Search results for: mechanical refining
2766 Characteristics and Mechanical Properties of Bypass-Current MIG Welding-Brazed Dissimilar Al/Ti Joints
Authors: Bintao Wu, Xiangfang Xu, Yugang Miao,Duanfeng Han
Abstract:
Joining of 1 mm thick aluminum 6061 to titanium TC4 was conducted using Bypass-current MIG welding-brazed, and stable welding process and good bead appearance were obtained. The Joint profile and microstructure of Ti/Al joints were observed by optical microscopy and SEM and then the structure of the interfacial reaction layers were analyzed in details. It was found that the intermetallic compound layer at the interfacial top is in the form of columnar crystal, which is in short and dense state. A mount of AlTi were observed at the interfacial layer near the Ti base metal while intermetallic compound like Al3Ti、TiSi3 were formed near the Al base metal, and the Al11Ti5 transition phase was found in the center of the interface layer due to the uneven distribution inside the weld pool during the welding process. Tensile test results show that the average tensile strength of joints is up to 182.6 MPa, which reaches about 97.6% of aluminum base metal. Fracture is prone to occur in the base metal with a certain amount of necking.Keywords: bypass-current MIG welding-brazed, Al alloy, Ti alloy, joint characteristics, mechanical properties
Procedia PDF Downloads 2642765 Recovery of Dredged Sediments With Lime or Cement as Platform Materials for Use in a Roadway
Authors: Abriak Yassine, Zri Abdeljalil, Benzerzour Mahfoud., Hadj Sadok Rachid, Abriak Nor-Edine
Abstract:
In this study, firstly, the study of the capacity reuse of dredged sediments and treated sediments with lime or cement were used in an establishment layer and the base layer of the roadway. Also, the analysis of mineral changes caused by the addition of lime or cement on the way as described in the mechanical results of stabilised sediments. After determining the quantity of lime and cement required to stabilise the sediment, the compaction characteristics were studied using the modified Proctor method. Then the evolution of the three parameters, that is, ideal water content and maximum dry density had been determined. Mechanical exhibitions can be assessed across the resistance to compression, flexibility modulus and the resistance under traction. The resistance of the formulation treated with cement addition (ROLAC®645) increase with the quantity of ROLAC®645. Traction resistances and the elastic modulus were utilized to assess the potential of the formulation as road construction materials utilizing classification diagram. The results show the various formulations with ROLAC® 645may be employed in subgrades and foundation layers for roads.Keywords: cement, dredged, sediment, foundation layer, resistance
Procedia PDF Downloads 1032764 Rheological Study of Chitosan/Montmorillonite Nanocomposites: The Effect of Chemical Crosslinking
Authors: K. Khouzami, J. Brassinne, C. Branca, E. Van Ruymbeke, B. Nysten, G. D’Angelo
Abstract:
The development of hybrid organic-inorganic nanocomposites has recently attracted great interest. Typically, polymer silicates represent an emerging class of polymeric nanocomposites that offer superior material properties compared to each compound alone. Among these materials, complexes based on silicate clay and polysaccharides are one of the most promising nanocomposites. The strong electrostatic interaction between chitosan and montmorillonite can induce what is called physical hydrogel, where the coordination bonds or physical crosslinks may associate and dissociate reversibly and in a short time. These mechanisms could be the main origin of the uniqueness of their rheological behavior. However, owing to their structure intrinsically heterogeneous and/or the lack of dissipated energy, they are usually brittle, possess a poor toughness and may not have sufficient mechanical strength. Consequently, the properties of these nanocomposites cannot respond to some requirements of many applications in several fields. To address the issue of weak mechanical properties, covalent chemical crosslink bonds can be introduced to the physical hydrogel. In this way, quite homogeneous dually crosslinked microstructures with high dissipated energy and enhanced mechanical strength can be engineered. In this work, we have prepared a series of chitosan-montmorillonite nanocomposites chemically crosslinked by addition of poly (ethylene glycol) diglycidyl ether. This study aims to provide a better understanding of the mechanical behavior of dually crosslinked chitosan-based nanocomposites by relating it to their microstructures. In these systems, the variety of microstructures is obtained by modifying the number of cross-links. Subsequently, a superior uniqueness of the rheological properties of chemically crosslinked chitosan-montmorillonite nanocomposites is achieved, especially at the highest percentage of clay. Their rheological behaviors depend on the clay/chitosan ratio and the crosslinking. All specimens exhibit a viscous rheological behavior over the frequency range investigated. The flow curves of the nanocomposites show a Newtonian plateau at very low shear rates accompanied by a quite complicated nonlinear decrease with increasing the shear rate. Crosslinking induces a shear thinning behavior revealing the formation of network-like structures. Fitting shear viscosity curves via Ostward-De Waele equation disclosed that crosslinking and clay addition strongly affect the pseudoplasticity of the nanocomposites for shear rates γ ̇>20.Keywords: chitosan, crossliking, nanocomposites, rheological properties
Procedia PDF Downloads 1532763 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass
Authors: Ricardo Torcato, Helder Morais
Abstract:
The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.Keywords: CNC machining, crystal glass, cutting forces, hardness
Procedia PDF Downloads 1582762 Load Bearing Capacity and Operational Effectiveness of Single Shear Joints of CFRP Composite Laminate with Spread Tow Thin Plies
Authors: Tabrej Khan, Tamer A. Sebaey, Balbir Singh, M. A. Umarfarooq
Abstract:
Spread-tow thin-ply-based technology has resulted in the progress of optimized reinforced composite plies with ultra-low thicknesses. There is wide use of composite bolted joints in the aircraft industry for load-bearing structures, and they are regarded as the primary source of stress concentration. The purpose of this study is to look into the bearing strength and structural performance of single shear bolt joint configurations in composite laminates, which are basically a combination of conventional thin-plies and thick-plies in some specific stacking sequence. The placement effect of thin-ply within the configured stack on bearing strength, as well as the potential damages, were investigated. Mechanical tests were used to understand the disfigurement mechanisms of the plies and their reciprocity, as well as to reflect on the single shear bolt joint properties and its load-bearing capacity. The results showed that changing the configuration of laminates by inserting the thin plies inside improved the bearing strength by up to 19%.Keywords: hybrid composites, delamination, stress concentrations, mechanical testing, single bolt joint, thin-plies
