
Authors: Roman Knizek, Denisa Knizkova
Abstract:
This paper describes the development of a nanofiber membrane for sport and outdoor use at the Technical University of Liberec (TUL) and the following cooperation with a private Czech company which launched this product onto the market. For making this membrane, Polyurethan was electrospun on the Nanospider spinning machine, and a wire string electrode was used. The created nanofiber membrane with a nanofiber diameter of 150 nm was subsequently hydrophobisied using a low vacuum plasma and Fluorocarbon monomer C6 type. After this hydrophobic treatment, the nanofiber membrane contact angle was higher than 125o, and its oleophobicity was 6. The last step was a lamination of this nanofiber membrane with a woven or knitted fabric to create a 3-layer laminate. Gravure printing technology and polyurethane hot-melt adhesive were used. The gravure roller has a mesh of 17. The resulting 3-layer laminate has a water vapor permeability Ret of 1.6 [Pa.m2.W-1] (– measured in compliance with ISO 11092), it is 100% windproof (– measured in compliance with ISO 9237), and the water column is above 10 000 mm (– measured in compliance with ISO 20811). This nanofiber membrane which was developed in the laboratories of the Technical University of Liberec was then produced industrially by a private company. A low vacuum plasma line and a lamination line were needed for industrial production, and the process had to be fine-tuned to achieve the same parameters as those achieved in the TUL laboratories. The result of this work is a newly developed nanofiber membrane which offers much better properties, especially water vapor permeability, than other competitive membranes. It is an example of product development and the consequent fine-tuning for industrial production; it is also an example of the cooperation between a Czech state university and a private company.Keywords: nanofiber membrane, start-up, state university, private company, product
Procedia PDF Downloads 1393627 Forecast Financial Bubbles: Multidimensional Phenomenon
Authors: Zouari Ezzeddine, Ghraieb Ikram
Abstract:
From the results of the academic literature which evokes the limitations of previous studies, this article shows the reasons for multidimensionality Prediction of financial bubbles. A new framework for modeling study predicting financial bubbles by linking a set of variable presented on several dimensions dictating its multidimensional character. It takes into account the preferences of financial actors. A multicriteria anticipation of the appearance of bubbles in international financial markets helps to fight against a possible crisis.Keywords: classical measures, predictions, financial bubbles, multidimensional, artificial neural networks
Procedia PDF Downloads 5763626 Insect Cell-Based Models: Asutralian Sheep bBlowfly Lucilia Cuprina Embryo Primary Cell line Establishment and Transfection
Authors: Yunjia Yang, Peng Li, Gordon Xu, Timothy Mahony, Bing Zhang, Neena Mitter, Karishma Mody
Abstract:
Sheep flystrike is one of the most economically important diseases affecting the Australian sheep and wool industry (>356M/annually). Currently, control of Lucillia cuprina relies almost exclusively on chemicals controls, and the parasite has developed resistance to nearly all control chemicals used in the past. It is, therefore, critical to develop an alternative solution for the sustainable control and management of flystrike. RNA interference (RNAi) technologies have been successfully explored in multiple animal industries for developing parasites controls. This research project aims to develop a RNAi based biological control for sheep blowfly. Double-stranded RNA (dsRNA) has already proven successful against viruses, fungi, and insects. However, the environmental instability of dsRNA is a major bottleneck for successful RNAi. Bentonite polymer (BenPol) technology can overcome this problem, as it can be tuned for the controlled release of dsRNA in the gut challenging pH environment of the blowfly larvae, prolonging its exposure time to and uptake by target cells. To investigate the potential of BenPol technology for dsRNA delivery, four different BenPol carriers were tested for their dsRNA loading capabilities, and three of them were found to be capable of affording dsRNA stability