Search results for: VFA membrane extraction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2965

Search results for: VFA membrane extraction

1825 Power Quality Modeling Using Recognition Learning Methods for Waveform Disturbances

Authors: Sang-Keun Moon, Hong-Rok Lim, Jin-O Kim

Abstract:

This paper presents a Power Quality (PQ) modeling and filtering processes for the distribution system disturbances using recognition learning methods. Typical PQ waveforms with mathematical applications and gathered field data are applied to the proposed models. The objective of this paper is analyzing PQ data with respect to monitoring, discriminating, and evaluating the waveform of power disturbances to ensure the system preventative system failure protections and complex system problem estimations. Examined signal filtering techniques are used for the field waveform noises and feature extractions. Using extraction and learning classification techniques, the efficiency was verified for the recognition of the PQ disturbances with focusing on interactive modeling methods in this paper. The waveform of selected 8 disturbances is modeled with randomized parameters of IEEE 1159 PQ ranges. The range, parameters, and weights are updated regarding field waveform obtained. Along with voltages, currents have same process to obtain the waveform features as the voltage apart from some of ratings and filters. Changing loads are causing the distortion in the voltage waveform due to the drawing of the different patterns of current variation. In the conclusion, PQ disturbances in the voltage and current waveforms indicate different types of patterns of variations and disturbance, and a modified technique based on the symmetrical components in time domain was proposed in this paper for the PQ disturbances detection and then classification. Our method is based on the fact that obtained waveforms from suggested trigger conditions contain potential information for abnormality detections. The extracted features are sequentially applied to estimation and recognition learning modules for further studies.

Keywords: power quality recognition, PQ modeling, waveform feature extraction, disturbance trigger condition, PQ signal filtering

Procedia PDF Downloads 181
1824 Data Mining Spatial: Unsupervised Classification of Geographic Data

Authors: Chahrazed Zouaoui

Abstract:

In recent years, the volume of geospatial information is increasing due to the evolution of communication technologies and information, this information is presented often by geographic information systems (GIS) and stored on of spatial databases (BDS). The classical data mining revealed a weakness in knowledge extraction at these enormous amounts of data due to the particularity of these spatial entities, which are characterized by the interdependence between them (1st law of geography). This gave rise to spatial data mining. Spatial data mining is a process of analyzing geographic data, which allows the extraction of knowledge and spatial relationships from geospatial data, including methods of this process we distinguish the monothematic and thematic, geo- Clustering is one of the main tasks of spatial data mining, which is registered in the part of the monothematic method. It includes geo-spatial entities similar in the same class and it affects more dissimilar to the different classes. In other words, maximize intra-class similarity and minimize inter similarity classes. Taking account of the particularity of geo-spatial data. Two approaches to geo-clustering exist, the dynamic processing of data involves applying algorithms designed for the direct treatment of spatial data, and the approach based on the spatial data pre-processing, which consists of applying clustering algorithms classic pre-processed data (by integration of spatial relationships). This approach (based on pre-treatment) is quite complex in different cases, so the search for approximate solutions involves the use of approximation algorithms, including the algorithms we are interested in dedicated approaches (clustering methods for partitioning and methods for density) and approaching bees (biomimetic approach), our study is proposed to design very significant to this problem, using different algorithms for automatically detecting geo-spatial neighborhood in order to implement the method of geo- clustering by pre-treatment, and the application of the bees algorithm to this problem for the first time in the field of geo-spatial.

Keywords: mining, GIS, geo-clustering, neighborhood

Procedia PDF Downloads 370
1823 Solid Phase Micro-Extraction/Gas Chromatography-Mass Spectrometry Study of Volatile Compounds from Strawberry Tree and Autumn Heather Honeys

Authors: Marinos Xagoraris, Elisavet Lazarou, Eleftherios Alissandrakis, Christos S. Pappas, Petros A. Tarantilis

Abstract:

Strawberry tree (Arbutus unedo L.) and autumn heather (Erica manipuliflora Salisb.) are important beekeeping plants of Greece. Six monofloral honeys (four strawberry tree, two autumn heather) were analyzed by means of Solid Phase Micro-Extraction (SPME, 60 min, 60 oC) followed by Gas Chromatography coupled to Mass Spectrometry (GC-MS) for the purpose of assessing the botanical origin. A Divinylbenzene/Carboxen/Polydimethylsiloxane (DVB/CAR/PDMS) fiber was employed, and benzophenone was used as internal standard. The volatile compounds with higher concentration (μg/ g of honey expressed as benzophenone) from strawberry tree honey samples, were α-isophorone (2.50-8.12); 3,4,5-trimethyl-phenol (0.20-4.62); 2-hydroxy-isophorone (0.06-0.53); 4-oxoisophorone (0.38-0.46); and β-isophorone (0.02-0.43). Regarding heather honey samples, the most abundant compounds were 1-methoxy-4-propyl-benzene (1.22-1.40); p-anisaldehyde (0.97-1.28); p-anisic acid (0.35-0.58); 2-furaldehyde (0.52-0.57); and benzaldehyde (0.41-0.56). Norisoprenoids are potent floral markers for strawberry-tree honey. β-isophorone is found exclusively in the volatile fraction of this type of honey, while also α-isophorone, 4-oxoisophorone and 2-hydroxy-isophorone could be considered as additional marker compounds. The analysis of autumn heather honey revealed that phenolic compounds are the most abundant and p-anisaldehyde; 1-methoxy-4-propyl-benzene; and p-anisic acid could serve as potent marker compounds. In conclusion, marker compounds for the determination of the botanical origin for these honeys could be identified as several norisoprenoids and phenolic components were found exclusively or in higher concentrations compared to common Greek honey varieties.