Procedia PDF Downloads 702761 Hydrogen Storage in Salt Caverns: Rock Mechanical Design
Authors: Dirk Zapf, Bastian Leuger
Abstract:
For several years, natural gas and crude oil have been stored in salt caverns in Germany and also worldwide. The dimensioning concepts have been continuously developed from a rock mechanics point of view. In addition to the possibilities of realizing large numerical calculation models based on real survey data nowadays, especially the consideration of mechanical processes such as damage and healing played a role in the development of adequate material laws. In addition, thermodynamic aspects have had to be considered for some years in the operation of a gas storage cavern since temperature changes have a significant influence on the stress states in the vicinity of a storage cavern. The possibility of thermally induced fracturing processes is also investigated in the context of rock mechanics dimensioning. In recent years, the energy crisis and the finite nature of fossil fuel use have led to increased discussion of the use of salt caverns for hydrogen storage. In this paper, state of the art is presented, the current research work is described, and an outlook is given as to which questions still need to be answered from a rock mechanics point of view in connection with large-scale storage of hydrogen in salt caverns.Keywords: cavern design, hydrogen, rock salt, thermomechanical coupled calculations
Procedia PDF Downloads 1262760 Regulatory Frameworks and Bank Failure Prevention in South Africa: Assessing Effectiveness and Enhancing Resilience
Authors: Princess Ncube
Abstract:
In the context of South Africa's banking sector, the prevention of bank failures is of paramount importance to ensure financial stability and economic growth. This paper focuses on the role of regulatory frameworks in safeguarding the resilience of South African banks and mitigating the risks of failures. It aims to assess the effectiveness of existing regulatory measures and proposes strategies to enhance the resilience of financial institutions in the country. The paper begins by examining the specific regulatory frameworks in place in South Africa, including capital adequacy requirements, stress testing methodologies, risk management guidelines, and supervisory practices. It delves into the evolution of these measures in response to lessons learned from past financial crises and their relevance in the unique South African banking landscape. Drawing on empirical evidence and case studies specific to South Africa, this paper evaluates the effectiveness of regulatory frameworks in preventing bank failures within the country. It analyses the impact of these frameworks on crucial aspects such as early detection of distress signals, improvements in risk management practices, and advancements in corporate governance within South African financial institutions. Additionally, it explores the interplay between regulatory frameworks and the specific economic environment of South Africa, including the role of macroprudential policies in preventing systemic risks. Based on the assessment, this paper proposes recommendations to strengthen regulatory frameworks and enhance their effectiveness in bank failure prevention in South Africa. It explores avenues for refining existing regulations to align capital requirements with the risk profiles of South African banks, enhancing stress testing methodologies to capture specific vulnerabilities, and fostering better coordination among regulatory authorities within the country. Furthermore, it examines the potential benefits of adopting innovative approaches, such as leveraging technology and data analytics, to improve risk assessment and supervision in the South African banking sector.Keywords: banks, resolution, liquidity, regulation
Procedia PDF Downloads 952759 Physical, Chemical and Mechanical Properties of Different Varieties of Jatropha curcas Cultivated in Pakistan
Authors: Mehmood Ali, Attaullah Khan, Md. Abul Kalam
Abstract:
Petroleum crude oil reserves are going to deplete in future due to the consumption of fossil fuels in transportation and energy generating sector. Thus, increasing the fossil fuel prices and also causing environmental degradation issues such as climate change and global warming due to air pollution. Therefore, to tackle these issues the environmentally friendly fuels are the potential substitute with lower emissions of toxic gases. A non-edible vegetable oilseed crop, Jatropha curcas, from different origins such as Malaysia, Thailand and India were cultivated in Pakistan. The harvested seeds physical, chemical and mechanical properties were measured, having an influence on the post-harvesting machines design parameters for dehulling, storing bins, drying, oil extraction from seeds with a screw expeller and in-situ transesterification reaction to produce biodiesel fuel. The seed variety from Thailand was found better in comparison of its properties with other varieties from Malaysia and India. The seed yield from these three varieties i.e. Malaysia, Thailand and India were 829, 943 and 735 kg/ acre/ year respectively. While the oil extraction yield from Thailand variety seed was found higher (i.e. 32.61 % by wt.) as compared to other two varieties from Malaysia and India were 27.96 and 24.96 % by wt respectively. The physical properties investigated showed the geometric mean diameter of seeds from three varieties Malaysia, Thailand and India were 11.350, 10.505 and 11.324 mm, while the sphericity of seeds were found 0.656, 0.664 and 0.655. The bulk densities of the powdered seeds from three varieties Malaysia, Thailand and India, were found as 0.9697, 0.9932 and 0.9601 g/cm³ and % passing was obtained with sieve test were 78.7, 87.1 and 79.3 respectively. The densities of the extracted oil from three varieties Malaysia, Thailand and India were found 0.902, 0.898 and 0.902 g/ mL with corresponding kinematic viscosities 54.50, 49.18 and 48.16 mm2/sec respectively. The higher heating values (HHV) of extracted oil from Malaysia, Thailand and India seed varieties were measured as 40.29, 36.41 and 34.27 MJ/ kg, while the HHV of de-oiled cake from these varieties were 21.23, 20.78 and 17.31 MJ/kg respectively. The de-oiled cake can be used as compost with nutrients and carbon content to enhance soil fertility to grow future Jatropha curcas oil seed crops and also can be used as a fuel for heating and cooking purpose. Moreover, the mechanical parameter micro Vickers hardness of Malaysia seed was found lowest 16.30 HV measured with seed in a horizontal position to the loading in comparison to other two varieties as 25.2 and 18.7 HV from Thailand and India respectively. The fatty acid composition of three varieties of seed oil showed the presence of C8-C22, required to produce good quality biodiesel fuel. In terms of physicochemical properties of seeds and its extracted oil, the variety from Thailand was found better as compared to the other two varieties.Keywords: biodiesel, Jatropha curcas, mechanical property, physico-chemical properties