under multiple temperatures (4°C, 22°C, 40°C, 55°C) in sheep serum. Based on stability results, dsRNA from potential targeted genes was loaded onto BenPol carriers and tested in larvae feeding assays, three genes resulting in knockdowns. Meanwhile, a primary blowfly embryo cell line (BFEC) derived from L. cuprina embryos was successfully established, aim for an effective insect cell model for testing RNAi efficacy for preliminary assessments and screening. The results of this study establish that the dsRNA is stable when loaded on BenPol particles, unlike naked dsRNA rapidly degraded in sheep serum. The stable nanoparticle delivery system offered by BenPol technology can protect and increase the inherent stability of dsRNA molecules at higher temperatures in a complex biological fluid like serum, providing promise for its future use in enhancing animal protection.Keywords: lucilia cuprina, primary cell line establishment, RNA interference, insect cell transfection
Procedia PDF Downloads 723625 Fibrin Glue Reinforcement of Choledochotomy Closure Suture Line for Prevention of Bile Leak in Patients Undergoing Laparoscopic Common Bile Duct Exploration with Primary Closure: A Pilot Study
Authors: Rahul Jain, Jagdish Chander, Anish Gupta
Abstract:
Introduction: Laparoscopic common bile duct exploration (LCBDE) allows cholecystectomy and the removal of common bile duct (CBD) stones to be performed during the same sitting, thereby decreasing hospital stay. CBD exploration through choledochotomy can be closed primarily with an absorbable suture material, but can lead to biliary leakage postoperatively. In this study we tried to find a solution to further lower the incidence of bile leakage by using fibrin glue to reinforce the sutures put on choledochotomy suture line. It has haemostatic and sealing action, through strengthening the last step of the physiological coagulation and biostimulation, which favours the formation of new tissue matrix. Methodology: This study was conducted at a tertiary care teaching hospital in New Delhi, India, from 2011 to 2013. 20 patients with CBD stones documented on MRCP with CBD diameter of 9 mm or more were included in this study. Patients were randomized into two groups namely Group A in which choledochotomy was closed with polyglactin 4-0 suture and suture line reinforced with fibrin glue, and Group ‘B’ in which choledochotomy was closed with polyglactin 4-0 suture alone. Both the groups were evaluated and compared on clinical parameters such as operative time, drain content, drain output, no. of days drain was required, blood loss & transfusion requirements, length of postoperative hospital stay and conversion to open surgery. Results: The operative time for Group A ranged from 60 to 210 min (mean 131.50 min) and Group B 65 to 300 min (mean 140 minutes). The blood loss in group A ranged from 10 to 120 ml (mean 51.50 ml), in group B it ranged from 10 to 200 ml (mean 53.50 ml). In Group A, there was no case of bile leak but there was bile leak in 2 cases in Group B, minimum 0 and maximum 900 ml with a mean of 97 ml and p value of 0.147 with no statistically significant difference in bile leak in test and control groups. The minimum and maximum serous drainage in Group A was nil & 80 ml (mean 11 ml) and in Group B was nil & 270 ml (mean 72.50 ml). The p value came as 0.028 which is statistically significant. Thus serous leakage in Group A was significantly less than in Group B. The drains in Group A were removed from 2 to 4 days (mean: 3 days) while in Group B from 2 to 9 days (mean: 3.9 days). The patients in Group A stayed in hospital post operatively from 3 to 8 days (mean: 5.30) while in Group B it ranged from 3 to 10 days with a mean of 5 days. Conclusion: Fibrin glue application on CBD decreases bile leakage but in statistically insignificant manner. Fibrin glue application on CBD can significantly decrease post operative serous drainage after LCBDE. Fibrin glue application on CBD is safe and easy technique without any significant adverse effects and can help less experienced surgeons performing LCBDE.Keywords: bile leak, fibrin glue, LCBDE, serous leak
Procedia PDF Downloads 2143624 Topical Nonsteroidal Anti-Inflammatory Eye Drops and Oral Acetazolamide for Macular Edema after Uncomplicated Phacoemulsification: Outcome and Predictors of Non-Response