Keywords: SPME/GC-MS, volatile compounds, heather honey, strawberry tree honey

Procedia PDF Downloads 191
1822 Development of a Natural Anti-cancer Formulation Which Can Target Triple Negative Breast Cancer Stem Cells

Authors: Samashi Munaweera

Abstract:

Cancer stem cells (CSC) are responsible for the initiation, extensive proliferation and metastasis of cancer. CSCs, including breast cancer stem cells (bCSCs) have a capacity to generate chemo and radiotherapy resistance heterogeneous population of cells. Over-expressed ABCB1 has been reported as a main reason for drug resistance of CSCs via activating drug efflux pumps by creating pores in the cell membrane. The overall efficiency of chemotherapeutic agents might be enhanced by blocking the ABCB protein efflux pump in the CSC membrane. There is an urgent need to search for persuasive natural drugs which can target CSCs. Anti-cancer properties of Hylocereus undatus on cancer CSCs have not yet been studied. In the present study, the anti-cancer effects of the peel and flesh of H. undatus fruit on bCSCs were evaluated with the aim of developing a marketable anti-cancer nutraceutical formulation. The flesh and peel of H. undatus were freeze-dried and sequentially extracted into four different solvents (hexane, chloroform, ethyl acetate and ethanol). All extracts (eight extracts) were dried under reduced pressure, and different concentrations (12.5-400 µg/mL) were treated on bCSCs isolated from a triple-negative chemo-resistant breast cancer phenotype (MDA-MB-231 cells). Anti-proliferative effects of all extracts and paclitaxel (positive control) were determined by a colorimetric assay (WST-1 based). Since peel-chloroform (IC50= 54.8 µg/mL) and flesh-ethyl acetate (IC50= 150.5 µg/mL) extras exerted a potent anti-proliferative effect at 72 h post-incubation, a combinatorial formulation (CF) was developed with the most active peel-chloroform extract and 20 µg/mL of verapamil (a known ABCB1 drug efflux pump blocker) first time in the world. Anti-proliferative effects and pro-apoptotic effects of CF were confirmed by estimating activated caspase3 and caspase7 levels and apoptotic morphological features in the CF-treated bCSCs compared to untreated and only verapamil (20 µg/mL) treated bCSCs, and CF treated normal mammary epithelial cells (MCF-10A). The antiproliferative effects of CF (16.4 µg/mL) are greater than paclitaxel (19.2 µg/mL) and three folds greater than peel-chloroform extract (IC50= 54.8 µg/mL) on bCSCs while exerting less effects on normal cells (> 400 µg/mL). Collectively, CF can be considered as a potential initiative of a nutraceutical formulation that can target CSCs.

Keywords: breast cancer stem cells (bCSCs), Hylocereus undatus, combinatorial formulation (CF), ABCB 1 protein, verapamil

Procedia PDF Downloads 5
1821 Effect of Aronia Juice on Cellular Redox Status in Women with Aerobic Training Activity

Authors: Ana Jelenkovic, Nevena Kardum, Vuk Stevanovic, Ivana Šarac, Kristina Dmitrovic, Stevan Stevanovic, Maria Glibetic

Abstract:

Physical activity is well known for its beneficial health implications, however, excess oxygen consumption may impair oxidative status of the cell and affect membrane fatty acid (FA) composition. Polyphenols are well-established antioxidants, which can incorporate in cell membranes and protect them from oxidation. Therefore, our aim was to investigate how an 8-week aerobic training alters erythrocyte FA composition and activities of enzymes (superoxide dismutase, glutathione peroxidase and catalase), and to what extent polyphenol-rich Aronia juice (AJ) counteracts these potential alterations. We included 28 healthy women aged 19-29, with mean body mass index (BMI) of 21.2±2.7kg/m² and assigned them into three groups. The first group performed 1 hour of aerobic training three times per week (T); the second group trained in the same way and received 100 ml/day AJ as a part of their regular diet (TAJ), while the third group was the control one (C). Study analyses were performed at baseline and at the end of the intervention and included: anthropometric and biochemical measurements, determination of erythrocyte FA profile with gas-liquid chromatography and determination of enzymes’ activity with spectrophotometry. Statistical analyses were carried out with SPSS 20.0, with p < 0.05 considered as significant. The paired t-test revealed a significant decrease in the saturated FA content and in ω6/ω3 ratio in TAJ group. Furthermore, ω3 and docosahexaenoic acid (DHA) content increased, as well as the percentage of polyunsaturated FA and unsaturation index, which clearly pointed out that AJ supplementation with aerobic training protected cellular membranes from lipid peroxidation. No significant changes were observed in the two other groups. The between-group comparisons (ANCOVA) confirmed the synergistic effect of AJ supplementation and physical activity: DHA and ω3 contents were much higher, while ω6/ω3 ratio was significantly lower in the TAJ group compared with C. We also found that after the 8 weeks period, participants in TAJ group had a higher unsaturation index and lower saturated FA concentration than subjects from T group, suggesting that AJ polyphenols might be involved in that particular pathway. We found no significant changes in enzymes’ activities apart from a significantly higher superoxide dismutase activity in T group compared with the other two groups. Our results imply that supplementation with polyphenol-rich AJ may prevent membrane lipids from peroxidation in healthy subjects with regular aerobic activity.