Procedia PDF Downloads 1452758 Poly (Lactic Acid)/Poly (Butylene Adipate-Co-terephthalate) Films Reinforced with Polyhedral Oligomeric Silsesquioxane Nanoparticles
Authors: Elahe Moradi, Hossein Ali Khonakdar
Abstract:
In the context of the growing interest in renewable polymers, this study presents an innovative approach to environmental conservation through the development of an eco-friendly structure. The research focused on enhancing the compatibility between two immiscible polymers, poly (lactic acid) (PLA) and poly (butylene adipate-co-terephthalate) (PBAT), using polyhedral oligomeric silsesquioxanes (POSS) nanoparticles with an epoxy functional group (Epoxy-POSS). This was achieved through a solution casting method. The study found that the modulus in the glassy region for blends containing Epoxy-POSS was significantly higher than that of the PLA/PBAT blend without Epoxy-POSS. However, in the transition and rubbery regions, the modulus of the Epoxy-POSS-containing blends was only marginally greater. From a mechanical properties’ perspective, the study demonstrated that the incorporation of POSS-EPOXY at varying concentrations enhanced the tensile strength of the PLA/PBAT blend by 30%, thereby acting as a reinforcement. This finding underscores the potential of this approach in the development of renewable polymers.Keywords: Polyhedral oligomeric silsesquioxane, mechanical behavior, PLA, PBAT, nanocomposite
Procedia PDF Downloads 652757 Software User Experience Enhancement through Collaborative Design
Authors: Shan Wang, Fahad Alhathal, Daniel Hobson
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023, aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight workshops with a diverse group of 11 individuals. Throughout these sessions, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences, co-design, design process, knowledge management tool, user-centered design
Procedia PDF Downloads 712756 Modification of Aliphatic-Aromatic Copolyesters with Polyether Block for Segmented Copolymers with Elastothemoplastic Properties
Authors: I. Irska, S. Paszkiewicz, D. Pawlikowska, E. Piesowicz, A. Linares, T. A. Ezquerra
Abstract:
Due to the number of advantages such as high tensile strength, sensitivity to hydrolytic degradation, and biocompatibility poly(lactic acid) (PLA) is one of the most common polyesters for biomedical and pharmaceutical applications. However, PLA is a rigid, brittle polymer with low heat distortion temperature and slow crystallization rate. In order to broaden the range of PLA applications, it is necessary to improve these properties. In recent years a number of new strategies have been evolved to obtain PLA-based materials with improved characteristics, including manipulation of crystallinity, plasticization, blending, and incorporation into block copolymers. Among the other methods, synthesis of aliphatic-aromatic copolyesters has been attracting considerable attention as they may combine the mechanical performance of aromatic polyesters with biodegradability known from aliphatic ones. Given the need for highly flexible biodegradable polymers, in this contribution, a series of aromatic-aliphatic based on poly(butylene terephthalate) and poly(lactic acid) (PBT-b-PLA) copolyesters exhibiting superior mechanical properties were copolymerized with an additional poly(tetramethylene oxide) (PTMO) soft block. The structure and properties of both series were characterized by means of attenuated total reflectance – Fourier transform infrared spectroscopy (ATR-FTIR), nuclear magnetic resonance spectroscopy (¹H NMR), differential scanning calorimetry (DSC), wide-angle X-ray scattering (WAXS) and dynamic mechanical, thermal analysis (DMTA). Moreover, the related changes in tensile properties have been evaluated and discussed. Lastly, the viscoelastic properties of synthesized poly(ester-ether) copolymers were investigated in detail by step cycle tensile tests. The block lengths decreased with the advance of treatment, and the block-random diblock terpolymers of (PBT-ran-PLA)-b-PTMO were obtained. DSC and DMTA analysis confirmed unambiguously that synthesized poly(ester-ether) copolymers are microphase-separated systems. The introduction of polyether co-units resulted in a decrease in crystallinity degree and melting temperature. X-ray diffraction patterns revealed that only PBT blocks are able to crystallize. The mechanical properties of (PBT-ran-PLA)-b-PTMO copolymers are a result of a unique arrangement of immiscible hard and soft blocks, providing both strength and elasticity.Keywords: aliphatic-aromatic copolymers, multiblock copolymers, phase behavior, thermoplastic elastomers
Procedia PDF Downloads 1432755 Active Bio-Packaging Fabricated from Coated Bagasse Papers with Polystyrene Nanocomposites
Authors: Hesham Moustafa, Ahmed M. Youssef
Abstract:
The demand for green packagingin the food field has been gained increasing attention in recent decades because of its degradability and safely. Thus, this study revealed that the by-product bagasse papers (BPs) derived from sugarcane waste can be decorated with a thin layer of polystyrene (PS) nanocomposites using the spreading approach.Three variable concentrations of TiO2 nanoparticles (i.e. 0.5, 1.0, 1.5 wt.%) were used to fabricate PS nanocomposites. The morphology of coated BP-PS biofilms was examined by X-ray diffraction, Fourier transferred Infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). Moreover, other measurements such as mechanical, thermal stability, flammability, wettability by the contact angle, water vapor, and gas barrier properties were carried out on the fabricated BP-PS biofilms. Most outcomes showed that the major properties were enhanced when the PS nanocomposites were implemented. The use of 1.5 wt.% TiO2 in PS nanocomposite for coated BP-PS biofilm increased the tensile stress by ~ 217 % compared to uncoated BP film. Furthermore, the rate of burning for BP-PS-1.5% film was reduced to ~ 33 mm/min because of the crystallinity of PS and the barrier effect provided by TiO₂ NPs. These coated sheets provide a promising candidate for use in advanced packaging applications.Keywords: bagasse paper, polystyrene nanocomposites, TiO2 nanoparticles, active packaging, mechanical properties, flammability