Authors: Wissam Aljundi, Loay Daas, Yaser Abu Dail, Barbara Käsmann-Kellner, Berthold Seitz, Alaa Din Abdin
Abstract:
Purpose: To investigate the effectiveness of nonsteroidal anti-inflammatory eye drops (NSAIDs) combined with oral acetazolamide for postoperative macular edema (PME) after uncomplicated phacoemulsification (PE) and to identify predictors of non-response. Methods: We analyzed data of uncomplicated PE and identified eyes with PME. First-line therapy included topical NSAIDs combined with oral acetazolamide. In case of non-response, triamcinolone was administered subtenonally. Outcome measures included best-corrected visual acuity (BCVA) and central macular thickness (CMT). Results: 94 eyes out of 9750 uncomplicated PE developed PME, of which 60 eyes were included. Follow-ups occurred 6.4±1.8, 12.5±3.7, and 18.6±6.0 weeks after diagnosis. BCVA and CMT improved significantly in all follow-ups. 40 eyes showed response to first-line therapy at first follow-up (G1). The remaining 20 eyes showed no response and required subtenon triamcinolone (G2), of which 11 eyes showed complete regression at the second follow-up and 4 eyes at the third follow-up. 5 eyes showed no response and required intravitreal injection. Multivariate linear regression model showed that diabetes mellitus (DM) and increased cumulative dissipated energy (CDE) are predictors of non-response. Conclusion: Topical NSAIDs with acetazolamide resulted in complete regression of PME in 67% of all cases. DM and increased CDE might be considered as predictors of nonresponse to this treatment.Keywords: postoperative macular edema, intravitreal injection, cumulative energy, irvine gass syndrome, pseudophakie
Procedia PDF Downloads 1173623 Comparison between Two Software Packages GSTARS4 and HEC-6 about Prediction of the Sedimentation Amount in Dam Reservoirs and to Estimate Its Efficient Life Time in the South of Iran
Authors: Fatemeh Faramarzi, Hosein Mahjoob
Abstract:
Building dams on rivers for utilization of water resources causes problems in hydrodynamic equilibrium and results in leaving all or part of the sediments carried by water in dam reservoir. This phenomenon has also significant impacts on water and sediment flow regime and in the long term can cause morphological changes in the environment surrounding the river, reducing the useful life of the reservoir which threatens sustainable development through inefficient management of water resources. In the past, empirical methods were used to predict the sedimentation amount in dam reservoirs and to estimate its efficient lifetime. But recently the mathematical and computational models are widely used in sedimentation studies in dam reservoirs as a suitable tool. These models usually solve the equations using finite element method. This study compares the results from tow software packages, GSTARS4 & HEC-6, in the prediction of the sedimentation amount in Dez dam, southern Iran. The model provides a one-dimensional, steady-state simulation of sediment deposition and erosion by solving the equations of momentum, flow and sediment continuity and sediment transport. GSTARS4 (Generalized Sediment Transport Model for Alluvial River Simulation) which is based on a one-dimensional mathematical model that simulates bed changes in both longitudinal and transverse directions by using flow tubes in a quasi-two-dimensional scheme to calibrate a period of 47 years and forecast the next 47 years of sedimentation in Dez Dam, Southern Iran. This dam is among the highest dams all over the world (with its 203 m height), and irrigates more than 125000 square hectares of downstream lands and plays a major role in flood control in the region. The input data including geometry, hydraulic and sedimentary data, starts from 1955 to 2003 on a daily basis. To predict future river discharge, in this research, the time series data were assumed to be repeated after 47 years. Finally, the obtained result was very satisfactory in the delta region so that the output from GSTARS4 was almost identical to the hydrographic profile in 2003. In the Dez dam due to the long (65 km) and a large tank, the vertical currents are dominant causing the calculations by the above-mentioned method to be inaccurate. To solve this problem, we used the empirical reduction method to calculate the sedimentation in the downstream area which led to very good answers. Thus, we demonstrated that by combining these two methods a very suitable model for sedimentation in Dez dam for the study period can be obtained. The present study demonstrated successfully that the outputs of both methods are the same.Keywords: Dez Dam, prediction, sedimentation, water resources, computational models, finite element method, GSTARS4, HEC-6
