Search results for: light sensitive nanocomposites
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5751

Search results for: light sensitive nanocomposites

4641 Novel Development on Orthopedic Prosthesis by Nanocrystalline Hydroxyapatite Nanocomposite Coated on 316 L Stainless Steel

Authors: Neriman Ozada, Ebrahim Karamian, Amirsalar Khandan, Sina Ghafoorpoor Yazdi

Abstract:

Natural hydroxyapatite, NHA, coatings on the surface of 316 L stainless steel implants has been widely employed in order to achieve better osteoconductivity. For coating, the plasma spraying method is generally used because they ensure adhesion between the coating and the 316 L stainless steel (SS) surface. Some compounds such as zircon (ZrSiO4) is employed as an additive in an attempt to improve HA’s mechanical properties such as wear resistance and hardness. In this study wear resistance has been carried out in different chemical compositions of coating. Therefore, nanocomposites based on NHA containing of 0 wt.%, 5 wt.%, 10 wt.%, and 15 wt.% of zircon were used as a coating on the SS implants. The samples consisted of NHA, derived from calf heated at 850 °C for 3 h. The composite mixture was coated on SS by plasma spray method. The results were estimated using the scanning electron microscopy (SEM), X-ray diffraction (XRD) techniques were utilized to characterize the shape and size of NHA powder. Disc wear test and Vickers hardness were utilized to characterize the coated nanocomposite samples. The prepared NHA powder had nano-scale morphological structure with the mean crystallite size of 30-50 nm in diameter. The wear resistance are almost 320, 380, 415, and 395 m/g and hardness are approximately 376, 391, 420, 410 VHN in ceramic composite materials containing ZrSiO4. The results have been shown that the best wear resistance and hardness occurred in the sample coated by NHA/ZrSiO4 containing of 10 wt.% of zircon.

Keywords: zircon, 316 L stainless steel, wear resistance, orthopedic applications, plasma spray

Procedia PDF Downloads 434
4640 Manager-Sensitive Theological Curricula: Rethinking Pastoral Care for Christians in High Positions Based on a Namibian Case Study

Authors: Florence Matsveru

Abstract:

The 21st-century church in Africa is faced with a myriad of challenges, which need attention. One of those challenges is pastoral ministry to congregants in high positions. This paper is based on a Ph.D. study entitled, ‘Wellbeing and work performance of Christians in managerial positions: A Namibian case study’ conducted between 2015 and 2018. The study was conducted with 32 purposively selected Christians working in managerial positions in Ohangwena Region, Namibia. The study employed a mixed-methods approach, i.e., both qualitative (to get participants’ feelings and perceptions) and quantitative (to get proportions of the experiences and perceptions). The research process involved a questionnaire survey and interviews. The study revealed that Christians in managerial positions have both common and unique experiences in three spheres: the workplace, the family and the church. The experiences lead to physical, emotional, psychological, social and spiritual needs. The findings also showed that some of the expectations placed upon Christians in managerial positions in the church may be unrealistic, while at the same time this group of congregants want to use their work experiences for the benefit of the church. A worrying finding was that pastors are generally not well-trained for ministry to congregants in high positions. Since these were perceptions of the participants (some of whom were also pastors), the researcher went further to do a short internet survey of the curricula of a number of theological colleges in Southern Africa. This survey did not show any ‘manager-sensitive’ modules in the surveyed colleges. Theological education for pastors, especially in African theological institutions, seems to ignore the unique needs of congregants in high positions. This paper argues that the needs of Christians in high positions should be considered in pastoral care and that theological education is key in equipping pastors with the necessary knowledge and skills. This paper is, therefore, a call to theological institutions to include ministry to people in high positions in their curricula. Pastors who are already beyond theological school may find it helpful to attend or hold workshops that focus on congregants in high positions so that this kind of 'sheep' will find good pasture in the church. A paper of this nature helps to strengthen pastoral ministry and to enhance the relevance of theological education.

Keywords: Christian managers, theological curricula, pastoral care, African

Procedia PDF Downloads 133
4639 Exploring Heidegger’s Fourfold through Architecture-Dwelling for Imaginary Fictional Characters in Drawings

Authors: Hassan Wajid

Abstract:

Architecture design studio with all its accouterments, especially pedagogies, has been committed to awakening the students to the true meaning of the concept of Dwelling. The real task is how to make them unlearn the associations of “dwelling as a rented or owned accommodation by the road with a car parked in front of a garage door and replace it by the fundamental experiential-phenomenological manifestations of Light, Space, Gravity and Time through assigned readings and small theoretical challenges resulting in drawings and models. The primary challenge for teachers remained the introduction of the act or desire of ‘Dwelling’ philosophically. The academic link had been offered by Albert Hofstadter's Poetry, Language, through which Martin Heidegger’s fourfold concept of ‘Building Dwelling, Thinking’ primarily served to guide us through this trajectory in helping to build an intellectual framework as justification of the term “dwelling” in its various meanings. Gaston Bachelard’s Poetics of Space and Merleau-Ponti’s Phenomenology of Perception also got assigned as reading. Four fictional characters created by two master short story writers G Maupassant, and O Henry were introduced as DwellersClients in search of their respective dwellings as drawn imaginations in the studio four-fold of Light, Space, Gravity, and Time and at the same time aspire to understand thoroughly Heidegger’s Four-Fold of Earth, Sky, Divinities and Mortals. asserting its place in the corresponding story and its unique character as the Dweller.

Keywords: dwelling, imagination, architectural manifestation, phenomenological

Procedia PDF Downloads 70
4638 Enhancement of Rice Straw Composting Using UV Induced Mutants of Penicillium Strain

Authors: T. N. M. El Sebai, A. A. Khattab, Wafaa M. Abd-El Rahim, H. Moawad

Abstract:

Fungal mutant strains have produced cellulase and xylanase enzymes, and have induced high hydrolysis with enhanced of rice straw. The mutants were obtained by exposing Penicillium strain to UV-light treatments. Screening and selection after treatment with UV-light were carried out using cellulolytic and xylanolytic clear zones method to select the hypercellulolytic and hyperxylanolytic mutants. These mutants were evaluated for their cellulase and xylanase enzyme production as well as their abilities for biodegradation of rice straw. The mutant 12 UV/1 produced 306.21% and 209.91% cellulase and xylanase, respectively, as compared with the original wild type strain. This mutant showed high capacity of rice straw degradation. The effectiveness of tested mutant strain and that of wild strain was compared in relation to enhancing the composting process of rice straw and animal manures mixture. The results obtained showed that the compost product of inoculated mixture with mutant strain (12 UV/1) was the best compared to the wild strain and un-inoculated mixture. Analysis of the composted materials showed that the characteristics of the produced compost were close to those of the high quality standard compost. The results obtained in the present work suggest that the combination between rice straw and animal manure could be used for enhancing the composting process of rice straw and particularly when applied with fungal decomposer accelerating the composting process.