Procedia PDF Downloads 922754 Knowledge of Quality Assurance and Quality Control in Mammography; A Study among Radiographers of Mammography Settings in Sri Lanka
Authors: H. S. Niroshani, W. M. Ediri Arachchi, R. Tudugala, U. J. M. A. L. Jayasinghe, U. M. U. J. Jayasekara, P. B. Hewavithana
Abstract:
Mammography is used as a screening tool for early diagnosis of breast cancer. It is also useful in refining the diagnosis of breast cancer either by assessment or work up after a suspicious area in the breast has been detected. In order to detect breast cancer accurately and at the earliest possible stage, the image must have an optimum contrast to reveal mass densities and spiculated fibrous structures radiating from them. In addition, the spatial resolution must be adequate to reveal the suffusion of micro calcifications and their shape. The above factors can be optimized by implementing an effective QA programme to enhance the accurate diagnosis of mammographic imaging. Therefore, the radiographer’s knowledge on QA is greatly instrumental in routine mammographic practice. The aim of this study was to assess the radiographer’s knowledge on Quality Assurance and Quality Control programmes in relation to mammographic procedures. A cross-sectional study was carried out among all radiographers working in each mammography setting in Sri Lanka. Pre-tested, anonymous self-administered questionnaires were circulated among the study population and duly filled questionnaires returned within a period of three months were taken into the account. The data on demographical information, knowledge on QA programme and associated QC tests, overall knowledge on QA and QC programmes were obtained. Data analysis was performed using IBM SPSS statistical software (version 20.0). The total response rate was 59.6% and the average knowledge score was 54.15±11.29 SD out of 100. Knowledge was compared on the basis of education level, special training of mammography, and the years of working experience in a mammographic setting of the individuals. Out of 31 subjects, 64.5% (n=20) were graduate radiographers and 35.5% (n=11) were diploma holders while 83.9% (n=26) of radiographers have been specially trained for mammography and 16.1% (n=5) have not been attended for any special training for mammography. It is also noted that 58.1% (n=18) of individuals possessed their experience of less than one year and rest 41.9% (n=13) of them were greater than that. Further, the results found that there is a significant difference (P < 0.05) in the knowledge of QA and overall knowledge on QA and QC programme in the categories of education level and working experience. Also, results imply that there was a significant difference (P < 0.05) in the knowledge of QC test among the groups of trained and non-trained radiographers. This study reveals that education level, working experience and the training obtained particularly in the field of mammography have a significant impact on their knowledge on QA and QC in mammography.Keywords: knowledge, mammography, quality assurance, quality control
Procedia PDF Downloads 3342753 Optimization of Bio-Based Lightweight Mortars Containing Wood Waste
Authors: Valeria Corinaldesi, Nicola Generosi, Daniele Berdini
Abstract:
In this study, wood waste from processing by-products was used by replacing natural sand for producing bio-based lightweight mortars. Manufacturers of wood products and furniture usually generate sawdust and pieces of side-cuts. These are produced by cutting, drilling, and milling operations as well. Three different percentages of substitution of quartz sand were tried: 2.5%, 5%, and 10% by volume. Wood by-products were pre-soaked in calcium hydroxide aqueous solution in order to obtain wood mineralization to avoid undesirable effects on the bio-based building materials. Bio-based mortars were characterized by means of compression and bending tests, free drying shrinkage tests, resistance to water vapour permeability, water capillary absorption, and, finally, thermal conductivity measurements. Results obtained showed that a maximum dosage of 5% wood by-products should be used in order to avoid an excessive loss of bio-based mortar mechanical strength. On the other hand, by adding the proper dosage of water-reducing admixture, adequate mechanical performance can be achieved even with 10% wood waste addition.Keywords: bio-based mortar, energy efficiency, lightweight mortar, thermal insulation, wood waste
Procedia PDF Downloads 142752 Mechanical Performance of Sandwich Square Honeycomb Structure from Sugar Palm Fibre
Authors: Z. Ansari, M. R. M. Rejab, D. Bachtiar, J. P. Siregar
Abstract:
This study focus on the compression and tensile properties of new and recycle square honeycombs structure from sugar palm fibre (SPF) and polylactic acid (PLA) composite. The end data will determine the failure strength and energy absorption for both new and recycle composite. The control SPF specimens were fabricated from short fibre co-mingled with PLA by using a bra-blender set at 180°C and 50 rpm consecutively. The mixture of 30% fibre and 70% PLA were later on the hot press at 180°C into sheets with thickness 3mm consecutively before being assembled into a sandwich honeycomb structure. An INSTRON tensile machine and Abaqus 6.13 software were used for mechanical test and finite element simulation. The percentage of error from the simulation and experiment data was 9.20% and 9.17% for both new and recycled product. The small error of percentages was acceptable due to the nature of the simulation model to be assumed as a perfect model with no imperfect geometries. The energy absorption value from new to recycled product decrease from 312.86kJ to 282.10kJ. With this small decrements, it is still possible to implement a recycle SPF/PLA composite into everyday usages such as a car's interior or a small size furniture.Keywords: failure modes, numerical modelling, polylactic acid, sugar palm fibres
Procedia PDF Downloads 2982751 Sustainable Design and Mechanical Evaluation of Al-Based Bio-composite for Structural Applications
Authors: Akram Balaswad, Muhammad Farzik Ijaz, Shahid Parves
Abstract:
In the face of growing global environmental concerns and the urgent need for sustainable material methods, the use of bio-composites has emerged as a promising solution. Bio-composites, which integrate natural fibers or agricultural wastes, offer several advantages, such as easy disposal, fewer health hazards, and reduced energy consumption during manufacturing. They also contribute to weight reduction in products, leading to lower carbon emissions and energy savings. This study focuses on the development and characterization of bio-composites using recycled aluminum, eggshell carbonized powder (ECP), and date seed powder (DSP) for engineering applications. The research will investigate the mechanical and corrosion characteristics of the bio-composites and assess their feasibility for practical use in various engineering fields. Recycled aluminum and agro-waste materials are utilized to enhance sustainability, reduce environmental impact, and promote a circular economy. The study will highlight the potential of these eco-friendly materials in improving mechanical and corrosion properties, making them suitable for a wide range of engineering applications. The fabrication process will involve sourcing materials from local sources, cleaning, processing, and fabricating composites using a stir casting technique. Statistical analysis using ANNOVA will be done to compare the amount of variation of organic reinforcement (ECP / DSP) between groups with the amount of variation within groups Characterization methods include tensile testing, Vickers macro-hardness testing, SEM analysis, and corrosion testing. This research will contribute to the development of sustainable engineering materials and support the global and local efforts towards environmentally conscious practices.Keywords: bio-composites, sustainability, recycled aluminum, eggshell carbonized powder (ECP), date seed powder (DSP)
Procedia PDF Downloads 92750 Microstructure, Mechanical and Tribological Properties of (TiTaZrNb)Nx Medium Entropy Nitride Coatings: Influence of Nitrogen Content and Bias Voltage
Authors: Mario Alejandro Grisales, M. Daniela Chimá, Gilberto Bejarano Gaitán
Abstract:
High entropy alloys (HEA) and nitride (HEN) are currently very attractive to the automotive, aerospace, metalworking and materials forming manufacturing industry, among others, for exhibiting higher mechanical properties, wear resistance, and thermal stability than binary and ternary alloys. In this work medium-entropy coatings of TiTaZrNb and the nitrides of (TiTaZrNb)Nx were synthesized on to AISI 420 and M2 steel samples by the direct current magnetron sputtering technique. The influence of the bias voltage supplied to the substrate on the microstructure, chemical- and phase composition of the matrix coating was evaluated, and the effect of nitrogen flow on the microstructural, mechanical and tribological properties of the corresponding nitrides was studied. A change in the crystalline structure from BCC for TiTaZrNb coatings to FCC for (TiTaZrNb)Nx was observed, that is associated with the incorporation of nitrogen into the matrix and the consequent formation of a solid solution of (TiTaZrNb)Nx. An increase in hardness and residual stresses was observed with increasing bias voltage for TiTaZrNb, reaching 12.8 GPa for the coating deposited with a bias of -130V. In the case of (TiTaZrNb)Nx nitride, a greater hardness of 23 GPa is achieved for the coating deposited with a N2 flow of 12 sccm, which slightly drops to 21.7 GPa for that deposited with N2 flow of 15 sccm. The slight reduction in hardness could be associated with the precipitation of the TiN and ZrN phases that are formed at higher nitrogen flows. The specific wear rate of the deposited coatings ranged between 0.5xexp13 and 0.6xexp13 N/m2. The steel substrate exhibited an average hardness of 2.0 GPa and a specific wear rate of 203.2exp13 N/m2. Both the hardness and the specific wear rate of the synthesized nitride coatings were higher than that of the steel substrate, showing a protective effect of the steel against wear.Keywords: medium entropy coatings, hard coatings, magnetron sputtering, tribology, wear resistance
Procedia PDF Downloads 752749 Wettability of Superhydrophobic Polymer Layers Filled with Hydrophobized Silica on Glass
Authors: Diana Rymuszka, Konrad Terpiłowski, Lucyna Hołysz, Elena Goncharuk, Iryna Sulym
Abstract:
Superhydrophobic surfaces exhibit extremely high water repellency. The commonly accepted basic criterion for such surfaces is a water contact angle larger than 150°, low contact angle hysteresis and low sliding angle. These surfaces are of special interest, because properties such as anti-sticking, anti-contamination and self-cleaning are expected. These properties are attractive for many applications such as anti-sticking of snow for antennas and windows, anti-biofouling paints for boats, waterproof clothing, self-cleaning windshields for automobiles, dust-free coatings or metal refining. The various methods for the preparation of superhydrophobic surfaces since last two decades have been reported, such as phase separation, electrochemical deposition, template method, plasma method, chemical vapor deposition, wet chemical reaction, sol-gel processing, lithography and so on. The aim of the study was to investigate the influence of modified colloidal silica, used as a filler, on the hydrophobicity of the polymer film deposited on the glass support activated with plasma. On prepared surfaces water advancing (ӨA) and receding (ӨR) contact angles were measured and then their total apparent surface free energy was determined using the contact angle hysteresis approach (CAH). The structures of deposited films were observed with the help of an optical microscope. Topographies of selected films were also determined using an optical profilometer. It was found that plasma treatment influence glass surface wetting and energetic properties that is observed in higher adhesion between polymer/filler film and glass support. Using the colloidal silica particles as a filler for the polymer thin film deposited on the glass support, it is possible to produce strongly adhering layers of superhydrophobic properties. The best superhydrophobic properties were obtained for surfaces of the film glass/polimer + modified silica covered in 89 and 100%. The advancing contact angle measured on these surfaces amounts above 150° that leads to under 2 mJ/m2 value of the apparent surface free energy. Such films may have many practical applications, among others, as dust-free coatings or anticorrosion protection.Keywords: contact angle, plasma, superhydrophobic, surface free energy
Procedia PDF Downloads 4842748 Research of the Load Bearing Capacity of Inserts Embedded in CFRP under Different Loading Conditions
Authors: F. Pottmeyer, M. Weispfenning, K. A. Weidenmann
Abstract:
Continuous carbon fiber reinforced plastics (CFRP) exhibit a high application potential for lightweight structures due to their outstanding specific mechanical properties. Embedded metal elements, so-called inserts, can be used to join structural CFRP parts. Drilling of the components to be joined can be avoided using inserts. In consequence, no bearing stress is anticipated. This is a distinctive benefit of embedded inserts, since continuous CFRP have low shear and bearing strength. This paper aims at the investigation of the load bearing capacity after preinduced damages from impact tests and thermal-cycling. In addition, characterization of mechanical properties during dynamic high speed pull-out testing under different loading velocities was conducted. It has been shown that the load bearing capacity increases up to 100% for very high velocities (15 m/s) in comparison with quasi-static loading conditions (1.5 mm/min). Residual strength measurements identified the influence of thermal loading and preinduced mechanical damage. For both, the residual strength was evaluated afterwards by quasi-static pull-out tests. Taking into account the DIN EN 6038 a high decrease of force occurs at impact energy of 16 J with significant damage of the laminate. Lower impact energies of 6 J, 9 J, and 12 J do not decrease the measured residual strength, although the laminate is visibly damaged - distinguished by cracks on the rear side. To evaluate the influence of thermal loading, the specimens were placed in a climate chamber and were exposed to various numbers of temperature cycles. One cycle took 1.5 hours from -40 °C to +80 °C. It could be shown that already 10 temperature cycles decrease the load bearing capacity up to 20%. Further reduction of the residual strength with increasing number of thermal cycles was not observed. Thus, it implies that the maximum damage of the composite is already induced after 10 temperature cycles.Keywords: composite, joining, inserts, dynamic loading, thermal loading, residual strength, impact
Procedia PDF Downloads 2842747 Designing Function Knitted and Woven Upholstery Textile With SCOPY Film
Authors: Manar Y. Abd El-Aziz, Alyaa E. Morgham, Amira A. El-Fallal, Heba Tolla E. Abo El Naga
Abstract:
Different textile materials are usually used in upholstery. However, upholstery parts may become unhealthy when dust accrues and bacteria raise on the surface, which negatively affects the user's health. Also, leather and artificial leather were used in upholstery but, leather has a high cost and artificial leather has a potential chemical risk for users. Researchers have advanced vegie leather made from bacterial cellulose a symbiotic culture of bacteria and yeast (SCOBY). SCOBY remains a gelatinous, cellulose biofilm discovered floating at the air-liquid interface of the container. But this leather still needs some enhancement for its mechanical properties. This study aimed to prepare SCOBY, produce bamboo rib knitted fabrics with two different stitch densities, and cotton woven fabric then laminate these fabrics with the prepared SCOBY film to enhance the mechanical properties of the SCOBY leather at the same time; add anti-microbial function to the prepared fabrics. Laboratory tests were conducted on the produced samples, including tests for function properties; anti-microbial, thermal conductivity and light transparency. Physical properties; thickness and mass per unit. Mechanical properties; elongation, tensile strength, young modulus, and peel force. The results showed that the type of the fabric affected significantly SCOBY properties. According to the test results, the bamboo knitted fabric with higher stitch density laminated with SCOBY was chosen for its tensile strength and elongation as the upholstery of a bed model with antimicrobial properties and comfortability in the headrest design. Also, the single layer of SCOBY was chosen regarding light transparency and lower thermal conductivity for the creation of a lighting unit built into the bed headboard.Keywords: anti-microbial, bamboo, rib, SCOPY, upholstery
Procedia PDF Downloads 702746 Software User Experience Enhancement through User-Centered Design and Co-design Approach
Authors: Shan Wang, Fahad Alhathal, Hari Subramanian
Abstract:
User-centered design skills play an important role in crafting a positive and intuitive user experience for software applications. Embracing a user-centric design approach involves understanding the needs, preferences, and behaviors of the end-users throughout the design process. This mindset not only enhances the usability of the software but also fosters a deeper connection between the digital product and its users. This paper encompasses a 6-month knowledge exchange collaboration project between an academic institution and an external industry in 2023 in the UK; it aims to improve the user experience of a digital platform utilized for a knowledge management tool, to understand users' preferences for features, identify sources of frustration, and pinpoint areas for enhancement. This research conducted one of the most effective methods to implement user-centered design through co-design workshops for testing user onboarding experiences that involve the active participation of users in the design process. More specifically, in January 2023, we organized eight co-design workshops with a diverse group of 11 individuals. Throughout these co-design workshops, we accumulated a total of 11 hours of qualitative data in both video and audio formats. Subsequently, we conducted an analysis of user journeys, identifying common issues and potential areas for improvement within three insights. This analysis was pivotal in guiding the knowledge management software in prioritizing feature enhancements and design improvements. Employing a user-centered design thinking process, we developed a series of graphic design solutions in collaboration with the software management tool company. These solutions were targeted at refining onboarding user experiences, workplace interfaces, and interactive design. Some of these design solutions were translated into tangible interfaces for the knowledge management tool. By actively involving users in the design process and valuing their input, developers can create products that are not only functional but also resonate with the end-users, ultimately leading to greater success in the competitive software landscape. In conclusion, this paper not only contributes insights into designing onboarding user experiences for software within a co-design approach but also presents key theories on leveraging the user-centered design process in software design to enhance overall user experiences.Keywords: user experiences design, user centered design, co-design approach, knowledge management tool
Procedia PDF Downloads 152745 New Highly-Scalable Carbon Nanotube-Reinforced Glasses and Ceramics
Authors: Konstantinos G. Dassios, Guillaume Bonnefont, Gilbert Fantozzi, Theodore E. Matikas, Costas Galiotis
