Search results for: extra-dyadic stress
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3909

Search results for: extra-dyadic stress

2799 A Numerical Method to Evaluate the Elastoplastic Material Properties of Fiber Reinforced Composite

Authors: M. Palizvan, M. H. Sadr, M. T. Abadi

Abstract:

The representative volume element (RVE) plays a central role in the mechanics of random heterogeneous materials with a view to predicting their effective properties. In this paper, a computational homogenization methodology, developed to determine effective linear elastic properties of composite materials, is extended to predict the effective nonlinear elastoplastic response of long fiber reinforced composite. Finite element simulations of volumes of different sizes and fiber volume fractures are performed for calculation of the overall response RVE. The dependencies of the overall stress-strain curves on the number of fibers inside the RVE are studied in the 2D cases. Volume averaged stress-strain responses are generated from RVEs and compared with the finite element calculations available in the literature at moderate and high fiber volume fractions. For these materials, the existence of an RVE is demonstrated for the sizes of RVE corresponding to 10–100 times the diameter of the fibers. In addition, the response of small size RVE is found anisotropic, whereas the average of all large ones leads to recover the isotropic material properties.

Keywords: homogenization, periodic boundary condition, elastoplastic properties, RVE

Procedia PDF Downloads 155
2798 Design Improvement of Worm Gearing for Better Energy Utilization

Authors: Ahmed Elkholy

Abstract:

Most power transmission cases use gearing in general, and worm gearing, in particular for energy utilization. Therefore, designing gears for minimum weight and maximum power transmission is the main target of this study. In this regard, a new approach has been developed to estimate the load share and stress distribution of worm gear sets. The approach is based upon considering the instantaneous tooth meshing stiffness where the worm gear drive was modelled as a series of spur gear slices, and each slice was analyzed separately using a well-established criteria. By combining the results obtained for all slices, the entire worm gear set loading and stressing was determined. The geometric modelling method presented, allows tooth elastic deformation and tooth root stresses of worm gear drives under different load conditions to be investigated. On the basis of the method introduced in this study, the instantaneous meshing stiffness and load share were obtained. In comparison with existing methods, this approach has both good analytical accuracy and less computing time.

Keywords: gear, load/stress distribution, worm, wheel, tooth stiffness, contact line

Procedia PDF Downloads 424
2797 Life Time Improvement of Clamp Structural by Using Fatigue Analysis

Authors: Pisut Boonkaew, Jatuporn Thongsri

Abstract:

In hard disk drive manufacturing industry, the process of reducing an unnecessary part and qualifying the quality of part before assembling is important. Thus, clamp was designed and fabricated as a fixture for holding in testing process. Basically, testing by trial and error consumes a long time to improve. Consequently, the simulation was brought to improve the part and reduce the time taken. The problem is the present clamp has a low life expectancy because of the critical stress that occurred. Hence, the simulation was brought to study the behavior of stress and compressive force to improve the clamp expectancy with all probability of designs which are present up to 27 designs, which excluding the repeated designs. The probability was calculated followed by the full fractional rules of six sigma methodology which was provided correctly. The six sigma methodology is a well-structured method for improving quality level by detecting and reducing the variability of the process. Therefore, the defective will be decreased while the process capability increasing. This research focuses on the methodology of stress and fatigue reduction while compressive force still remains in the acceptable range that has been set by the company. In the simulation, ANSYS simulates the 3D CAD with the same condition during the experiment. Then the force at each distance started from 0.01 to 0.1 mm will be recorded. The setting in ANSYS was verified by mesh convergence methodology and compared the percentage error with the experimental result; the error must not exceed the acceptable range. Therefore, the improved process focuses on degree, radius, and length that will reduce stress and still remain in the acceptable force number. Therefore, the fatigue analysis will be brought as the next process in order to guarantee that the lifetime will be extended by simulating through ANSYS simulation program. Not only to simulate it, but also to confirm the setting by comparing with the actual clamp in order to observe the different of fatigue between both designs. This brings the life time improvement up to 57% compared with the actual clamp in the manufacturing. This study provides a precise and trustable setting enough to be set as a reference methodology for the future design. Because of the combination and adaptation from the six sigma method, finite element, fatigue and linear regressive analysis that lead to accurate calculation, this project will able to save up to 60 million dollars annually.