Procedia PDF Downloads 3113622 Biomechanical Prediction of Veins and Soft Tissues beneath Compression Stockings Using Fluid-Solid Interaction Model
Authors: Chongyang Ye, Rong Liu
Abstract:
Elastic compression stockings (ECSs) have been widely applied in prophylaxis and treatment of chronic venous insufficiency of lower extremities. The medical function of ECS is to improve venous return and increase muscular pumping action to facilitate blood circulation, which is largely determined by the complex interaction between the ECS and lower limb tissues. Understanding the mechanical transmission of ECS along the skin surface, deeper tissues, and vascular system is essential to assess the effectiveness of the ECSs. In this study, a three-dimensional (3D) finite element (FE) model of the leg-ECS system integrated with a 3D fluid-solid interaction (FSI) model of the leg-vein system was constructed to analyze the biomechanical properties of veins and soft tissues under different ECS compression. The Magnetic Resonance Imaging (MRI) of the human leg was divided into three regions, including soft tissues, bones (tibia and fibula) and veins (peroneal vein, great saphenous vein, and small saphenous vein). The ECSs with pressure ranges from 15 to 26 mmHg (Classes I and II) were adopted in the developed FE-FSI model. The soft tissue was assumed as a Neo-Hookean hyperelastic model with the fixed bones, and the ECSs were regarded as an orthotropic elastic shell. The interfacial pressure and stress transmission were simulated by the FE model, and venous hemodynamics properties were simulated by the FSI model. The experimental validation indicated that the simulated interfacial pressure distributions were in accordance with the pressure measurement results. The developed model can be used to predict interfacial pressure, stress transmission, and venous hemodynamics exerted by ECSs and optimize the structure and materials properties of ECSs design, thus improving the efficiency of compression therapy.Keywords: elastic compression stockings, fluid-solid interaction, tissue and vein properties, prediction
Procedia PDF Downloads 1113621 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge
Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi
Abstract:
Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring
Procedia PDF Downloads 2073620 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques
Authors: Chandu Rathnayake, Isuri Anuradha
Abstract:
Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.Keywords: CNN, random forest, decision tree, machine learning, deep learning
Procedia PDF Downloads 723619 The Difference of Menstrual Cycle Profile and Urinary Luteinizing Hormone Changes In Polycystic Ovary Syndrome And Healthy Women
Authors: Ning Li, Jiacheng Zhang, Zheng Yang, Sylvia Kang
Abstract:
Introduction: Polycystic ovary syndrome (PCOS) is a common physiological symptom in women of reproductive age. Women with PCOS may have infrequent or prolonged menstrual periods and excess male hormone (androgen) levels. Mira analyzes the cycle profiles and the luteinizing hormone (LH) changes in urine, closely related to the fertility level of healthy women and PCOS women. From the difference between the two groups, Mira helps to understand the physiological state of PCOS women and their hormonal changes in the menstrual cycle. Methods: In this study, data from 1496 cycles and information from 342 women belonging to two groups (181 PCOS and 161 Healthy) were collected and analyzed. Women test their luteinizing hormone (LH) in urine daily with Mira fertility test wand and Mira analyzer, from the day after the menstruation to the starting day of the next menstruation. All the collected data meets Mira’s user agreement and users’ identification was removed. The cycle length, LH peak, and other cycle information of the PCOS group were compared with the Healthy group. Results: The average cycle length of PCOS women is 41 days and of the Healthy women is 33 days. 91.4% of cycle length is within 40 days for the Healthy group, while it decreases to 71.9% for the PCOS group. This means PCOS women have a longer menstrual cycle and more variation during the cycle. With more variation, the ovulation prediction becomes more difficult for the PCOS group. The deviation between the LH surge day and the predicted ovulation day, calculated by the starting day of the next menstruation minus 14 days, is greater in the PCOS group compared with the Healthy group. Also, 46.96% of PCOS women have an irregular cycle, and only 19.25% of healthy women show an irregular cycle. Conclusion: PCOS women have longer menstrual cycles and more variation during the menstrual cycles. The traditional ovulation prediction is not suitable for PCOS women.Keywords: menstrual cycle, PCOS, urinary luteinizing hormone, Mira
Procedia PDF Downloads 1763618 Knowledge and Utilization of Partograph among Obstetric Care Givers in Public Health Institutions of Addis Ababa, Ethiopia
Authors: Engida Yisma, Berhanu Dessalegn, Ayalew Astatkie, Nebreed Fesseha
Abstract:
Background: The use of the partograph is a well-known best practice for quality monitoring of labour and subsequent prevention of obstructed and prolonged labour. However, a number of cases of obstructed labour do happen in health facilities due to poor quality of intrapartum care. Methods: A cross-sectional quantitative study assessed knowledge and utilization of partograph among obstetric care givers in public health institutions of Addis Ababa, Ethiopia using a structured interviewer administered questionnaire. The collected data was analyzed using SPSS version 16.0. Logistic regression analysis was used to identify factors associated with knowledge and use of partograph among obstetric care givers. Results: Knowledge about the partograph was fair: 189 (96.6%) of all the respondents correctly mentioned at least one component of the partograph, 104 (53.3%) correctly explained the function of alert line and 161 (82.6%) correctly explained the function of action line. The study showed that 112 (57.3%) of the obstetric care givers at public health institutions reportedly utilized partograph to monitor mothers in labour. The utilization of the partograph was significantly higher among obstetric care givers working in health centres (67.9%) compared to those working in hospitals (34.4%) [Adjusted OR = 3.63(95%CI: 1.81, 7.28)]. Conclusions: A significant percentage of obstetric care givers had fair knowledge of the partograph and why it is necessary to use it in the management of labour and over half of obstetric care givers reported use of the partograph to monitor mothers in labour. Pre-service and on-job training of obstetric care givers on the use of the partograph should be given emphasis. Mandatory health facility policy is also recommended to ensure safety of women in labour in public health facilities in Addis Ababa, Ethiopia.Keywords: partograph, knowledge, utilization, obstetric care givers, public health institutions
Procedia PDF Downloads 5163617 Factors Associated with Overweight and Obesity among Recipients of Antiretroviral Therapy at HIV Clinics in Botswana
Authors: Jose G. Tshikuka, Goabaone Rankgoane-Pono, Mgaywa G. M. D. Magafu, Julius C. Mwita, Tiny Masupe, Fortunat M. Kandanda, Shimeles G. Hamda, Roy Tapera, Mooketsi Molefi, John T. Tlhakanelo
Abstract:
Background: Factors associated with overweight and obesity among antiretroviral therapy (ART) recipients have not been sufficiently studied in Botswana. We aimed to study (i) the prevalence and trends in overweight/obesity by duration of exposure to ART among recipients, (ii) changes in body mass index (BMI) categories among recipients before ART initiation (BMI-1) and after ART initiation (BMI-2), (iii) associations between ART and overweight/obesity and (iv) factors associated with BMI changes among ART recipients. Methods: A 12 years retrospective record-based review was conducted. Factors potentially associated with BMI change among patients after at least three years of ART exposure were examined using multiple regression model. Adjusted odds ratios (AOR) and their 95% confidence intervals (CIs) were computed. ART regimens, duration of exposure to ART, and recipients’ demographic and biomedical characteristics including the presence or absence of diabetes mellitus related comorbidities (DRC) were investigated as potential factors associated with overweight/obesity. Results: Twenty-nine percent of recipients were overweight, 16.6% had obesity of whom 2.4% were morbidly-obese at the last clinic visit. Overweight/obesity recipients were more likely to be female, to have DRC and less likely to have nadir CD4 count or CD4 count between 201 – 249 cells/mm³. Neither the first-line nor the second-, third-line ART regimens predicted overweight/obesity more than the other and neither did the duration of exposure to ART. No significant linear trends were observed in the prevalence of overweight/obesity by the duration of exposure to ART. Conclusions: These results indicate that overweight/obesity seen among ART recipients is not directly induced by ART. ART used CD4 and/or DRC pathway to induce overweight/obesity seen among recipients; suggesting that, weight gain documented herein is likely a reflection of improved health status that mirrors trends in the general population or a DRC related effect. Weight management programs may be important components of HIV care.Keywords: overweight/obesity, recipients of antiretroviral therapy, HIV/AIDS, Botswana
Procedia PDF Downloads 1573616 Lipid-Chitosan Hybrid Nanoparticles for Controlled Delivery of Cisplatin
Authors: Muhammad Muzamil Khan, Asadullah Madni, Nina Filipczek, Jiayi Pan, Nayab Tahir, Hassan Shah, Vladimir Torchilin
Abstract:
Lipid-polymer hybrid nanoparticles (LPHNP) are delivery systems for controlled drug delivery at tumor sites. The superior biocompatible properties of lipid and structural advantages of polymer can be obtained via this system for controlled drug delivery. In the present study, cisplatin-loaded lipid-chitosan hybrid nanoparticles were formulated by the single step ionic gelation method based on ionic interaction of positively charged chitosan and negatively charged lipid. Formulations with various chitosan to lipid ratio were investigated to obtain the optimal particle size, encapsulation efficiency, and controlled release pattern. Transmission electron microscope and dynamic light scattering analysis demonstrated a size range of 181-245 nm and a zeta potential range of 20-30 mV. Compatibility among the components and the stability of formulation were demonstrated with FTIR analysis and thermal studies, respectively. The therapeutic efficacy and cellular interaction of cisplatin-loaded LPHNP were investigated using in vitro cell-based assays in A2780/ADR ovarian carcinoma cell line. Additionally, the cisplatin loaded LPHNP exhibited a low toxicity profile in rats. The in-vivo pharmacokinetics study also proved a controlled delivery of cisplatin with enhanced mean residual time and half-life. Our studies suggested that the cisplatin-loaded LPHNP being a promising platform for controlled delivery of cisplatin in cancer therapy.Keywords: cisplatin, lipid-polymer hybrid nanoparticle, chitosan, in vitro cell line study
Procedia PDF Downloads 1283615 A Proposal for an Excessivist Social Welfare Ordering
Authors: V. De Sandi
Abstract:
In this paper, we characterize a class of rank-weighted social welfare orderings that we call ”Excessivist.” The Excessivist Social Welfare Ordering (eSWO) judges incomes above a fixed threshold θ as detrimental to society. To accomplish this, the identification of a richness or affluence line is necessary. We employ a fixed, exogenous line of excess. We define an eSWF in the form of a weighted sum of individual’s income. This requires introducing n+1 vectors of weights, one for all possible numbers of individuals below the threshold. To do this, the paper introduces a slight modification of the class of rank weighted class of social welfare function. Indeed, in our excessivist social welfare ordering, we allow the weights to be both positive (for individuals below the line) and negative (for individuals above). Then, we introduce ethical concerns through an axiomatic approach. The following axioms are required: continuity above and below the threshold (Ca, Cb), anonymity (A), absolute aversion to excessive richness (AER), pigou dalton positive weights preserving transfer (PDwpT), sign rank preserving full comparability (SwpFC) and strong pareto