Abstract:
We report herein the development and preliminary mechanical characterization of fully-dense multi-wall carbon nanotube (MWCNT)-reinforced ceramics and glasses based on a completely new methodology termed High Shear Compaction (HSC). The tubes are introduced and bound to the matrix grains by aid of polymeric binders to form flexible green bodies which are sintered and densified by spark plasma sintering to unprecedentedly high densities of 100% of the pure-matrix value. The strategy was validated across a PyrexTM glass / MWCNT composite while no identifiable factors limit application to other types of matrices. Non-destructive evaluation, based on ultrasonics, of the dynamic mechanical properties of the materials including elastic, shear and bulk modulus as well as Poisson’s ratio showed optimum property improvement at 0.5 %wt tube loading while evidence of nanoscale-specific energy dissipative characteristics acting complementary to nanotube bridging and pull-out indicate a high potential in a wide range of reinforcing and multifunctional applications.Keywords: ceramic matrix composites, carbon nanotubes, toughening, ultrasonics
Procedia PDF Downloads 3792744 Porous Titanium Scaffolds Fabricated by Metal Injection Moulding Using Potassium-Chloride and Space Holder
Authors: Ali Dehghan Manshadi, David H. StJohn, Matthew S. Dargusch, M. Qian
Abstract:
Biocompatible, highly porous titanium scaffolds were manufactured by metal injection moulding of spherical titanium powder (powder size: -45 µm) with potassium chloride (powder size: -250 µm) as a space holder. Property evaluation of scaffolds confirmed a high level of compatibility between their mechanical properties and those of human cortical bone. The optimum sintering temperature was found to be 1250°C producing scaffolds with more than 90% interconnected pores in the size range of 200-250 µm, yield stress of 220 MPa and Young’s modulus of 7.80 GPa, all of which are suitable for bone tissue engineering. Increasing the sintering temperature to 1300°C increased the Young’s modulus to 22.0 GPa while reducing the temperature to 1150°C reduced the yield stress to 120 MPa due to incomplete sintering. The residual potassium chloride was determined vs. sintering temperature. A comparison was also made between the porous titanium scaffolds fabricated in this study and the additively manufactured titanium lattices of similar porosity reported in the literature.Keywords: titanium, metal injection moulding, mechanical properties, scaffolds
Procedia PDF Downloads 2132743 Modeling of the Mechanism of Ion Channel Opening of the Visual Receptor's Rod on the Light and Allosteric Effect of Rhodopsin in the Phosphorylation Process
Authors: N. S. Vassilieva-Vashakmadze, R. A. Gakhokidze, I. M. Khachatryan
Abstract:
In the first part of the paper it is shown that both the depolarization of the cytoplasmic membrane of rods observed in invertebrates and hyperpolarization characteristic of vertebrates on the light may activate the functioning of ion (Na+) channels of cytoplasmic membrane of rods and thus provide the emergence of nerve impulse and its transfer to the neighboring neuron etc. In the second part, using the quantum mechanical program for modeling of the molecular processes, we got a clear picture demonstrating the effect of charged phosphate groups on the protein components of α-helical subunits of the visual rhodopsin receptor. The analysis shows that the phosphorylation of terminal amino acid of seventh α-helical subunits of the visual rhodopsin causes a redistribution of electron density on the atoms, i.e. polarization of subunits, also the changing the configuration of the nuclear subsystem, which corresponds to the deformation process in the molecule. Based on the use of models it can be concluded that this system has an internal relationship between polarization and deformation processes that indicates on the allosteric effect. The allosteric effect is based on quantum-mechanical principle of the self-consistency of the molecules.Keywords: membrane potential, ion channels, visual rhodopsin, allosteric effect
Procedia PDF Downloads 2752742 Mechanical and Thermal Characterization of Washout Tooling for Resin Transfer Molding
Authors: Zachary N. Wing
Abstract:
Compared to autoclave based processes, Resin Transfer Molding (RTM) offers several key advantages. This includes high internal and external complexity, less waste, lower volatile emissions, higher production rates, and excellent surface finish. However, the injection of high pressure-high temperature resin presents a tooling challenge in cases where trapped geometries exist. Tooling materials that can sustain these conditions and be easily removed would expand the use of RTM. We have performed research on developing an RTM suitable tooling material called 'RTMCore' for use in forming trapped geometries. RTMCore tooling materials can withstand the injection of high temperature-high pressure resin but be easily removed with tap water. RTM properties and performance capabilities are reviewed against other washout systems. Our research will cover the preliminary characterization of tooling system properties, mechanical behavior, and initial results from an RTM manufacturing trial. Preliminary results show the material can sustain pressures greater than 13 MPa and temperatures greater than 150°C.Keywords: RTM, resin transfer molding, trapped geometries, washout tooling
Procedia PDF Downloads 1602741 Mechanical and Hydraulic Behavior of Arid Zone Soils Treated with Lime: Case of Abadla, Bechar Clays, South of Algeria
Authors: Sadek Younes, Fali Leyla, Rikioui Tayeb, Zizouni Khaled
Abstract:
Stabilization of clay with lime as bearing stratum is an alternative to replacement of original soil. By adding lime to clay soil, the soil workability is improved due to the combination of calcium ions to the clay minerals, which means, modified soil properties. The paper investigates the effect of hydrated lime on the behaviour of lime treated, arid zones clay (Abadla Clay). A number of mechanical and hydraulic tests were performed to identify the effect of lime dosage and compaction water content on the compressibility, permeability, and shear strength parameters of the soil. Test results show that the soil parameters can be improved through additives such as lime. Overall, the addition percentages of 6% and 9% lime give the best desired results. Also, results revealed that the compressibility behavior of lime-treated soil strongly affected by lime content. The results are presented in terms of modern interpretation of the behaviour of treated soils, in comparison with the parameters of the untreated soil.Keywords: arid zones, compressibility, lime, soil behaviour, soil stabilization, unsaturated soil