Keywords: clamp, finite element analysis, structural, six sigma, linear regressive analysis, fatigue analysis, probability

Procedia PDF Downloads 235
2796 Plant Water Relations and Forage Quality in Leucaena leucocephala (Lam.) de Wit and Acacia saligna (Labill.) as Affected by Salinity Stress

Authors: Maher J. Tadros

Abstract:

This research was conducted to study the effect of different salinity concentrations on the plant water relation and forage quality on two multipurpose forest trees species seedlings Leucaena leucocephala (Lam.) de wit and Acacia saligna (Labill.). Five different salinity concentrations mixture between sodium chloride and calcium chloride (v/v, 1:1) were applied. The control (Distilled Water), 2000, 4000, 6000, and 8000 ppm were used to water the seedlings for 3 months. The research results presented showed a marked variation among the two species in response to salinity. The Leucaena was able to withstand the highest level of salinity compared to Acacia all over the studied parameters except in the relative water content. Although all the morphological characteristics studied for the two species showed a marked decrease under the different salinity concentrations, except the shoot/root ratio that showed a trend of increase. The water stress measure the leaf water potential was more negative with as the relative water content increase under that saline conditions compared to the control. The forage quality represented by the crude protein and nitrogen content were low at 6000 ppm compared to the 8000 ppm in L. Leucocephala that increased compared that level in A. saligna. Also the results showed that growing both Leucaena and Acacia provide a good source of forage when that grow under saline condition which will be of great benefits to the agricultural sector especially in the arid and semiarid areas were these species can provide forage with high quality forage all year around when grown under irrigation with saline. This research recommended such species to be utilized and grown for forages under saline conditions.

Keywords: plant water relations, growth performance, salinity stress, protein content, forage quality, multipurpose trees

Procedia PDF Downloads 394
2795 Comparison of the Effects of Rod Types of Rigid Fixation Devices on the Loads in the Lumbar Spine: A Finite Element Analysis

Authors: Bokku Kang, Changsoo Chon, Han Sung Kim

Abstract:

We developed new design of rod of pedicle screw system that is beneficial in maintaining the spacing between the vertebrae and assessed the performance of the posterior fixation screw systems by numerical analysis according to the range of motion (flexion, extension, lateral bending, and axial rotation) of the vertebral column after inserting the pedicle screws. The simulation results showed that the conventional rod was the most low equivalent stress value among implant units in the case of flexion, extension and lateral bending of the vertebrae. In all cases except the torsional rotation, the results showed that the stress level of the single and double rounded rod exceeded about 30% to 70% compare to the conventional rod. Therefore, this product is not suitable for actual application in the field yet and it seems that product design optimization is necessary. Acknowledgement: This research was supported by the Ministry of Trade, Industry & Energy (MOTIE), Korea Institute for Advancement of Technology (KIAT) through the Encouragement Program for The Industries of Economic Cooperation Region.

Keywords: lumber spine, internal fixation device, finite element method, biomechanics

Procedia PDF Downloads 378
2794 Finite Eigenstrains in Nonlinear Elastic Solid Wedges

Authors: Ashkan Golgoon, Souhayl Sadik, Arash Yavari

Abstract:

Eigenstrains in nonlinear solids are created due to anelastic effects such as non-uniform temperature distributions, growth, remodeling, and defects. Eigenstrains understanding is indispensable, as they can generate residual stresses and strongly affect the overall response of solids. Here, we study the residual stress and deformation fields of an incompressible isotropic infinite wedge with a circumferentially-symmetric distribution of finite eigenstrains. We construct a material manifold, whose Riemannian metric explicitly depends on the eigenstrain distribution, thereby we turn the problem into a classical nonlinear elasticity problem, where we find an embedding of the Riemannian material manifold into the ambient Euclidean space. In particular, we find exact solutions for the residual stress and deformation fields of a neo-Hookean wedge having a symmetric inclusion with finite radial and circumferential eigenstrains. Moreover, we numerically solve a similar problem when a symmetric Mooney-Rivlin inhomogeneity with finite eigenstrains is placed in a neo-Hookean wedge. Generalization of the eigenstrain problem to other geometries are also discussed.