below the threshold (SPb). Ca, Cb requires that small changes in two income distributions above and below θ do not lead to changes in their ordering. AER suggests that if two distributions are identical in any respect but for one individual above the threshold, who is richer in the first, then the second should be preferred by society. This means that we do not care about the waste of resources above the threshold; the priority is the reduction of excessive income. According to PDwpT, a transfer from a better-off individual to a worse-off individual despite their relative position to the threshold, without reversing their ranks, leads to an improved distribution if the number of individuals below the threshold is the same after the transfer or the number of individuals below the threshold has increased. SPb holds only for individuals below the threshold. The weakening of strong pareto and our ethics need to be justified; we support them through the notion of comparative egalitarianism and income as a source of power. SwpFC is necessary to ensure that, following a positive affine transformation, an individual does not become excessively rich in only one distribution, thereby reversing the ordering of the distributions. Given the axioms above, we can characterize the class of the eSWO, getting the following result through a proof by contradiction and exhaustion: Theorem 1. A social welfare ordering satisfies the axioms of continuity above and below the threshold, anonymity, sign rank preserving full comparability, aversion to excessive richness, Pigou Dalton positive weight preserving transfer, and strong pareto below the threshold, if and only if it is an Excessivist-social welfare ordering. A discussion about the implementation of different threshold lines reviewing the primary contributions in this field follows. What the commonly implemented social welfare functions have been overlooking is the concern for extreme richness at the top. The characterization of Excessivist Social Welfare Ordering, given the axioms above, aims to fill this gap.Keywords: comparative egalitarianism, excess income, inequality aversion, social welfare ordering
Procedia PDF Downloads 613614 Toxicological Interactions of Silver Nanoparticles and Non-Essential Metals in Human Hepatocarcinoma Cell Line
Authors: Renata Rank Miranda, Arandi Ginane Bezerra, Ciro Alberto Oliveira Ribeiro, Marco AntôNio Ferreira Randi, Carmen Lúcia Voigt, Lilian Skytte, Kaare Lund Rasmussen, Francisco Filipak Neto, Frank Kjeldsen
Abstract:
Synergetic and antagonistic effects of drugs are well-known concerns in pharmacological assessments of dose and toxicity. Similar approach should be used in assessing cellular uptake and cytotoxicity of nanoparticles. Since nanoparticles are released into the aquatic environment they may interact with existing xenobiotics. Here we used biochemical assays and quantitative proteomics to assess the cytotoxicity of silver nanoparticles (AgNP) when human hepatoma HepG2 cells were co-exposed to 2 nm AgNP together with either Cd2+ or Hg2+ ions. Time-course experiments (2h, 4h, and 24h) were conducted to assess the first response to the exposure studies. The general trend was that a synergetic toxicological response was observed in cells exposed to both AgNP and Cd2+ or Hg2+, with AgNP and Cd2+ being more toxic. This was observed by a significant increase in the ROS and superoxide level of >35% in the case of AgNP+Cd2+ compared to the sum of responses of AgNP and Cd2+, individually. Metabolic activity and viability also dropped more for AgNP+Cd2+ (>10%) than for AgNP and Cd2+ combined. We used inductively coupled plasma mass spectrometry to investigate if AgNP facilitates larger influx of toxic metal ions into HepG2 cells. Only Hg2+ ions was found to be more efficiently engulfed as the concentration of Hg2+ was found 2.8 times larger compared to exposure experiments with only Hg2+. This effect was not observed for Cd2+. We now continue with deep proteomics studies to obtain wider details on the mechanism of the toxicity related to AgNP, Cd2+, and AgNP+Cd2+, respectively.Keywords: nanotoxicology, silver nanoparticles, proteomics, human cell line
Procedia PDF Downloads 3463613 Effect of Feed Supplement Optipartum C+ 200 (Alfa- Amylase and Beta-Glucanase) in In-Line Rumination Parameters