Keywords: Aronia juice, aerobic training, fatty acids, oxidative status

Procedia PDF Downloads 166
1820 Expression of CASK Antibody in Non-Mucionus Colorectal Adenocarcinoma and Its Relation to Clinicopathological Prognostic Factors

Authors: Reham H. Soliman, Noha Noufal, Howayda AbdelAal

Abstract:

Calcium/calmodulin-dependent serine protein kinase (CASK) belongs to the membrane-associated guanylate kinase (MAGUK) family and has been proposed as a mediator of cell-cell adhesion and proliferation, which can contribute to tumorogenesis. CASK has been linked as a good prognostic factor with some tumor subtypes, while considered as a poor prognostic marker in others. To our knowledge, no sufficient evidence of CASK role in colorectal cancer is available. The aim of this study is to evaluate the expression of Calcium/calmodulin-dependent serine protein kinase (CASK) in non-mucinous colorectal adenocarcinoma and adenomatous polyps as precursor lesions and assess its prognostic significance. The study included 42 cases of conventional colorectal adenocarcinoma and 15 biopsies of adenomatous polyps with variable degrees of dysplasia. They were reviewed for clinicopathological prognostic factors and stained by CASK; mouse, monoclonal antibody using heat-induced antigen retrieval immunohistochemical techniques. The results showed that CASK protein was significantly overexpressed (p <0.05) in CRC compared with adenoma samples. The CASK protein was overexpressed in the majority of CRC samples with 85.7% of cases showing moderate to strong expression, while 46.7% of adenomas were positive. CASK overexpression was significantly correlated with both TNM stage and grade of differentiation (p <0.05). There was a significantly higher expression in tumor samples with early stages (I/II) rather than advanced stage (III/IV) and with low grade (59.5%) rather than high grade (40.5%). Another interesting finding was found among the adenomas group, where the stronger intensity of staining was observed in samples with high grade dysplasia (33.3%) than those of lower grades (13.3%). In conclusion, this study shows that there is significant overexpression of CASK protein in CRC as well as in adenomas with high grade dysplasia. This indicates that CASK is involved in the process of carcinogenesis and functions as a potential trigger of the adenoma-carcinoma cascade. CASK was significantly overexpressed in early stage and low-grade tumors rather than tumors with advanced stage and higher histological grades. This suggests that CASK protein is a good prognostic factor. We suggest that CASK affects CRC in two different ways derived from its physiology. CASK as part of MAGUK family can stimulate proliferation and through its cell membrane localization and as a mediator of cell-cell adhesion might contribute in tumor confinement and localization.

Keywords: CASK, colorectal cancer, overexpression, prognosis

Procedia PDF Downloads 275
1819 A Q-Methodology Approach for the Evaluation of Land Administration Mergers

Authors: Tsitsi Nyukurayi Muparari, Walter Timo De Vries, Jaap Zevenbergen

Abstract:

The nature of Land administration accommodates diversity in terms of both spatial data handling activities and the expertise involved, which supposedly aims to satisfy the unpredictable demands of land data and the diverse demands of the customers arising from the land. However, it is known that strategic decisions of restructuring are in most cases repelled in favour of complex structures that strive to accommodate professional diversity and diverse roles in the field of Land administration. Yet despite of this widely accepted knowledge, there is scanty theoretical knowledge concerning the psychological methodologies that can extract the deeper perceptions from the diverse spatial expertise in order to explain the invisible control arm of the polarised reception of the ideas of change. This paper evaluates Q methodology in the context of a cadastre and land registry merger (under one agency) using the Swedish cadastral system as a case study. Precisely, the aim of this paper is to evaluate the effectiveness of Q methodology towards modelling the diverse psychological perceptions of spatial professionals who are in a widely contested decision of merging the cadastre and land registry components of Land administration using the Swedish cadastral system as a case study. An empirical approach that is prescribed by Q methodology starts with the concourse development, followed by the design of statements and q sort instrument, selection of the participants, the q-sorting exercise, factor extraction by PQMethod and finally narrative development by logic of abduction. The paper uses 36 statements developed from a dominant competing value theory that stands out on its reliability and validity, purposively selects 19 participants to do the Qsorting exercise, proceeds with factor extraction from the diversity using varimax rotation and judgemental rotation provided by PQMethod and effect the narrative construction using the logic abduction. The findings from the diverse perceptions from cadastral professionals in the merger decision of land registry and cadastre components in Sweden’s mapping agency (Lantmäteriet) shows that focus is rather inclined on the perfection of the relationship between the legal expertise and technical spatial expertise. There is much emphasis on tradition, loyalty and communication attributes which concern the organisation’s internal environment rather than innovation and market attributes that reveals customer behavior and needs arising from the changing humankind-land needs. It can be concluded that Q methodology offers effective tools that pursues a psychological approach for the evaluation and gradations of the decisions of strategic change through extracting the local perceptions of spatial expertise.

Keywords: cadastre, factor extraction, land administration merger, land registry, q-methodology, rotation

Procedia PDF Downloads 186
1818 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste

Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.

Keywords: condensation, radioactive liquid waste, solidification, STRAD project

Procedia PDF Downloads 151
1817 Assessing Acute Toxicity and Endocrine Disruption Potential of Selected Packages Internal Layers Extracts

Authors: N. Szczepanska, B. Kudlak, G. Yotova, S. Tsakovski, J. Namiesnik

Abstract:

In the scientific literature related to the widely understood issue of packaging materials designed to have contact with food (food contact materials), there is much information on raw materials used for their production, as well as their physiochemical properties, types, and parameters. However, not much attention is given to the issues concerning migration of toxic substances from packaging and its actual influence on the health of the final consumer, even though health protection and food safety are the priority tasks. The goal of this study was to estimate the impact of particular foodstuff packaging type, food production, and storage conditions on the degree of leaching of potentially toxic compounds and endocrine disruptors to foodstuffs using the acute toxicity test Microtox and XenoScreen YES YAS assay. The selected foodstuff packaging materials were metal cans used for fish storage and tetrapak. Five stimulants respectful to specific kinds of food were chosen in order to assess global migration: distilled water for aqueous foods with a pH above 4.5; acetic acid at 3% in distilled water for acidic aqueous food with pH below 4.5; ethanol at 5% for any food that may contain alcohol; dimethyl sulfoxide (DMSO) and artificial saliva were used in regard to the possibility of using it as an simulation medium. For each packaging three independent variables (temperature and contact time) factorial design simulant was performed. Xenobiotics migration from epoxy resins was studied at three different temperatures (25°C, 65°C, and 121°C) and extraction time of 12h, 48h and 2 weeks. Such experimental design leads to 9 experiments for each food simulant as conditions for each experiment are obtained by combination of temperature and contact time levels. Each experiment was run in triplicate for acute toxicity and in duplicate for estrogen disruption potential determination. Multi-factor analysis of variation (MANOVA) was used to evaluate the effects of the three main factors solvent, temperature (temperature regime for cup), contact time and their interactions on the respected dependent variable (acute toxicity or estrogen disruption potential). From all stimulants studied the most toxic were can and tetrapak lining acetic acid extracts that are indication for significant migration of toxic compounds. This migration increased with increase of contact time and temperature and justified the hypothesis that food products with low pH values cause significant damage internal resin filling. Can lining extracts of all simulation medias excluding distilled water and artificial saliva proved to contain androgen agonists even at 25°C and extraction time of 12h. For tetrapak extracts significant endocrine potential for acetic acid, DMSO and saliva were detected.

Keywords: food packaging, extraction, migration, toxicity, biotest

Procedia PDF Downloads 174
1816 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 70
1815 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: artificial neural networks, ANN, discrete wavelet transform, DWT, gray-level co-occurrence matrix, GLCM, k-nearest neighbor, KNN, region of interest, ROI

Procedia PDF Downloads 147
1814 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of Big Data Technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centers or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through Vader and Roberta model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and TFIDF Vectorization, and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: counter vectorization, convolutional neural network, crawler, data technology, long short-term memory, web scraping, sentiment analysis

Procedia PDF Downloads 81
1813 Multi-source Question Answering Framework Using Transformers for Attribute Extraction

Authors: Prashanth Pillai, Purnaprajna Mangsuli

Abstract:

Oil exploration and production companies invest considerable time and efforts to extract essential well attributes (like well status, surface, and target coordinates, wellbore depths, event timelines, etc.) from unstructured data sources like technical reports, which are often non-standardized, multimodal, and highly domain-specific by nature. It is also important to consider the context when extracting attribute values from reports that contain information on multiple wells/wellbores. Moreover, semantically similar information may often be depicted in different data syntax representations across multiple pages and document sources. We propose a hierarchical multi-source fact extraction workflow based on a deep learning framework to extract essential well attributes at scale. An information retrieval module based on the transformer architecture was used to rank relevant pages in a document source utilizing the page image embeddings and semantic text embeddings. A question answering framework utilizingLayoutLM transformer was used to extract attribute-value pairs incorporating the text semantics and layout information from top relevant pages in a document. To better handle context while dealing with multi-well reports, we incorporate a dynamic query generation module to resolve ambiguities. The extracted attribute information from various pages and documents are standardized to a common representation using a parser module to facilitate information comparison and aggregation. Finally, we use a probabilistic approach to fuse information extracted from multiple sources into a coherent well record. The applicability of the proposed approach and related performance was studied on several real-life well technical reports.

Keywords: natural language processing, deep learning, transformers, information retrieval

Procedia PDF Downloads 189
1812 Efficient Video Compression Technique Using Convolutional Neural Networks and Generative Adversarial Network

Authors: P. Karthick, K. Mahesh

Abstract:

Video has become an increasingly significant component of our digital everyday contact. With the advancement of greater contents and shows of the resolution, its significant volume poses serious obstacles to the objective of receiving, distributing, compressing, and revealing video content of high quality. In this paper, we propose the primary beginning to complete a deep video compression model that jointly upgrades all video compression components. The video compression method involves splitting the video into frames, comparing the images using convolutional neural networks (CNN) to remove duplicates, repeating the single image instead of the duplicate images by recognizing and detecting minute changes using generative adversarial network (GAN) and recorded with long short-term memory (LSTM). Instead of the complete image, the small changes generated using GAN are substituted, which helps in frame level compression. Pixel wise comparison is performed using K-nearest neighbours (KNN) over the frame, clustered with K-means, and singular value decomposition (SVD) is applied for each and every frame in the video for all three color channels [Red, Green, Blue] to decrease the dimension of the utility matrix [R, G, B] by extracting its latent factors. Video frames are packed with parameters with the aid of a codec and converted to video format, and the results are compared with the original video. Repeated experiments on several videos with different sizes, duration, frames per second (FPS), and quality results demonstrate a significant resampling rate. On average, the result produced had approximately a 10% deviation in quality and more than 50% in size when compared with the original video.

Keywords: video compression, K-means clustering, convolutional neural network, generative adversarial network, singular value decomposition, pixel visualization, stochastic gradient descent, frame per second extraction, RGB channel extraction, self-detection and deciding system

Procedia PDF Downloads 179
1811 Modeling Thin Shell Structures by a New Flat Shell Finite Element

Authors: Djamal Hamadi, Ashraf Ayoub, Ounis Abdelhafid, Chebili Rachid

Abstract:

In this paper, a new computationally-efficient rectangular flat shell finite element named 'ACM_RSBEC' is presented. The formulated element is obtained by superposition of a new rectangular membrane element 'RSBEC' based on the strain approach and the well known plate bending element 'ACM'. This element can be used for the analysis of thin shell structures, no matter how the geometrical shape might be. Tests on standard problems have been examined. The convergence of the new formulated element is also compared to other types of quadrilateral shell elements. The presented shell element ‘ACM_RSBEC’ has been demonstrated to be effective and useful in analysing thin shell structures.