Keywords: rice straw, composting, UV mutants, Penicillium

Procedia PDF Downloads 284
4637 Effects of Polydispersity on the Glass Transition Dynamics of Aqueous Suspensions of Soft Spherical Colloidal Particles

Authors: Sanjay K. Behera, Debasish Saha, Paramesh Gadige, Ranjini Bandyopadhyay

Abstract:

The zero shear viscosity (η₀) of a suspension of hard sphere colloids characterized by a significant polydispersity (≈10%) increases with increase in volume fraction (ϕ) and shows a dramatic increase at ϕ=ϕg with the system entering a colloidal glassy state. Fragility which is the measure of the rapidity of approach of these suspensions towards the glassy state is sensitive to its size polydispersity and stiffness of the particles. Soft poly(N-isopropylacrylamide) (PNIPAM) particles deform in the presence of neighboring particles at volume fraction above the random close packing volume fraction of undeformed monodisperse spheres. Softness, therefore, enhances the packing efficiency of these particles. In this study PNIPAM particles of a nearly constant swelling ratio and with polydispersities varying over a wide range (7.4%-48.9%) are synthesized to study the effects of polydispersity on the dynamics of suspensions of soft PNIPAM colloidal particles. The size and polydispersity of these particles are characterized using dynamic light scattering (DLS) and scanning electron microscopy (SEM). As these particles are deformable, their packing in aqueous suspensions is quantified in terms of effective volume fraction (ϕeff). The zero shear viscosity (η₀) data of these colloidal suspensions, estimated from rheometric experiments as a function of the effective volume fraction ϕeff of the suspensions, increases with increase in ϕeff and shows a dramatic increase at ϕeff = ϕ₀. The data for η₀ as a function of ϕeff fits well to the Vogel-Fulcher-Tammann equation. It is observed that increasing polydispersity results in increasingly fragile supercooled liquid-like behavior, with the parameter ϕ₀, extracted from the fits to the VFT equation shifting towards higher ϕeff. The observed increase in fragility is attributed to the prevalence of dynamical heterogeneities (DHs) in these polydisperse suspensions, while the simultaneous shift in ϕ₀ is ascribed to the decoupling of the dynamics of the smallest and largest particles. Finally, it is observed that the intrinsic nonlinearity of these suspensions, estimated at the third harmonic near ϕ₀ in Fourier transform oscillatory rheological experiments, increases with increase in polydispersity. These results are in agreement with theoretical predictions and simulation results for polydisperse hard sphere colloidal glasses and clearly demonstrate that jammed suspensions of polydisperse colloidal particles can be effectively fluidized with increasing polydispersity. Suspensions of these particles are therefore excellent candidates for detailed experimental studies of the effects of polydispersity on the dynamics of glass formation.

Keywords: dynamical heterogeneity, effective volume fraction, fragility, intrinsic nonlinearity

Procedia PDF Downloads 166
4636 Incorporation of Noncanonical Amino Acids into Hard-to-Express Antibody Fragments: Expression and Characterization

Authors: Hana Hanaee-Ahvaz, Monika Cserjan-Puschmann, Christopher Tauer, Gerald Striedner

Abstract:

Incorporation of noncanonical amino acids (ncAA) into proteins has become an interesting topic as proteins featured with ncAAs offer a wide range of different applications. Nowadays, technologies and systems exist that allow for the site-specific introduction of ncAAs in vivo, but the efficient production of proteins modified this way is still a big challenge. This is especially true for 'hard-to-express' proteins where low yields are encountered even with the native sequence. In this study, site-specific incorporation of azido-ethoxy-carbonyl-Lysin (azk) into an anti-tumor-necrosis-factor-α-Fab (FTN2) was investigated. According to well-established parameters, possible site positions for ncAA incorporation were determined, and corresponding FTN2 genes were constructed. Each of the modified FTN2 variants has one amber codon for azk incorporated either in its heavy or light chain. The expression level for all variants produced was determined by ELISA, and all azk variants could be produced with a satisfactory yield in the range of 50-70% of the original FTN2 variant. In terms of expression yield, neither the azk incorporation position nor the subunit modified (heavy or light chain) had a significant effect. We confirmed correct protein processing and azk incorporation by mass spectrometry analysis, and antigen-antibody interaction was determined by surface plasmon resonance analysis. The next step is to characterize the effect of azk incorporation on protein stability and aggregation tendency via differential scanning calorimetry and light scattering, respectively. In summary, the incorporation of ncAA into our Fab candidate FTN2 worked better than expected. The quantities produced allowed a detailed characterization of the variants in terms of their properties, and we can now turn our attention to potential applications. By using click chemistry, we can equip the Fabs with additional functionalities and make them suitable for a wide range of applications. We will now use this option in a first approach and develop an assay that will allow us to follow the degradation of the recombinant target protein in vivo. Special focus will be laid on the proteolytic activity in the periplasm and how it is influenced by cultivation/induction conditions.

Keywords: degradation, FTN2, hard-to-express protein, non-canonical amino acids

Procedia PDF Downloads 236
4635 Enhancement of Underwater Haze Image with Edge Reveal Using Pixel Normalization

Authors: M. Dhana Lakshmi, S. Sakthivel Murugan

Abstract:

As light passes from source to observer in the water medium, it is scattered by the suspended particulate matter. This scattering effect will plague the captured images with non-uniform illumination, blurring details, halo artefacts, weak edges, etc. To overcome this, pixel normalization with an Amended Unsharp Mask (AUM) filter is proposed to enhance the degraded image. To validate the robustness of the proposed technique irrespective of atmospheric light, the considered datasets are collected on dual locations. For those images, the maxima and minima pixel intensity value is computed and normalized; then the AUM filter is applied to strengthen the blurred edges. Finally, the enhanced image is obtained with good illumination and contrast. Thus, the proposed technique removes the effect of scattering called de-hazing and restores the perceptual information with enhanced edge detail. Both qualitative and quantitative analyses are done on considering the standard non-reference metric called underwater image sharpness measure (UISM), and underwater image quality measure (UIQM) is used to measure color, sharpness, and contrast for both of the location images. It is observed that the proposed technique has shown overwhelming performance compared to other deep-based enhancement networks and traditional techniques in an adaptive manner.

Keywords: underwater drone imagery, pixel normalization, thresholding, masking, unsharp mask filter

Procedia PDF Downloads 199
4634 Comparative Study of Seismic Isolation as Retrofit Method for Historical Constructions

Authors: Carlos H. Cuadra

Abstract:

Seismic isolation can be used as a retrofit method for historical buildings with the advantage that minimum intervention on super-structure is required. However, selection of isolation devices depends on weight and stiffness of upper structure. In this study, two buildings are considered for analyses to evaluate the applicability of this retrofitting methodology. Both buildings are located at Akita prefecture in the north part of Japan. One building is a wooden structure that corresponds to the old council meeting hall of Noshiro city. The second building is a brick masonry structure that was used as house of a foreign mining engineer and it is located at Ani town. Ambient vibration measurements were performed on both buildings to estimate their dynamic characteristics. Then, target period of vibration of isolated systems is selected as 3 seconds is selected to estimate required stiffness of isolation devices. For wooden structure, which is a light construction, it was found that natural rubber isolators in combination with friction bearings are suitable for seismic isolation. In case of masonry building elastomeric isolator can be used for its seismic isolation. Lumped mass systems are used for seismic response analysis and it is verified in both cases that seismic isolation can be used as retrofitting method of historical construction. However, in the case of the light building, most of the weight corresponds to the reinforced concrete slab that is required to install isolation devices.