Keywords: finite eigenstrains, geometric mechanics, inclusion, inhomogeneity, nonlinear elasticity

Procedia PDF Downloads 257
2793 Effect of Vesicular Arbuscular mycorrhiza on Phytoremedial Potential and Physiological Changes in Solanum melongena Plants Grown under Heavy Metal Stress

Authors: Ritu Chaturvedi, Mayank Varun, M. S. Paul

Abstract:

Heavy metal contamination of soil is a growing area of concern since the soil is the matrix that supports flora and impacts humans directly. Phytoremediation of contaminated sites is gaining popularity due to its cost effectiveness and solar driven nature. Some hyperaccumulators have been identified for their potential. Metal-accumulating plants have various mechanisms to cope up with stress and one of them is increasing antioxidative capacity. The aim of this research is to assess the effect of Vesicular arbuscular mycorrhiza (VAM) application on the phytoremedial potential of Solanum melongena (Eggplant) and level of photosynthetic pigments along with antioxidative enzymes. Results showed that VAM application increased shoot length, root proliferation pattern of plants. The level of photosynthetic pigments, proline, SOD, CAT, APX altered significantly in response to heavy metal treatment. In conclusion, VAM increased the uptake of heavy metals which lead to the activation of the defense system in plants for scavenging free radicals.

Keywords: heavy metal, phytoextraction, phytostabilization, reactive oxygen species

Procedia PDF Downloads 276
2792 Challenges in Experimental Testing of a Stiff, Overconsolidated Clay

Authors: Maria Konstadinou, Etienne Alderlieste, Anderson Peccin da Silva, Ben Arntz, Leonard van der Bijl, Wouter Verschueren

Abstract:

The shear strength and compression properties of stiff Boom clay from Belgium at the depth of about 30 m has been investigated by means of cone penetration and laboratory testing. The latter consisted of index classification, constant rate of strain, direct, simple shear, and unconfined compression tests. The Boom clay samples exhibited strong swelling tendencies. The suction pressure was measured via different procedures and has been compared to the expected in-situ stress. The undrained shear strength and OCR profile determined from CPTs is not compatible with the experimental measurements, which gave significantly lower values. The observed response can be attributed to the presence of pre-existing discontinuities, as shown in microscale CT scans of the samples. The results of this study demonstrate that the microstructure of the clay prior to testing has an impact on the mechanical behaviour and can cause inconsistencies in the comparison of the laboratory test results with in-situ data.

Keywords: boom clay, laboratory testing, overconsolidation ratio, stress-strain response, swelling, undrained shear strength

Procedia PDF Downloads 147
2791 Contributory Antioxidant Role of Testosterone and Oxidative Stress Biomarkers in Males Exposed to Mixed Chemicals in an Automobile Repair Community

Authors: Saheed A. Adekola, Mabel A. Charles-Davies, Ridwan A. Adekola

Abstract:

Background: Testosterone is a known androgenic and anabolic steroid, primarily secreted in the testes. It plays an important role in the development of testes and prostate and has a range of biological actions. There is evidence that exposure to mixed chemicals in the workplace leads to the generation of free radicals and inadequate antioxidants leading to oxidative stress, which may serve as an early indicator of a pathophysiologic state. Based on findings, testosterone shows direct antioxidant effects by increasing the activities of antioxidant enzymes like glutathione peroxidase, thus indirectly contributing to antioxidant capacity. Objective: To evaluate the antioxidant role of testosterone as well as the relationship between testosterone and oxidative stress biomarkers in males exposed to mixed chemicals in the automobile repair community. Methods: The study included 43 participants aged 22- 60years exposed to mixed chemicals (EMC) from the automobile repair community. Forty (40) apparently healthy, unexposed, age-matched controls were recruited after informed consent. Demographic, sexual and anthropometric characteristics were obtained from pre-test structured questionnaires using standard methods. Blood samples (10mls) were collected from each subject into plain bottles and sera obtained were used for biochemical analyses. Serum levels of testosterone and luteinizing hormone (LH) were determined by enzyme immunoassay method, EIA (Immunometrics UK.LTD). Levels of total antioxidant capacity (TAC), total plasma peroxide (TPP), Malondialdehyde (MDA), hydrogen peroxide (H2O2), glutathione peroxide (GPX), superoxide dismutase (SOD), glutathione-S-transferase (GST), and reduced glutathione (GSH) were determined using spectrophotometric methods respectively. Results obtained were analyzed using the Student’s t-test and Chi-square test for quantitative variables and qualitative variables respectively. Multiple regression was used to find associations and relationships between the variables. Results: Significant higher concentrations of TPP, MDA, OSI, H2O2 and GST were observed in EMC compared with controls (p < 0.001). Within EMC, significantly higher levels of testosterone, LH and TAC were observed in eugonadic when compared with hypogonadic participants (p < 0.001). Diastolic blood pressure, waist circumference, waist height ratio and waist hip ratio were significantly higher in participants EMC compared with the controls. Sexual history and dietary intake showed that the controls had normal erection during sex and took more vegetables in their diet which may therefore be beneficial. Conclusion: The significantly increased levels of total antioxidant capacity in males exposed to mixed chemicals despite their exposure may probably reflect the contributory antioxidant role testosterone that prevents oxidative stress.