Keywords: finite element, flat shell element, strain based approach, static condensation

Procedia PDF Downloads 419
1810 ARABEX: Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder and Custom Convolutional Recurrent Neural Network

Authors: Hozaifa Zaki, Ghada Soliman

Abstract:

In this paper, we introduced an approach for Automated Dotted Arabic Expiration Date Extraction using Optimized Convolutional Autoencoder (ARABEX) with bidirectional LSTM. This approach is used for translating the Arabic dot-matrix expiration dates into their corresponding filled-in dates. A custom lightweight Convolutional Recurrent Neural Network (CRNN) model is then employed to extract the expiration dates. Due to the lack of available dataset images for the Arabic dot-matrix expiration date, we generated synthetic images by creating an Arabic dot-matrix True Type Font (TTF) matrix to address this limitation. Our model was trained on a realistic synthetic dataset of 3287 images, covering the period from 2019 to 2027, represented in the format of yyyy/mm/dd. We then trained our custom CRNN model using the generated synthetic images to assess the performance of our model (ARABEX) by extracting expiration dates from the translated images. Our proposed approach achieved an accuracy of 99.4% on the test dataset of 658 images, while also achieving a Structural Similarity Index (SSIM) of 0.46 for image translation on our dataset. The ARABEX approach demonstrates its ability to be applied to various downstream learning tasks, including image translation and reconstruction. Moreover, this pipeline (ARABEX+CRNN) can be seamlessly integrated into automated sorting systems to extract expiry dates and sort products accordingly during the manufacturing stage. By eliminating the need for manual entry of expiration dates, which can be time-consuming and inefficient for merchants, our approach offers significant results in terms of efficiency and accuracy for Arabic dot-matrix expiration date recognition.

Keywords: computer vision, deep learning, image processing, character recognition

Procedia PDF Downloads 78
1809 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. It also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 47
1808 Effect of Short Chain Alcohols on Bending Rigidity of Lipid Bilayer

Authors: Buti Suryabrahmam, V. A. Raghunathan

Abstract:

We study the effect of short chain alcohols on mechanical properties of saturated lipid bilayers in the fluid phase. The Bending rigidity of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) membrane was measured at 28 °C by employing Vesicle Fluctuation Analysis technique. The concentration and chain length (n) of alcohol in the buffer solution were varied from 0 to 1.5 M and from 2 to 8 respectively. We observed a non-linear reduction in the bending rigidity from ~17×10⁻²⁰ J to ~10×10⁻²⁰ J, for all chain lengths of alcohols used in our experiment. We observed approximately three orders of the concentration difference between ethanol and octanol, to show the similar reduction in the bending values. We attribute this phenomenon to thinning of the bilayer due to the adsorption of alcohols at the bilayer-water interface.

Keywords: alcohols, bending rigidity, DMPC, lipid bilayers

Procedia PDF Downloads 141
1807 Quality Assessment of New Zealand Mānuka Honeys Using Hyperspectral Imaging Combined with Deep 1D-Convolutional Neural Networks

Authors: Hien Thi Dieu Truong, Mahmoud Al-Sarayreh, Pullanagari Reddy, Marlon M. Reis, Richard Archer

Abstract:

New Zealand mānuka honey is a honeybee product derived mainly from Leptospermum scoparium nectar. The potent antibacterial activity of mānuka honey derives principally from methylglyoxal (MGO), in addition to the hydrogen peroxide and other lesser activities present in all honey. MGO is formed from dihydroxyacetone (DHA) unique to L. scoparium nectar. Mānuka honey also has an idiosyncratic phenolic profile that is useful as a chemical maker. Authentic mānuka honey is highly valuable, but almost all honey is formed from natural mixtures of nectars harvested by a hive over a time period. Once diluted by other nectars, mānuka honey irrevocably loses value. We aimed to apply hyperspectral imaging to honey frames before bulk extraction to minimise the dilution of genuine mānuka by other honey and ensure authenticity at the source. This technology is non-destructive and suitable for an industrial setting. Chemometrics using linear Partial Least Squares (PLS) and Support Vector Machine (SVM) showed limited efficacy in interpreting chemical footprints due to large non-linear relationships between predictor and predictand in a large sample set, likely due to honey quality variability across geographic regions. Therefore, an advanced modelling approach, one-dimensional convolutional neural networks (1D-CNN), was investigated for analysing hyperspectral data for extraction of biochemical information from honey. The 1D-CNN model showed superior prediction of honey quality (R² = 0.73, RMSE = 2.346, RPD= 2.56) to PLS (R² = 0.66, RMSE = 2.607, RPD= 1.91) and SVM (R² = 0.67, RMSE = 2.559, RPD=1.98). Classification of mono-floral manuka honey from multi-floral and non-manuka honey exceeded 90% accuracy for all models tried. Overall, this study reveals the potential of HSI and deep learning modelling for automating the evaluation of honey quality in frames.