Keywords: historical building, finite element method, masonry structure, seismic isolation, wooden structure

Procedia PDF Downloads 157
4633 Upconversion Nanoparticles for Imaging and Controlled Photothermal Release of Anticancer Drug in Breast Cancer

Authors: Rishav Shrestha, Yong Zhang

Abstract:

The Anti-Stoke upconversion process has been used extensively for bioimaging and is recently being used for photoactivated therapy in cancer utilizing upconversion nanoparticles (UCNs). The UCNs have an excitation band at 980nm; 980nm laser excitation used to produce UV/Visible emissions also produce a heating effect. Light-to-heat conversion has been observed in nanoparticles(NPs) doped with neodymium(Nd) or ytterbium(Yb)/erbium(Er) ions. Despite laser-induced heating in Rare-earth doped NPs being proven to be a relatively efficient process, only few attempts to use them as photothermal agents in biosystems have been made up to now. Gold nanoparticles and carbon nanotubes are the most researched and developed for photothermal applications. Both have large heating efficiency and outstanding biocompatibility. However, they show weak fluorescence which makes them harder to track in vivo. In that regard, UCNs are attractive due to their excellent optical features in addition to their light-to-heat conversion and excitation by NIR, for imaging and spatiotemporally releasing drugs. In this work, we have utilized a simple method to coat Nd doped UCNs with thermoresponsive polymer PNIPAM on which 4-Hydroxytamoxifen (4-OH-T) is loaded. Such UCNs demonstrate a high loading efficiency and low leakage of 4-OH-T. Encouragingly, the release of 4-OH-T can be modulated by varying the power and duration of the NIR. Such UCNs were then used to demonstrate imaging and controlled photothermal release of 4-OH-T in MCF-7 breast cancer cells.

Keywords: cancer therapy, controlled release, photothermal release, upconversion nanoparticles

Procedia PDF Downloads 422
4632 Facile Synthesis of Metal Nanoparticles on Graphene via Galvanic Displacement Reaction for Sensing Application

Authors: Juree Hong, Sanggeun Lee, Jungmok Seo, Taeyoon Lee

Abstract:

We report a facile synthesis of metal nano particles (NPs) on graphene layer via galvanic displacement reaction between graphene-buffered copper (Cu) and metal ion-containing salts. Diverse metal NPs can be formed on graphene surface and their morphologies can be tailored by controlling the concentration of metal ion-containing salt and immersion time. The obtained metal NP-decorated single-layer graphene (SLG) has been used as hydrogen gas (H2) sensing material and exhibited highly sensitive response upon exposure to 2% of H2.

Keywords: metal nanoparticle, galvanic displacement reaction, graphene, hydrogen sensor

Procedia PDF Downloads 427
4631 Graphene Reinforced Magnesium Metal Matrix Composites for Biomedical Applications

Authors: Khurram Munir, Cuie Wen, Yuncang Li

Abstract:

Magnesium (Mg) metal matrix composites (MMCs) reinforced with graphene nanoplatelets (GNPs) have been developed by powder metallurgy (PM). In this study, GNPs with different concentrations (0.1-0.3 wt.%) were dispersed into Mg powders by high-energy ball-milling processes. The microstructure and resultant mechanical properties of the fabricated nanocomposites were characterized using transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), Raman spectroscopy (RS), compression and nano-wear tests. The corrosion resistance of the fabricated composites was evaluated by electrochemical tests and hydrogen evolution measurements. Finally, the biological response of Mg-GNPs composites was assessed using osteoblast-like SaOS2 cells. The results indicate that GNPs are excellent candidates as reinforcements in Mg matrices for the manufacture of biodegradable Mg-based composite implants. GNP addition improved the mechanical properties of Mg via synergetic strengthening modes. Moreover, retaining the structural integrity of GNPs during PM processing improved the ductility, compressive strength, and corrosion resistance of the Mg-GNP composites as compared to monolithic Mg. Cytotoxicity assessments did not reveal any significant toxicity with the addition of GNPs to Mg matrices. This study demonstrates that Mg-xGNPs with x < 0.3 wt.%, may constitute novel biodegradable implant materials for load-bearing applications.

Keywords: magnesium-graphene composites, strengthening mechanisms, In vitro cytotoxicity, biocorrosion

Procedia PDF Downloads 158
4630 Removal of Nutrients from Sewage Using Algal Photo-Bioreactor

Authors: Purnendu Bose, Jyoti Kainthola

Abstract:

Due to recent advances in illumination technology, artificially illuminated algal-bacterial photo bioreactors are now a potentially feasible option for simultaneous and comprehensive organic carbon and nutrients removal from secondary treated domestic sewage. The experiments described herein were designed to determine the extent of nutrient uptake in photo bioreactors through algal assimilation. Accordingly, quasi steady state data on algal photo bioreactor performance was obtained under 20 different conditions. Results indicated that irrespective of influent N and P levels, algal biomass recycling resulted in superior performance of algal photo bioreactors in terms of both N and P removals. Further, both N and P removals were positively related to the growth of algal biomass in the reactor. Conditions in the reactor favouring greater algal growth also resulted in greater N and P removals. N and P removals were adversely impacted in reactors with low algal concentrations due to the inability of the algae to grow fast enough under the conditions provided. Increasing algal concentrations in reactors over a certain threshold value through higher algal biomass recycling was also not fruitful, since algal growth slowed under such conditions due to reduced light availability due to algal ‘self-shading’. It was concluded that N removals greater than 80% at high influent N concentrations is not possible with the present reactor configuration. Greater than 80% N removals may however be possible in similar reactors if higher light intensity is provided. High P removal is possible only if the influent N: P ratio in the reactor is aligned closely with the algal stoichiometric requirements for P.

Keywords: nutrients, algae, photo, bioreactor

Procedia PDF Downloads 214
4629 A System for Preventing Inadvertent Exposition of Staff Present outside the Operating Theater: Description and Clinical Test

Authors: Aya Al Masri, Kamel Guerchouche, Youssef Laynaoui, Safoin Aktaou, Malorie Martin, Fouad Maaloul

Abstract:

Introduction: Mobile C-arms move throughout operating rooms of the operating theater. Being designed to move between rooms, they are not equipped with relays to retrieve the exposition information and export it outside the room. Therefore, no light signaling is available outside the room to warn the X-ray emission for staff. Inadvertent exposition of staff outside the operating theater is a real problem for radiation protection. The French standard NFC 15-160 require that: (1) access to any room containing an X-ray emitting device must be controlled by a light signage so that it cannot be inadvertently crossed, and (2) setting up an emergency button to stop the X-ray emission. This study presents a system that we developed to meet these requirements and the results of its clinical test. Materials and methods: The system is composed of two communicating boxes: o The "DetectBox" is to be installed inside the operating theater. It identifies the various operation states of the C-arm by analyzing its power supply signal. The DetectBox communicates (in wireless mode) with the second box (AlertBox). o The "AlertBox" can operate in socket or battery mode and is to be installed outside the operating theater. It detects and reports the state of the C-arm by emitting a real time light signal. This latter can have three different colors: red when the C-arm is emitting X-rays, orange when it is powered on but does not emit X-rays, and green when it is powered off. The two boxes communicate on a radiofrequency link exclusively carried out in the ‘Industrial, Scientific and Medical (ISM)’ frequency bands and allows the coexistence of several on-site warning systems without communication conflicts (interference). Taking into account the complexity of performing electrical works in the operating theater (for reasons of hygiene and continuity of medical care), this system (having a size <10 cm²) works in complete safety without any intrusion in the mobile C-arm and does not require specific electrical installation work. The system is equipped with emergency button that stops X-ray emission. The system has been clinically tested. Results: The clinical test of the system shows that: it detects X-rays having both high and low energy (50 – 150 kVp), high and low photon flow (0.5 – 200 mA: even when emitted for a very short time (<1 ms)), Probability of false detection < 10-5, it operates under all acquisition modes (continuous, pulsed, fluoroscopy mode, image mode, subtraction and movie mode), it is compatible with all C-arm models and brands. We have also tested the communication between the two boxes (DetectBox and AlertBox) in several conditions: (1) Unleaded room, (2) leaded room, and (3) rooms with particular configuration (sas, great distances, concrete walls, 3 mm of lead). The result of these last tests was positive. Conclusion: This system is a reliable tool to alert the staff present outside the operating room for X-ray emission and insure their radiation protection.

Keywords: Clinical test, Inadvertent staff exposition, Light signage, Operating theater

Procedia PDF Downloads 126
4628 Rheological Properties of PP/EVA Blends

Authors: Othman Y. Alothman

Abstract:

The study aims to investigate the effects of blend ratio, VA content and temperature on the rheological properties of PPEVA blends. The results show that all pure polymers and their blends show typical shear thinning behaviour. All neat polymers exhibit power-low type flow behaviour, with the viscosity order as EVA328 > EVA206 > PP in almost all frequency ranges. As temperature increases, the viscosity of all polymers decreases as expected, and the viscosity becomes more sensitive to the addition of EVA. Two different regions can be observed on the flow curve of some of the polymers and their blends, which is thought to be due to slip-stick transition or melt fracture.

Keywords: polypropylene, ethylene vinyl acetate, blends, rheological properties

Procedia PDF Downloads 475
4627 The Link of the Human Immunodeficiency Virus With the Progression of Multiple Sclerosis Disease

Authors: Sina Mahdavi

Abstract:

Multiple sclerosis (MS) is a progressive inflammatory autoimmune disease of the CNS that affects the myelination process in the central nervous system (CNS). Complex interactions of various "environmental or infectious" factors may act as triggers in autoimmunity and disease progression. The association between viral infections, especially human immunodeficiency virus (HIV) and MS is one potential cause that is not well understood. This study aims to summarize the available data on human HIV infection in MS disease progression. In this study, the keywords "Multiple sclerosis", "Human immunodeficiency virus ", and "Central nervous system" in the databases PubMed, and Google Scholar between 2017 and 2022 were searched and 15 articles were chosen, studied, and analyzed. Revealed histologic signs of "MS-like illness" in the setting of HIV, which comprised widespread demyelination with reactive astrocytes, foamy macrophages, and perivascular infiltration with inflammatory cells, all of which are compatible with MS lesions. Human immunodeficiency virus causes dysfunction of the immune system, especially characterized by hypergammaglobulinemia and chronic activation of B cells. Activation of B cells leads to increased synthesis of immunoglobulin and finally to an excess of free light chains. Free light chains may be involved in autoimmune responses against neurons. There is a high expression of HIV during the course of MS, which indicates the relationship between HIV and MS, that this virus can play a role in the development of MS by creating an inflammatory state. Therefore, measures to modulate the expression of HIV may be effective in reducing inflammatory processes in demyelinated areas of MS patients.

Keywords: multiple sclerosis, human immunodeficiency virus, central nervous system, autoimmunity

Procedia PDF Downloads 84
4626 Clinical Value of 18F-FDG-PET Compared with CT Scan in the Detection of Nodal and Distant Metastasis in Urothelial Carcinoma or Bladder Cancer

Authors: Mohammed Al-Zubaidi, Katherine Ong, Pravin Viswambaram, Steve McCombie, Oliver Oey, Jeremy Ong, Richard Gauci, Ronny Low, Dickon Hayne

Abstract:

Objective: Lymph node involvement along with distant metastasis in a patient with invasive bladder cancer determines the disease survival, therefeor, it is an essential determinant of the therapeutic management and outcome. This retrospective study aims to determine the accuracy of FDG PET scan in detecting lymphatic involvement and distant metastatic urothelial cancer compared to conventional CT staging. Method: A retrospective review of 76 patients with UC or BC who underwent surgery or confirmatory biopsy that was staged with both CT and 18F-FDG-PET (up to 8 weeks apart) between 2015 and 2020. Fifty-sevenpatients (75%) had formal pelvic LN dissection or biopsy of suspicious metastasis. 18F-FDG-PET reports for positive sites were qualitative depending on SUV Max. On the other hand, enlarged LN by RECIST criteria 1.1 (>10 mm) and other qualitative findings suggesting metastasis were considered positive in CT scan. Histopathological findings from surgical specimens or image-guided biopsies were considered the gold standard in comparison to imaging reports. 18F-FDG-avid or enlarged pelvic LNs with surgically proven nodal metastasis were considered true positives. Performance characteristics of 18F-FDG-PET and CT, including sensitivity, specificity, positive predictive value (PPV), and negative predictive value (PPV), were calculated. Results: Pelvic LN involvement was confirmed histologically in 10/57 (17.5%) patients. Sensitivity, specificity, PPV and NPV of CT for detecting pelvic LN metastases were 41.17% (95% CI:18-67%), 100% (95% CI:90-100%) 100% (95% CI:59-100%) and 78.26% (95% CI:64-89%) respectively. Sensitivity, specificity, PPV and NPV of 18F-FDG-PET for detecting pelvic LN metastases were 62.5% (95% CI:35-85%), 83.78% (95% CI:68-94%), 62.5% (95% CI:35-85%), and 83.78% (95% CI:68-94%) respectively. Pre-operative staging with 18F-FDG-PET identified the distant metastatic disease in 9/76 (11.8%) patients who were occult on CT. This retrospective study suggested that 18F-FDG-PET may be more sensitive than CT for detecting pelvic LN metastases. 7/76 (9.2%) patients avoided cystectomy due to 18F-FDG-PET diagnosed metastases that were not reported on CT. Conclusion: 18F-FDG-PET is more sensitive than CT for pelvic LN metastases, which can be used as the standard modality of bladder cancer staging, as it may change the treatment by detecting lymph node metastasis that was occult in CT. Further research involving randomised controlled trials comparing the diagnostic yield of 18F-FDG-PET and CT in detecting nodal and distant metastasis in UC or BC is warranted to confirm our findings.