Procedia PDF Downloads 1832740 Effect of Damping on Performance of Magnetostrictive Vibration Energy Harvester
Authors: Mojtaba Ghodsi, Hamidreza Ziaifar, Morteza Mohammadzaheri, Payam Soltani
Abstract:
This article presents an analytical model to estimate the harvested power from a Magnetostrictive cantilevered beam with tip excitation. Furthermore, the effects of internal and external damping on harvested power are investigated. The magnetostrictive material in this harvester is Galfenol. In comparison to other popular smart materials like Terfenol-D, Galfenol has higher strength and machinability. In this article, first, a mechanical model of the Euler-Bernoulli beam is employed to calculate the deflection of the harvester. Then, the magneto-mechanical equation of Galfenol is combined with Faraday's law to calculate the generated voltage of the Magnetostrictive cantilevered beam harvester. Finally, the beam model is incorporated in the aforementioned combination. The results show that a 30×8.5×1 mm Galfenol cantilever beam harvester with 80 turn pickup coil can generate up to 3.7 mV and 9 mW. Furthermore, sensitivity analysis made by Response Surface Method (RSM) shows that the harvested power is only sensitive to the internal damping coefficient.Keywords: internal damping coefficient, external damping coefficient, euler-bernoulli, energy harvester, galfenol, magnetostrictive, response surface method
Procedia PDF Downloads 1172739 Chemical and Physical Modification of Carbon Fiber Reinforced Polymers Based on Thermoplastic Acrylic Resin
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Thanks to their excellent properties, i.e. high stiffness and strength in relation to their weight, corrosion resistance, and low thermal expansion, Carbon Fiber Reinforced Polymers (CFRPs) are a group of materials readily used in many industrial sectors, e.g. aviation, automotive, wind energy. Conventional CFRPs also have their disadvantages, namely, relatively low electrical conductivity and brittle cracking. To counteract this, a thermoplastic acrylic resin was proposed, which was further modified by the addition of organosilicon compounds and multi-walled carbon nanotubes (MWCNTs). The addition of the organosilicon compounds was aimed at improving the dispersion of the MWCNTs and obtaining good adhesion between the resin and the carbon fibre, where the MWCNTs were used as a conductive filler. In addition, during the fabrication of laminates using the infusion method, thermoplastic nonwovens doped with MWCNTs were placed between the carbon reinforcement layers to achieve a synergistic effect with an increase in electrical and mechanical properties.Keywords: CFRP, acrylic resin, organosilicon compounds, mechanical properties, electrical properties
Procedia PDF Downloads 1322738 Investigations on Enhancement of Fly Ash in Cement Manufacturing through Optimization of Clinker Quality and Fly Ash Fineness
Authors: Suresh Vanguri, Suresh Palla, K. V. Kalyani, S. K. Chaturvedi, B. N. Mohapatra
Abstract:
Enhancing the fly ash utilization in the manufacture of cement is identified as one of the key areas to mitigate the Green House Gas emissions from the cement industry. Though increasing the fly ash content in cement has economic and environmental benefits, it results in a decrease in the compressive strength values, particularly at early ages. Quality of clinker and fly ash were identified as predominant factors that govern the extent of absorption of fly ash in the manufacturing of cement. This paper presents systematic investigations on the effect of clinker and fly ash quality on the properties of resultant cement. Since mechanical activation alters the physicochemical properties such as particle size distribution, surface area, phase morphology, understanding the variation of these properties with activation is required for its applications. The effect of mechanical activation on fly ash surface area, specific gravity, flow properties, lime reactivity, comparative compressive strength (CCS), reactive silica and mineralogical properties were also studied. The fineness of fly ash was determined by Blaine’s method, specific gravity, lime reactivity, CCS were determined as per the method IS 1727-1967. The phase composition of fly ash was studied using the X-ray Diffraction technique. The changes in the microstructure and morphology with activation were examined using the scanning electron microscope. The studies presented in this paper also include evaluation of Portland Pozzolana Cement (PPC), prepared using high volume fly ash. Studies are being carried out using clinker from cement plants located in different regions/clusters in India. Blends of PPC containing higher contents of activated fly ash have been prepared and investigated for their chemical and physical properties, as per Indian Standard procedures. Changes in the microstructure of fly ash with activation and mechanical properties of resultant cement containing high volumes of fly ash indicated the significance of optimization of the quality of clinker and fly ash fineness for better techno-economical benefits.Keywords: flow properties, fly ash enhancement, lime reactivity, microstructure, mineralogy
Procedia PDF Downloads 4682737 Design and Simulation High Sensitive MEMS Capacitive Pressure Sensor with Small Size for Glaucoma Treatment
Authors: Yadollah Hezarjaribi, Mahdie Yari Esboi
Abstract:
In this paper, a novel MEMS capacitive pressure sensor with small size and high sensitivity is presented. This sensor has the separated clamped square diaphragm and the movable plate. The diaphragm material is polysilicon. The movable and fixed plates and mechanical coupling are gold. The substrate and diaphragm are pyrex glass and polysilicon, respectively. In capacitive sensor the sensitivity is proportional to deflection and capacitance changes with pressure for this reason with this design is improved the capacitance and sensitivity with small size. This sensor is designed for low pressure between 0-60 mmHg that is used for medical application such as treatment of an incurable disease called glaucoma. The size of this sensor is 350×350 µm2 and the thickness of the diaphragm is 2µm with 1μ air gap. This structure is designed by intellisuite software. In this MEMS capacitive pressure sensor the sensor sensitivity, diaphragm mechanical sensitivity for polysilicon diaphragm are 0.0469Pf/mmHg, 0.011 μm/mmHg, respectively. According to the simulating results for low pressure, the structure with polysilicon diaphragm has more change of the displacement and capacitance, this leads to high sensitivity than other diaphragms.Keywords: glaucoma, MEMS capacitive pressure sensor, square clamped diaphragm, polysilicon
Procedia PDF Downloads 322