Keywords: mānuka honey, quality, purity, potency, deep learning, 1D-CNN, chemometrics

Procedia PDF Downloads 131
1806 Investigation of Modified Microporous Materials for Environmental Depollution

Authors: Souhila Bendenia, Chahrazed Bendenia, Hanaa Merad-Dib, Sarra Merabet, Samia Moulebhar, Sid Ahmed Khantar

Abstract:

Today, environmental pollution is a major concernworldwide, threateninghumanhealth. Various techniques have been used, includingdegradation, filtration, advancedoxidationprocesses, ion exchange, membrane processes, and adsorption. The latter is one of the mostsuitablemethods, usinghighly efficient materials. In this study, NaX zeolite was modified with Cu or Ni at various rates. Following ion exchange, the samples were characterized by XRD, BET and SEM/EDX. After characterization, the exchanged zeolites were used for adsorption of various pollutants as CO2. Different thermodynamic parameters were studied such as Qst. XRD results show that the most intense peaks characteristic of 13X persist after the exchange reaction for all samples. The SEM images of our samples have uniform and regular crystal shapes. The results show that ion exhange with Cu or Ni affect the textural properties of X zeolites and prove that the exchange zeolites can be used as an adsorbent for depollution.

Keywords: X zeolites (NaX), ion exchange, characterization, adsorption

Procedia PDF Downloads 74
1805 Evaluation of Electrophoretic and Electrospray Deposition Methods for Preparing Graphene and Activated Carbon Modified Nano-Fibre Electrodes for Hydrogen/Vanadium Flow Batteries and Supercapacitors

Authors: Barun Chakrabarti, Evangelos Kalamaras, Vladimir Yufit, Xinhua Liu, Billy Wu, Nigel Brandon, C. T. John Low

Abstract:

In this work, we perform electrophoretic deposition of activated carbon on a number of substrates to prepare symmetrical coin cells for supercapacitor applications. From several recipes that involve the evaluation of a few solvents such as isopropyl alcohol, N-Methyl-2-pyrrolidone (NMP), or acetone to binders such as polyvinylidene fluoride (PVDF) and charging agents such as magnesium chloride, we display a working means for achieving supercapacitors that can achieve 100 F/g in a consistent manner. We then adapt this EPD method to deposit reduced graphene oxide on SGL 10AA carbon paper to achieve cathodic materials for testing in a hydrogen/vanadium flow battery. In addition, a self-supported hierarchical carbon nano-fibre is prepared by means of electrospray deposition of an iron phthalocyanine solution onto a temporary substrate followed by carbonisation to remove heteroatoms. This process also induces a degree of nitrogen doping on the carbon nano-fibres (CNFs), which allows its catalytic performance to improve significantly as detailed in other publications. The CNFs are then used as catalysts by attaching them to graphite felt electrodes facing the membrane inside an all-vanadium flow battery (Scribner cell using serpentine flow distribution channels) and efficiencies as high as 60% is noted at high current densities of 150 mA/cm². About 20 charge and discharge cycling show that the CNF catalysts consistently perform better than pristine graphite felt electrodes. Following this, we also test the CNF as an electro-catalyst in the hydrogen/vanadium flow battery (cathodic side as mentioned briefly in the first paragraph) facing the membrane, based upon past studies from our group. Once again, we note consistently good efficiencies of 85% and above for CNF modified graphite felt electrodes in comparison to 60% for pristine felts at low current density of 50 mA/cm² (this reports 20 charge and discharge cycles of the battery). From this preliminary investigation, we conclude that the CNFs may be used as catalysts for other systems such as vanadium/manganese, manganese/manganese and manganese/hydrogen flow batteries in the future. We are generating data for such systems at present, and further publications are expected.

Keywords: electrospinning, carbon nano-fibres, all-vanadium redox flow battery, hydrogen-vanadium fuel cell, electrocatalysis

Procedia PDF Downloads 286
1804 Modelling of Pervaporation Separation of Butanol from Aqueous Solutions Using Polydimethylsiloxane Mixed Matrix Membranes

Authors: Arian Ebneyamini, Hoda Azimi, Jules Thibaults, F. Handan Tezel

Abstract:

In this study, a modification of Hennepe model for pervaporation separation of butanol from aqueous solutions using Polydimethylsiloxane (PDMS) mixed matrix membranes has been introduced and validated by experimental data. The model was compared to the original Hennepe model and few other models which are applicable for membrane gas separation processes such as Maxwell, Lewis Nielson and Pal. Theoretical modifications for non-ideal interface morphology have been offered to predict the permeability in case of interface void, interface rigidification and pore-blockage. The model was in a good agreement with experimental data.

Keywords: butanol, PDMS, modeling, pervaporation, mixed matrix membranes

Procedia PDF Downloads 211
1803 Purification of Zr from Zr-Hf Resources Using Crystallization in HF-HCl Solvent Mixture

Authors: Kenichi Hirota, Jifeng Wang, Sadao Araki, Koji Endo, Hideki Yamamoto

Abstract:

Zirconium (Zr) has been used as a fuel cladding tube for nuclear reactors, because of the excellent corrosion resistance and the low adsorptive material for neutron. Generally speaking, the natural resource of Zr is often containing Hf that has similar properties. The content of Hf in the Zr resources is about 2~4 wt%. In the industrial use, the content of Hf in Zr resources should be lower than the 100 ppm. However, the separation of Zr and Hf is not so easy, because of similar chemical and physical properties such as melting point, boiling point and things. Solvent extraction method has been applied for the separation of Zr and Hf from Zr natural resources. This method can separate Hf with high efficiency (Hf < 100ppm), however, it needs much amount of organic solvents for solvent extraction and the cost of its disposal treatment is high. Therefore, we attached attention for the fractional crystallization. This separation method depends on the solubility difference of Zr and Hf in the solvent. In this work, hexafluorozirconate (hafnate) (K2Zr(Hf)F6) was used as model compound. Solubility of K2ZrF6 in water showed lower than that of K2HfF6. By repeating of this treatment, it is possible to purify Zr, practically. In this case, 16-18 times of recrystallization stages were needed for its high purification. The improvement of the crystallization process was carried out in this work. Water, hydrofluoric acid (HF) and hydrofluoric acid (HF) +hydrochloric acid (HCl) mixture were chosen as solvent for dissolution of Zr and Hf. In the experiment, 10g of K2ZrF6 was added to each solvent of 100mL. Each solution was heated for 1 hour at 353K. After 1h of this operation, they were cooled down till 293K, and were held for 5 hours at 273K. Concentration of Zr or Hf was measured using ICP analysis. It was found that Hf was separated from Zr-Hf mixed compound with high efficiency, when HF-HCl solution was used for solvent of crystallization. From the comparison of the particle size of each crystal by SEM, it was confirmed that the particle diameter of the crystal showed smaller size with decreasing of Hf content. This paper concerned with purification of Zr from Zr-Hf mixture using crystallization method.

Keywords: crystallization, zirconium, hafnium, separation

Procedia PDF Downloads 429
1802 The Effect of Arabic Gum on Polyethersulfone Membranes

Authors: Yehia Manawi, Viktor Kochkodan, Muataz Hussien

Abstract:

In this paper, the effect of adding Arabic Gum (AG) to the dope solutions of polyethersulfone (PES) was studied. The aim of adding AG is to enhance the properties of ultrafiltration membranes such as hydrophilicity, porosity and selectivity. several AG loading (0.1-3.0 wt.%) in PES/ N-Methyl-2-pyrrolidone (NMP) casting solutions were prepared to fabricate PES membranes using phase inversion technique. The surface morphology, hydrophilicity and selectivity of the cast PES/AG membranes were analyzed using scanning electron microscopy and contact angle measurements. The selectivity of the fabricated membranes was also tested by filtration of oil solutions (1 ppm) and found to show quite high removal efficiency. The effect of adding AG to PES membranes was found to increase the permeate flux and porosity as well as reducing surface roughness and the contact angle of the membranes.

Keywords: antifouling, Arabic gum, polyethersulfone membrane, ultrafiltration

Procedia PDF Downloads 282
1801 Post-Operative Pain Management in Ehlers-Danlos Hypermobile-Type Syndrome Following Wisdom Teeth Extraction: A Case Report and Literature Review

Authors: Aikaterini Amanatidou

Abstract:

We describe the case of a 20-year-old female patient diagnosed with Ehlers-Danlos Syndrome (EDS) who was scheduled to undergo a wisdom teeth extraction in outpatient surgery. EDS is a hereditary connective tissue disorder characterized by joint hypermobility, skin hyper-extensibility, and vascular and soft tissue fragility. There are six subtypes of Ehlers-Danlos, and in our case, the patient had EDS hyper-mobility (HT) type disorder. One important clinical feature of this syndrome is chronic pain, which is often poorly understood and treated. Our patient had a long history of articular and lumbar pain when she was diagnosed. She was prescribed analgesic treatment for acute and neuropathic pain and had multiple sessions of psychotherapy and physiotherapy to ease the pain. Unfortunately, her extensive medical history was underrated by our anesthetic team, and no further measures were taken for the operation. Despite an uneventful intra-operative phase, the patient experienced several episodes of hyperalgesia during the immediate post-operative care. Management of pain was challenging for the anesthetic team: initial opioid treatment had only a temporary effect and a paradoxical reaction after a while. Final pain relief was eventually obtained with psycho-physiologic treatment, high doses of ketamine, and patient-controlled analgesia infusion of morphine-ketamine-dehydrobenzperidol. We suspected an episode of Opioid-Induced hyperalgesia. This case report supports the hypothesis that anti-hyperalgesics such as ketamine as well as lidocaine, and dexmedetomidine should be considered intra-operatively to avoid opioid-induced hyperalgesia and may be an alternative solution to manage complex chronic pain like others in neuropathic pain syndromes.

Keywords: Ehlers-Danlos, post-operative management, hyperalgesia, opioid-induced hyperalgesia, rare disease

Procedia PDF Downloads 84
1800 Optimal Design of Wind Turbine Blades Equipped with Flaps

Authors: I. Kade Wiratama

Abstract:

As a result of the significant growth of wind turbines in size, blade load control has become the main challenge for large wind turbines. Many advanced techniques have been investigated aiming at developing control devices to ease blade loading. Amongst them, trailing edge flaps have been proven as effective devices for load alleviation. The present study aims at investigating the potential benefits of flaps in enhancing the energy capture capabilities rather than blade load alleviation. A software tool is especially developed for the aerodynamic simulation of wind turbines utilising blades equipped with flaps. As part of the aerodynamic simulation of these wind turbines, the control system must be also simulated. The simulation of the control system is carried out via solving an optimisation problem which gives the best value for the controlling parameter at each wind turbine run condition. Developing a genetic algorithm optimisation tool which is especially designed for wind turbine blades and integrating it with the aerodynamic performance evaluator, a design optimisation tool for blades equipped with flaps is constructed. The design optimisation tool is employed to carry out design case studies. The results of design case studies on wind turbine AWT 27 reveal that, as expected, the location of flap is a key parameter influencing the amount of improvement in the power extraction. The best location for placing a flap is at about 70% of the blade span from the root of the blade. The size of the flap has also significant effect on the amount of enhancement in the average power. This effect, however, reduces dramatically as the size increases. For constant speed rotors, adding flaps without re-designing the topology of the blade can improve the power extraction capability as high as of about 5%. However, with re-designing the blade pretwist the overall improvement can be reached as high as 12%.