Keywords: FDG PET, CT scan, urothelial cancer, bladder cancer

Procedia PDF Downloads 122
4625 Determination of Circulating Tumor Cells in Breast Cancer Patients by Electrochemical Biosensor

Authors: Gökçe Erdemir, İlhan Yaylım, Serap Erdem-Kuruca, Musa Mutlu Can

Abstract:

It has been determined that the main reason for the death of cancer disease is caused by metastases rather than the primary tumor. The cells that leave the primary tumor and enter the circulation and cause metastasis in the secondary organs are called "circulating tumor cells" (CTCs). The presence and number of circulating tumor cells has been associated with poor prognosis in many major types of cancer, including breast, prostate, and colorectal cancer. It is thought that knowledge of circulating tumor cells, which are seen as the main cause of cancer-related deaths due to metastasis, plays a key role in the diagnosis and treatment of cancer. The fact that tissue biopsies used in cancer diagnosis and follow-up are an invasive method and are insufficient in understanding the risk of metastasis and the progression of the disease have led to new searches. Liquid biopsy tests performed with a small amount of blood sample taken from the patient for the detection of CTCs are easy and reliable, as well as allowing more than one sample to be taken over time to follow the prognosis. However, since these cells are found in very small amounts in the blood, it is very difficult to capture them and specially designed analytical techniques and devices are required. Methods based on the biological and physical properties of the cells are used to capture these cells in the blood. Early diagnosis is very important in following the prognosis of tumors of epithelial origin such as breast, lung, colon and prostate. Molecules such as EpCAM, vimentin, and cytokeratins are expressed on the surface of cells that pass into the circulation from very few primary tumors and reach secondary organs from the circulation, and are used in the diagnosis of cancer in the early stage. For example, increased EpCAM expression in breast and prostate cancer has been associated with prognosis. These molecules can be determined in some blood or body fluids to be taken from patients. However, more sensitive methods are required to be able to determine when they are at a low level according to the course of the disease. The aim is to detect these molecules found in very few cancer cells with the help of sensitive, fast-sensing biosensors, first in breast cancer cells reproduced in vitro and then in blood samples taken from breast cancer patients. In this way, cancer cells can be diagnosed early and easily and effectively treated.

Keywords: electrochemical biosensors, breast cancer, circulating tumor cells, EpCAM, Vimentin, Cytokeratins

Procedia PDF Downloads 261
4624 Synthesis and Characterization of AFe₂O₄ (A=CA, Co, CU) Nano-Spinels: Application to Hydrogen Photochemical Production under Visible Light Irradiation

Authors: H. Medjadji, A. Boulahouache, N. Salhi, A. Boudjemaa, M. Trari

Abstract:

Hydrogen from renewable sources, such as solar, is referred to as green hydrogen. The splitting water process using semiconductors, such as photocatalysts, has attracted significant attention due to its potential application for solving the energy crisis and environmental pollution. Spinel ferrites of the MF₂O₄ type have shown broad interest in diverse energy conversion processes, including fuel cells and photo electrocatalytic water splitting. This work focuses on preparing nano-spinels based on iron AFe₂O₄ (A= Ca, Co, and Cu) as photocatalysts using the nitrate method. These materials were characterized both physically and optically and subsequently tested for hydrogen generation under visible light irradiation. Various techniques were used to investigate the properties of the materials, including TGA-DT, X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), UV-visible spectroscopy, Scanning Electron Microscopy with Energy Dispersive X-ray Spectroscopy (SEM-EDX) and X-ray Photoelectron Spectroscopy (XPS) was also undertaken. XRD analysis confirmed the formation of pure phases at 850°C, with crystalline sizes of 31 nm for CaFe₂O₄, 27 nm for CoFe₂O₄, and 40 nm for CuFe₂O₄. The energy gaps, calculated from recorded diffuse reflection data, are 1.85 eV for CaFe₂O₄, 1.27 eV for CoFe₂O₄, and 1.64 eV for CuFe₂O₄. SEM micrographs showed homogeneous grains with uniform shapes and medium porosity in all samples. EDX elemental analysis determined the absence of any contaminating elements, highlighting the high purity of the prepared materials via the nitrate route. XPS spectra revealed the presence of Fe3+ and O in all samples. Additionally, XPS analysis revealed the presence of Ca²⁺, Co²⁺, and Cu²⁺ on the surface of CaFe₂O₄ and CoFe₂O₄ spinels, respectively. The photocatalytic activity was successfully evaluated by measuring H₂ evolution through the water-splitting process. The best performance was achieved with CaFe₂O₄ in a neutral medium (pH ~ 7), yielding 189 µmol at an optimal temperature of ~50°C. The highest hydrogen production rates for CoFe₂O₄ and CuFe₂O₄ were obtained at pH ~ 12 with release rates of 65 and 85 µmol, respectively, under visible light irradiation at the same optimal temperature. Various conditions were investigated including the pH of the solution, the hole sensors utilization and recyclability.

Keywords: hydrogen, MFe₂O₄, nitrate route, spinel ferrite

Procedia PDF Downloads 40
4623 An Infrared Inorganic Scintillating Detector Applied in Radiation Therapy

Authors: Sree Bash Chandra Debnath, Didier Tonneau, Carole Fauquet, Agnes Tallet, Julien Darreon

Abstract:

Purpose: Inorganic scintillating dosimetry is the most recent promising technique to solve several dosimetric issues and provide quality assurance in radiation therapy. Despite several advantages, the major issue of using scintillating detectors is the Cerenkov effect, typically induced in the visible emission range. In this context, the purpose of this research work is to evaluate the performance of a novel infrared inorganic scintillator detector (IR-ISD) in the radiation therapy treatment to ensure Cerenkov free signal and the best matches between the delivered and prescribed doses during treatment. Methods: A simple and small-scale infrared inorganic scintillating detector of 100 µm diameter with a sensitive scintillating volume of 2x10-6 mm3 was developed. A prototype of the dose verification system has been introduced based on PTIR1470/F (provided by Phosphor Technology®) material used in the proposed novel IR-ISD. The detector was tested on an Elekta LINAC system tuned at 6 MV/15MV and a brachytherapy source (Ir-192) used in the patient treatment protocol. The associated dose rate was measured in count rate (photons/s) using a highly sensitive photon counter (sensitivity ~20ph/s). Overall measurements were performed in IBATM water tank phantoms by following international Technical Reports series recommendations (TRS 381) for radiotherapy and TG43U1 recommendations for brachytherapy. The performance of the detector was tested through several dosimetric parameters such as PDD, beam profiling, Cerenkov measurement, dose linearity, dose rate linearity repeatability, and scintillator stability. Finally, a comparative study is also shown using a reference microdiamond dosimeter, Monte-Carlo (MC) simulation, and data from recent literature. Results: This study is highlighting the complete removal of the Cerenkov effect especially for small field radiation beam characterization. The detector provides an entire linear response with the dose in the 4cGy to 800 cGy range, independently of the field size selected from 5 x 5 cm² down to 0.5 x 0.5 cm². A perfect repeatability (0.2 % variation from average) with day-to-day reproducibility (0.3% variation) was observed. Measurements demonstrated that ISD has superlinear behavior with dose rate (R2=1) varying from 50 cGy/s to 1000 cGy/s. PDD profiles obtained in water present identical behavior with a build-up maximum depth dose at 15 mm for different small fields irradiation. A low dimension of 0.5 x 0.5 cm² field profiles have been characterized, and the field cross profile presents a Gaussian-like shape. The standard deviation (1σ) of the scintillating signal remains within 0.02% while having a very low convolution effect, thanks to lower sensitive volume. Finally, during brachytherapy, a comparison with MC simulations shows that considering energy dependency, measurement agrees within 0.8% till 0.2 cm source to detector distance. Conclusion: The proposed scintillating detector in this study shows no- Cerenkov radiation and efficient performance for several radiation therapy measurement parameters. Therefore, it is anticipated that the IR-ISD system can be promoted to validate with direct clinical investigations, such as appropriate dose verification and quality control in the Treatment Planning System (TPS).