Authors: Ramūnas Antanaitis, Lina Anskienė, Robertas Stoškus
Abstract:
This study was conducted during 2021.05.01 – 2021.08.31 at the Lithuanian University of health sciences and one Lithuanian dairy farm with 500 dairy cows (55.911381565736, 21.881321760608195). Average calving – 50 cows per month. Cows (n=20) in the treatment group (TG) were fed with feed supplement Optipartum C+ 200 (Enzymes: Alfa- Amylase 57 Units; Beta-Glucanase 107 Units) from 21 days before calving till 30 days after calving with feeding rate 200g/cow/day. Cows in the control group (CG) were fed a feed ration without feed supplement. Measurements started from 6 days before calving and continued till 21 days after calving. The following indicators were registered: with the RumiWatch System: Rumination time; Eating time; Drinking time; Rumination chews; Eating chews; Drinking gulps; Bolus; Chews per minute; Chews per bolus. With SmaXtec system - the temperature, pH of the contents of cows' reticulorumens and cows' activity. According to our results, we found that feeding of cows, from 21 days before calving to 30 days after calving, with a feed supplement with alfa- amylase and beta-glucanase (Optipartum C+ 200) (with dose 200g/cow/day) can produce an increase in: 9% rumination time and eating time, 19% drinking time, 11% rumination chews, 16% eating chews,13% number of boluses per rumination, 5% chews per minute and 16% chews per bolus. We found 1.28 % lower reiticulorumen pH and 0.64% lower reticulorumen temperature in cows fed with the supplement compared with control group cows. Also, cows feeding with enzymes were 8.80% more active.Keywords: Alfa-Amylase, Beta-Glucanase, cows, in-line, sensors
Procedia PDF Downloads 3223612 Effects of Different Drying Methods on the Properties of Viscose Single Jersey Fabrics
Authors: Merve Kucukali Ozturk, Yesim Beceren, Banu Nergis
Abstract:
The study discussed in this paper was conducted in an attempt to investigate effects of different drying methods (line dry and tumble dry) on viscose single jersey fabrics knitted with ring yarn.Keywords: color change, dimensional properties, drying method, fabric tightness, physical properties
Procedia PDF Downloads 2863611 Energy System Analysis Using Data-Driven Modelling and Bayesian Methods
Authors: Paul Rowley, Adam Thirkill, Nick Doylend, Philip Leicester, Becky Gough
Abstract:
The dynamic performance of all energy generation technologies is impacted to varying degrees by the stochastic properties of the wider system within which the generation technology is located. This stochasticity can include the varying nature of ambient renewable energy resources such as wind or solar radiation, or unpredicted changes in energy demand which impact upon the operational behaviour of thermal generation technologies. An understanding of these stochastic impacts are especially important in contexts such as highly distributed (or embedded) generation, where an understanding of issues affecting the individual or aggregated performance of high numbers of relatively small generators is especially important, such as in ESCO projects. Probabilistic evaluation of monitored or simulated performance data is one technique which can provide an insight into the dynamic performance characteristics of generating systems, both in a prognostic sense (such as the prediction of future performance at the project’s design stage) as well as in a diagnostic sense (such as in the real-time analysis of underperforming systems). In this work, we describe the development, application and outcomes of a new approach to the acquisition of datasets suitable for use in the subsequent performance and impact analysis (including the use of Bayesian approaches) for a number of distributed generation technologies. The application of the approach is illustrated using a number of case studies involving domestic and small commercial scale photovoltaic, solar thermal and natural gas boiler installations, and the results as presented show that the methodology offers significant advantages in terms of plant efficiency prediction or diagnosis, along with allied environmental and social impacts such as greenhouse gas emission reduction or fuel affordability.Keywords: renewable energy, dynamic performance simulation, Bayesian analysis, distributed generation
Procedia PDF Downloads 494