Keywords: flaps, design blade, optimisation, simulation, genetic algorithm, WTAero

Procedia PDF Downloads 335
1799 Mentha piperita Formulations in Natural Deep Eutectic Solvents: Phenolic Profile and Biological Activity

Authors: Tatjana Jurić, Bojana Blagojević, Denis Uka, Ružica Ždero Pavlović, Boris M. Popović

Abstract:

Natural deep eutectic solvents (NADES) represent a class of modern systems that have been developed as a green alternative to toxic organic solvents, which are commonly used as extraction media. It has been considered that hydrogen bonding is the main interaction leading to the formation of NADES. The aim of this study was phytochemical characterization and determination of the antioxidant and antibacterial activity of Mentha piperita leaf extracts obtained by six choline chloride-based NADES. NADES were prepared by mixing choline chloride with different hydrogen bond donors in 1:1 molar ratio following the addition of 30% (w/w) water. The mixtures were then heated (60 °C) and stirred (650 rpm) until the clear homogenous liquids were obtained. The Mentha piperita extracts were prepared by mixing 75 mg of peppermint leaves with 1 mL of NADES following by the heating and stirring (60 °C, 650 rpm) within 30 min. The content of six phenolics in extracts was determined using HPLC-PDA. The dominant compounds presented in peppermint leaves - rosmarinic acid and luteolin 7-O-glucoside, were extracted by NADES at a similar level as 70% ethanol. The microdilution method was applied to test the antibacterial activity of extracts. Compared with 70% ethanol, all NADES systems showed higher antibacterial activity towards Pseudomonas aeruginosa (Gram -), Staphylococcus aureus (Gram +), Escherichia coli (Gram -), and Salmonella enterica (Gram -), especially NADES containing organic acids. The majority of NADES extracts showed a better ability to neutralize DPPH radical than conventional solvent and similar ability to reduce Fe3+ to Fe2+ ions in FRAP assay. The obtained results introduce NADES systems as the novel, sustainable, and low-cost solvents with a variety of applications.

Keywords: antibacterial activity, antioxidant activity, green extraction, natural deep eutectic solvents, polyphenols

Procedia PDF Downloads 180
1798 Improving Fingerprinting-Based Localization System Using Generative Artificial Intelligence

Authors: Getaneh Berie Tarekegn

Abstract:

A precise localization system is crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarming, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. The most common method for providing continuous positioning services in outdoor environments is by using a global navigation satellite system (GNSS). Due to nonline-of-sight, multipath, and weather conditions, GNSS systems do not perform well in dense urban, urban, and suburban areas.This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a novel semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 39 cm, and more than 90% of the errors are less than 82 cm. That is, numerical results proved that, in comparison to traditional methods, the proposed SRCLoc method can significantly improve positioning performance and reduce radio map construction costs.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 63
1797 Linkage between a Plant-based Diet and Visual Impairment: A Systematic Review and Meta-Analysis

Authors: Cristina Cirone, Katrina Cirone, Monali S. Malvankar-Mehta

Abstract:

Purpose: An increased risk of visual impairment has been observed in individuals lacking a balanced diet. The purpose of this paper is to characterize the relationship between plant-based diets and specific ocular outcomes among adults. Design: Systematic review and meta-analysis. Methods: This systematic review and meta-analysis were conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines. The databases MEDLINE, EMBASE, Cochrane, and PubMed, were systematically searched up until May 27, 2021. Of the 503 articles independently screened by two reviewers, 21 were included in this review. Quality assessment and data extraction were performed by both reviewers. Meta-analysis was conducted using STATA 15.0. Fixed-effect and random-effect models were computed based on heterogeneity. Results: A total of 503 studies were identified which then underwent duplicate removal and a title and abstract screen. The remaining 61 studies underwent a full-text screen, 21 progressed to data extraction and fifteen were included in the quantitative analysis. Meta-analysis indicated that regular consumption of fish (OR = 0.70; CI: [0.62-0.79]) and skim milk, poultry, and non-meat animal products (OR = 0.70; CI: [0.61-0.79]) is positively correlated with a reduced risk of visual impairment (age-related macular degeneration, age-related maculopathy, cataract development, and central geographic atrophy) among adults. Consumption of red meat [OR = 1.41; CI: [1.07-1.86]) is associated with an increased risk of visual impairment. Conclusion: Overall, a pescatarian diet is associated with the most favorable visual outcomes among adults, while the consumption of red meat appears to negatively impact vision. Results suggest a need for more local and government-led interventions promoting a healthy and balanced diet.

Keywords: plant-based diet, pescatarian diet, visual impairment, systematic review, meta-analysis

Procedia PDF Downloads 177
1796 Therapeutic Management of Toxocara canis Induced Hepatitis in Dogs

Authors: Milind D. Meshram

Abstract:

Ascarids are the most frequent worm parasite of dogs and cats. There are two species that commonly infect dogs: Toxocara canis and Toxascaris leonina. Adult roundworms live in the stomach and intestines and can grow to 7 inches (18 cm) long. A female may lay 200,000 eggs in a day. The eggs are protected by a hard shell. They are extremely hardy and can live for months or years in the soil. A dog aged about 6 years, from Satara was referred to Teaching Veterinary Clinical Complex (TVCC) with a complaint of abdominal pain, anorexia, loss of condition and dull body coat with mucous pale membrane. The clinical examination revealed Anaemia, palpation of abdomen revealed enlargement of liver, slimy feel of the intestine loop, diarrhea.

Keywords: therapeutic management, Toxocara canis, induced hepatitis, dogs

Procedia PDF Downloads 585