Keywords: IR-Scintillating detector, dose measurement, micro-scintillators, Cerenkov effect

Procedia PDF Downloads 183
4622 Determination of Failure Modes of Screwed Connections in Cold-Formed Steel Structures

Authors: Mahyar Maali, Merve Sagiroglu

Abstract:

Steel, which is one of the base materials we prefer in the building construction, is the material with the highest ratio to weight of carrying capacity. Due to the carrying capacity, lighter and better quality steel in smaller sections and sizes has recently been used as a frame system in cold-formed steel structures. While light steel elements used as secondary frame elements during the past, they have nowadays started to be preferred as the main frame in low/middle story buildings and detached houses with advantages such as quick and easy installation, time-saving, and small amount of scrap. It is also economically ideal because the weight of structure is lighter than other steel profiles. Structural performances and failure modes of cold-formed structures are different from conventional ones due to their thin-walled structures. One of the most important elements of light steel structures to ensure stability is the connection. The screwed connections, which have self-drilling properties with special drilling tools, are widely used in the installation of cold-formed profiles. The length of the screw is selected according to the total thickness of the elements after the screw thickness is determined according to the elements of connections. The thickness of the material depends on the length of the drilling portion at the end of the screw. The shear tests of plates connected with self-drilling screws are carried out depending on the screw length, and their failure modes were evaluated in this study.

Keywords: cold-formed steel, screwed connection, connection, screw length

Procedia PDF Downloads 178
4621 Enhancing Industrial Wastewater Treatment through Fe3o4 Nanoparticles-loaded Activated Charcoal: Design and Optimization for Sustainable Development

Authors: Komal Verma, V. S. Moholkar

Abstract:

This paper reports investigations in the mineralization of industrial wastewater (COD = 3246 mg/L, TOC = 2500 mg/L) using a ternary (ultrasound + Fenton + adsorption) hybrid advanced oxidation process. Fe3O4 decorated activated charcoal (Fe3O4@AC) nanocomposites (surface area = 538.88 m2/g; adsorption capacity = 294.31 mg/g) were synthesized using co-precipitation. The wastewater treatment process was optimized using central composite statistical design. At optimum conditions, viz. pH = 4.2, H2O2 loading = 0.71 M, adsorbent dose = 0.34 g/L, reduction in COD and TOC of wastewater were 94.75% and 89%, respectively. This result is essentially a consequence of synergistic interactions among the adsorption of pollutants onto activated charcoal and surface Fenton reactions induced due to the leaching of Fe2+/Fe3+ ions from the Fe3O4 nanoparticles. Microconvection generated due to sonication assisted faster mass transport (adsorption/desorption) of pollutants between Fe₃O₄@AC nanocomposite and the solution. The net result of this synergism was high interactions and reactions among and radicals and pollutants that resulted in the effective mineralization of wastewater The Fe₃O₄@AC showed excellent recovery (> 90 wt%) and reusability (> 90% COD removal) in 5 successive cycles of treatment. LC-MS analysis revealed effective (> 50%) degradation of more than 25 significant contaminants (in the form of herbicides and pesticides) after the treatment with ternary hybrid AOP. Similarly, the toxicity analysis test using the seed germination technique revealed ~ 60% reduction in the toxicity of the wastewater after treatment.

Keywords: Fe₃O₄@AC nanocomposite, RSM, COD;, LC-MS, Toxicity

Procedia PDF Downloads 116
4620 Developing Optical Sensors with Application of Cancer Detection by Elastic Light Scattering Spectroscopy

Authors: May Fadheel Estephan, Richard Perks

Abstract:

Context: Cancer is a serious health concern that affects millions of people worldwide. Early detection and treatment are essential for improving patient outcomes. However, current methods for cancer detection have limitations, such as low sensitivity and specificity. Research Aim: The aim of this study was to develop an optical sensor for cancer detection using elastic light scattering spectroscopy (ELSS). ELSS is a noninvasive optical technique that can be used to characterize the size and concentration of particles in a solution. Methodology: An optical probe was fabricated with a 100-μm-diameter core and a 132-μm centre-to-centre separation. The probe was used to measure the ELSS spectra of polystyrene spheres with diameters of 2, 0.8, and 0.413 μm. The spectra were then analysed to determine the size and concentration of the spheres. Findings: The results showed that the optical probe was able to differentiate between the three different sizes of polystyrene spheres. The probe was also able to detect the presence of polystyrene spheres in suspension concentrations as low as 0.01%. Theoretical Importance: The results of this study demonstrate the potential of ELSS for cancer detection. ELSS is a noninvasive technique that can be used to characterize the size and concentration of cells in a tissue sample. This information can be used to identify cancer cells and assess the stage of the disease. Data Collection: The data for this study were collected by measuring the ELSS spectra of polystyrene spheres with different diameters. The spectra were collected using a spectrometer and a computer. Analysis Procedures: The ELSS spectra were analysed using a software program to determine the size and concentration of the spheres. The software program used a mathematical algorithm to fit the spectra to a theoretical model. Question Addressed: The question addressed by this study was whether ELSS could be used to detect cancer cells. The results of the study showed that ELSS could be used to differentiate between different sizes of cells, suggesting that it could be used to detect cancer cells. Conclusion: The findings of this research show the utility of ELSS in the early identification of cancer. ELSS is a noninvasive method for characterizing the number and size of cells in a tissue sample. To determine cancer cells and determine the disease's stage, this information can be employed. Further research is needed to evaluate the clinical performance of ELSS for cancer detection.

Keywords: elastic light scattering spectroscopy, polystyrene spheres in suspension, optical probe, fibre optics

Procedia PDF Downloads 82
4619 Novel p22-Monoclonal Antibody Based Blocking ELISA for the Detection of African Swine Fever Virus Antibodies in Serum

Authors: Ghebremedhin Tsegay, Weldu Tesfagaber, Yuanmao Zhu, Xijun He, Wan Wang, Zhenjiang Zhang, Encheng Sun, Jinya Zhang, Yuntao Guan, Fang Li, Renqiang Liu, Zhigao Bu, Dongming Zhao*

Abstract:

African swine fever (ASF) is a highly infectious viral disease of pigs, resulting in significant economic loss worldwide. As there is no approved vaccines and treatments, the control of ASF entirely depends on early diagnosis and culling of infected pigs. Thus, highly specific and sensitive diagnostic assays are required for accurate and early diagnosis of ASF virus (ASFV). Currently, only a few recombinant proteins have been tested and validated for use as reagents in ASF diagnostic assays. The most promising ones for ASFV antibody detection were p72, p30, p54, and pp62. So far, three ELISA kits based on these recombinant proteins have been commercialized. Due to the complex nature of the virus and variety forms of the disease, robust serodiagnostic assays are still required. ASFV p22 protein, encoded by KP177R gene, is located in the inner membrane of viral particle and appeared transiently in the plasma membrane early after virus infection. The p22 protein interacts with numerous cellular proteins, involved in processes of phagocytosis and endocytosis through different cellular pathways. However, p22 does not seem to be involved in virus replication or swine pathogenicity. In this study, E.coli expressed recombinant p22 protein was used to generate a monoclonal antibody (mAb), and its potential use for the development of blocking ELISA (bELISA) was evaluated. A total of 806 pig serum samples were tested to evaluate the bELISA. Acording the ROC (Reciever operating chracteristic) analysis, 100% sensitivity and 98.10% of specificity was recorded when the PI cut-off value was set at 47%. The novel assay was able to detect the antibodies as early as 9 days post infection. Finaly, a highly sensitive, specific and rapid novel p22-mAb based bELISA assay was developed, and optimized for detection of antibodies against genotype I and II ASFVs. It is a promising candidate for an early and acurate detection of the antibodies and is highly expected to have a valuable role in the containment and prevention of ASF.

Keywords: ASFV, blocking ELISA, diagnosis, monoclonal antibodies, sensitivity, specificity

Procedia PDF Downloads 77
4618 Circular Nitrogen Removal, Recovery and Reuse Technologies

Authors: Lina Wu

Abstract:

The excessive discharge of nitrogen in sewage greatly intensifies the eutrophication of water bodies and threatens water quality. Nitrogen pollution control has become a global concern. The concentration of nitrogen in water is reduced by converting ammonia nitrogen, nitrate nitrogen and nitrite nitrogen into nitrogen-containing gas through biological treatment, physicochemical treatment and oxidation technology. However, some wastewater containing high ammonia nitrogen including landfill leachate, is difficult to be treated by traditional nitrification and denitrification because of its high COD content. The core process of denitrification is that denitrifying bacteria convert nitrous acid produced by nitrification into nitrite under anaerobic conditions. Still, its low-carbon nitrogen does not meet the conditions for denitrification. Many studies have shown that the natural autotrophic anammox bacteria can combine nitrous and ammonia nitrogen without a carbon source through functional genes to achieve total nitrogen removal, which is very suitable for removing nitrogen from leachate. In addition, the process also saves a lot of aeration energy consumption than the traditional nitrogen removal process. Therefore, anammox plays an important role in nitrogen conversion and energy saving. The short-range nitrification and denitrification coupled with anaerobic ammoX ensures total nitrogen removal. It improves the removal efficiency, meeting the needs of society for an ecologically friendly and cost-effective nutrient removal treatment technology. In recent years, research has found that the symbiotic system has more water treatment advantages because this process not only helps to improve the efficiency of wastewater treatment but also allows carbon dioxide reduction and resource recovery. Microalgae use carbon dioxide dissolved in water or released through bacterial respiration to produce oxygen for bacteria through photosynthesis under light, and bacteria, in turn, provide metabolites and inorganic carbon sources for the growth of microalgae, which may lead the algal bacteria symbiotic system save most or all of the aeration energy consumption. It has become a trend to make microalgae and light-avoiding anammox bacteria play synergistic roles by adjusting the light-to-dark ratio. Microalgae in the outer layer of light particles block most of the light and provide cofactors and amino acids to promote nitrogen removal. In particular, myxoccota MYX1 can degrade extracellular proteins produced by microalgae, providing amino acids for the entire bacterial community, which helps anammox bacteria save metabolic energy and adapt to light. As a result, initiating and maintaining the process of combining dominant algae and anaerobic denitrifying bacterial communities has great potential in treating landfill leachate. Chlorella has a brilliant removal effect and can withstand extreme environments in terms of high ammonia nitrogen, high salt and low temperature. It is urgent to study whether the algal mud mixture rich in denitrifying bacteria and chlorella can greatly improve the efficiency of landfill leachate treatment under an anaerobic environment where photosynthesis is stopped. The optimal dilution concentration of simulated landfill leachate can be found by determining the treatment effect of the same batch of bacteria and algae mixtures under different initial ammonia nitrogen concentrations and making a comparison. High-throughput sequencing technology was used to analyze the changes in microbial diversity, related functional genera and functional genes under optimal conditions, providing a theoretical and practical basis for the engineering application of novel bacteria-algae symbiosis system in biogas slurry treatment and resource utilization.

Keywords: nutrient removal and recovery, leachate, anammox, Partial nitrification, Algae-bacteria interaction

Procedia PDF Downloads 41
4617 The Time-Frequency Domain Reflection Method for Aircraft Cable Defects Localization

Authors: Reza Rezaeipour Honarmandzad

Abstract:

This paper introduces an aircraft cable fault detection and location method in light of TFDR keeping in mind the end goal to recognize the intermittent faults adequately and to adapt to the serial and after-connector issues being hard to be distinguished in time domain reflection. In this strategy, the correlation function of reflected and reference signal is used to recognize and find the airplane fault as per the qualities of reflected and reference signal in time-frequency domain, so the hit rate of distinguishing and finding intermittent faults can be enhanced adequately. In the work process, the reflected signal is interfered by the noise and false caution happens frequently, so the threshold de-noising technique in light of wavelet decomposition is used to diminish the noise interference and lessen the shortcoming alert rate. At that point the time-frequency cross connection capacity of the reference signal and the reflected signal based on Wigner-Ville appropriation is figured so as to find the issue position. Finally, LabVIEW is connected to execute operation and control interface, the primary capacity of which is to connect and control MATLAB and LABSQL. Using the solid computing capacity and the bottomless capacity library of MATLAB, the signal processing turn to be effortlessly acknowledged, in addition LabVIEW help the framework to be more dependable and upgraded effectively.

Keywords: aircraft cable, fault location, TFDR, LabVIEW

Procedia PDF Downloads 479
4616 Preparation, Characterization and Photocatalytic Activity of a New Noble Metal Modified TiO2@SrTiO3 and SrTiO3 Photocatalysts

Authors: Ewelina Grabowska, Martyna Marchelek

Abstract:

Among the various semiconductors, nanosized TiO2 has been widely studied due to its high photosensitivity, low cost, low toxicity, and good chemical and thermal stability. However, there are two main drawbacks to the practical application of pure TiO2 films. One is that TiO2 can be induced only by ultraviolet (UV) light due to its intrinsic wide bandgap (3.2 eV for anatase and 3.0 eV for rutile), which limits its practical efficiency for solar energy utilization since UV light makes up only 4-5% of the solar spectrum. The other is that a high electron-hole recombination rate will reduce the photoelectric conversion efficiency of TiO2. In order to overcome the above drawbacks and modify the electronic structure of TiO2, some semiconductors (eg. CdS, ZnO, PbS, Cu2O, Bi2S3, and CdSe) have been used to prepare coupled TiO2 composites, for improving their charge separation efficiency and extending the photoresponse into the visible region. It has been proved that the fabrication of p-n heterostructures by combining n-type TiO2 with p-type semiconductors is an effective way to improve the photoelectric conversion efficiency of TiO2. SrTiO3 is a good candidate for coupling TiO2 and improving the photocatalytic performance of the photocatalyst because its conduction band edge is more negative than TiO2. Due to the potential differences between the band edges of these two semiconductors, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Conversely, the photogenerated electrons transfer from the conduction band of SrTiO3 to that of TiO2. Then the photogenerated charge carriers can be efficiently separated by these processes, resulting in the enhancement of the photocatalytic property in the photocatalyst. Additionally, one of the methods for improving photocatalyst performance is addition of nanoparticles containing one or two noble metals (Pt, Au, Ag and Pd) deposited on semiconductor surface. The mechanisms were proposed as (1) the surface plasmon resonance of noble metal particles is excited by visible light, facilitating the excitation of the surface electron and interfacial electron transfer (2) some energy levels can be produced in the band gap of TiO2 by the dispersion of noble metal nanoparticles in the TiO2 matrix; (3) noble metal nanoparticles deposited on TiO2 act as electron traps, enhancing the electron–hole separation. In view of this, we recently obtained series of TiO2@SrTiO3 and SrTiO3 photocatalysts loaded with noble metal NPs. using photodeposition method. The M- TiO2@SrTiO3 and M-SrTiO3 photocatalysts (M= Rh, Rt, Pt) were studied for photodegradation of phenol in aqueous phase under UV-Vis and visible irradiation. Moreover, in the second part of our research hydroxyl radical formations were investigated. Fluorescence of irradiated coumarin solution was used as a method of ˙OH radical detection. Coumarin readily reacts with generated hydroxyl radicals forming hydroxycoumarins. Although the major hydroxylation product is 5-hydroxycoumarin, only 7-hydroxyproduct of coumarin hydroxylation emits fluorescent light. Thus, this method was used only for hydroxyl radical detection, but not for determining concentration of hydroxyl radicals.

Keywords: composites TiO2, SrTiO3, photocatalysis, phenol degradation

Procedia PDF Downloads 222
4615 Antibacterial Activity of Northern Algerian Honey

Authors: Messaouda Belaid, Salima Kebbouche-Gana, Djamila Benaziza

Abstract:

Our study focuses on determining the antibacterial activity of some honeys from northern Algeria. To test this activity, the agar well diffusion methods was employed. The bacterial strains tested were Staphylococcus aureus, Bacillus subtilis, Streptococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Pseudomonas aeroginosae. The results showed that all the microbes tested were inhibited by all honey used in this study but Those bacteria that appear to be more sensitive to all honey tested are Staphylococcus aureus and Pseudomonas aeroginosae.

Keywords: honey, antibacterial activity, Northern Algeria, Staphylococcus aureus

Procedia PDF Downloads 396
4614 Effects of Virgin Coconut Oil on the Histomorphometric Parameters in the Aortae and Hearts of Rats Fed with Repeatedly Heated Palm Oil

Authors: K. Subermaniam, Q. H. M. Saad, S. N. A. Bakhtiar, J. A. Hamid, F. Z .J. Sidek, F. Othman

Abstract:

Objective: To investigate the effects of virgin coconut oil (VCO) on histomorphometric changes in the aorta and heart of thermoxidized palm oil-fed rats. Methods: Thirty two male Sprague-Dawley rats were divided into four groups: control group fed with normal diet; 5 times heated palm oil-fed group (5HPO) fortified with 15% w/w of 5HPO; VCO group supplemented with 1.42 ml/kg of VCO; and 5HPO + VCO group. The treatment lasted for four months. Upon sacrifice, aortic and heart tissues were processed for light microscopic studies. Results: Light microscopic studies showed thickened intima and media of the aorta in two out of eight rats in the 5HPO group only, while the rest of the rats did not show any thickening of either the intima or media of the aorta. Intima media area (IMA) in the VCO, 5HPO and 5HPO+VCO was significantly increased compared to the control group. Circumferential wall tension (CWT) and tensile stress (TS) in the aorta of 5HPO showed significant increase compared to the other groups. Cardiomyofibre width in 5HPO group showed significant increase in size compared to the control, VCO and 5HPO+VCO groups. Cardiomyofibre nuclear size in the 5HPO group decreased in size significantly compared to the control, VCO and 5HPO+VCO groups. Conclusion: VCO supplementation at a dose of 1.42 ml/kg showed protectives effect on the aorta and heart of thermoxidized palm oil fed rats.

Keywords: aorta, heart, histomorphometric changes, thermoxidized palm oil, virgin coconut oil

Procedia PDF Downloads 426
4613 Insight into Structure and Functions of of Acyl CoA Binding Protein of Leishmania major

Authors: Rohit Singh Dangi, Ravi Kant Pal, Monica Sundd

Abstract:

Acyl-CoA binding protein (ACBP) is a housekeeping protein which functions as an intracellular carrier of acyl-CoA esters. Given the fact that the amastigote stage (blood stage) of Leishmania depends largely on fatty acids as the energy source, of which a large part is derived from its host, these proteins might have an important role in its survival. In Leishmania major, genome sequencing suggests the presence of six ACBPs, whose function remains largely unknown. For functional and structural characterization, one of the ACBP genes was cloned, and the protein was expressed and purified heterologously. Acyl-CoA ester binding and stoichiometry were analyzed by isothermal titration calorimetry and Dynamic light scattering. Our results shed light on high affinity of ACBP towards longer acyl-CoA esters, such as myristoyl-CoA to arachidonoyl-CoA with single binding site. To understand the binding mechanism & dynamics, Nuclear magnetic resonance assignments of this protein are being done. The protein's crystal structure was determined at 1.5Å resolution and revealed a classical topology for ACBP, containing four alpha-helical bundles. In the binding pocket, the loop between the first and the second helix (16 – 26AA) is four residues longer from other extensively studied ACBPs (PfACBP) and it curls upwards towards the pantothenate moiety of CoA to provide a large tunnel space for long acyl chain insertion.

Keywords: acyl-coa binding protein (ACBP), acyl-coa esters, crystal structure, isothermal titration, calorimetry, Leishmania

Procedia PDF Downloads 450
4612 Pattern Discovery from Student Feedback: Identifying Factors to Improve Student Emotions in Learning

Authors: Angelina A. Tzacheva, Jaishree Ranganathan

Abstract:

Interest in (STEM) Science Technology Engineering Mathematics education especially Computer Science education has seen a drastic increase across the country. This fuels effort towards recruiting and admitting a diverse population of students. Thus the changing conditions in terms of the student population, diversity and the expected teaching and learning outcomes give the platform for use of Innovative Teaching models and technologies. It is necessary that these methods adapted should also concentrate on raising quality of such innovations and have positive impact on student learning. Light-Weight Team is an Active Learning Pedagogy, which is considered to be low-stake activity and has very little or no direct impact on student grades. Emotion plays a major role in student’s motivation to learning. In this work we use the student feedback data with emotion classification using surveys at a public research institution in the United States. We use Actionable Pattern Discovery method for this purpose. Actionable patterns are patterns that provide suggestions in the form of rules to help the user achieve better outcomes. The proposed method provides meaningful insight in terms of changes that can be incorporated in the Light-Weight team activities, resources utilized in the course. The results suggest how to enhance student emotions to a more positive state, in particular focuses on the emotions ‘Trust’ and ‘Joy’.

Keywords: actionable pattern discovery, education, emotion, data mining

Procedia PDF Downloads 99