Keywords: mixed chemicals, oxidative stress, antioxidant, hypogonadism testosterone

Procedia PDF Downloads 145
2790 Functional Compounds Activity of Analog Rice Based on Purple Yam and Bran as Alternative Food for People with Diabetes Mellitus Type II

Authors: A. Iqbal Banauaji, Muchamad Sholikun

Abstract:

Diabetes mellitus (DM) is a metabolism disorder that tends to increase its prevalence in the world, including in Indonesia. The development of DM type 2 can cause oxidative stress characterized by an imbalance between oxidants and antioxidants in the body Increased oxidative stress causes type 2 diabetes mellitus to require intake of exogenous antioxidants in large quantities to inhibit oxidative damage in the body. Bran can be defined as a functional food because it consists of 11.39% fiberand 28.7% antioxidants and the purple yam consists of anthocyanin which functions as an antioxidant. With abundant amount and low price, purple yam and bran can be used for analog rice as the effort to diversify functional food. The antioxidant’s activity of analog rice from purple yam and bran which is measured by using DPPH’s method is 12,963%. The rough fiber’s level on the analog rice from purple yam is 2.985%. The water amount of analog rice from purple yam and bran is 8.726%. Analog rice from purple yam and bran has the similar texture as the usual rice, tasted slightly sweet, light purple colored, and smelled like bran.

Keywords: antioxidant, analog rice, functional food, diabetes mellitus

Procedia PDF Downloads 193
2789 Impact of Quality Assurance Mechanisms on the Work Efficiency of Staff in the Educational Space of Georgia

Authors: B. Gechbaia, K. Goletiani, G. Gabedava, N. Mikeltadze

Abstract:

At this stage, Georgia is a country which is actively involved in the European integration process, for which the primary priority is effective integration in the European education system. The modern Georgian higher education system is the process of establishing a new sociocultural reality, whose main priorities are determined by the Quality System as a continuous cycle of planning, implementation, checking and acting. Obviously, in this situation, the issue of management of education institutions comes out in the foreground, since the proper planning and implementation of personnel management processes is one of the main determinants of the company's performance. At the same time, one of the most important factors is the psychological comfort of the personnel, ensuring their protection and efficiency of stress management policy. The purpose of this research is to determine how intensely the relationship is between the psychological comfort of the personnel and the efficiency of the quality system in the institution as the quality assurance mechanisms of educational institutions affect the stability of personnel, prevention and management of the stressful situation. The research was carried out within the framework of the Internal Grant Project «The Role of Organizational Culture in the Process of Settlement of Management of Stress and Conflict, Georgian Reality and European Experience » of the Batumi Navigation Teaching University, based on the analysis of the survey results of target groups. The small-scale research conducted by us has revealed that the introduction of quality assurance system and its active implementation increased the quality of management of Georgian educational institutions, increased the level of universal engagement in internal and external processes and as a result, it has improved the quality of education as well as social and psychological comfort indicators of the society.

Keywords: quality assurance, effective management, stability of personnel, psychological comfort, stress management

Procedia PDF Downloads 156
2788 Seismicity and Source Parameter of Some Events in Abu Dabbab Area, Red Sea Coast

Authors: Hamed Mohamed Haggag

Abstract:

Prior to 12 November 1955, no earthquakes have been reported from the Abu Dabbab area in the International Seismological Center catalogue (ISC). The largest earthquake in Abu Dabbab area occurred on November 12, 1955 with magnitude Mb 6.0. The closest station from the epicenter was at Helwan (about 700 km to the north), so the depth of this event is not constrained and no foreshocks or aftershocks were recorded. Two other earthquakes of magnitude Mb 4.5 and 5.2 took place in the same area on March 02, 1982 and July 02, 1984, respectively. Since the installation of Aswan Seismic Network stations in 1982, (250-300 km to the south-west of Abu Dabbab area) then the Egyptian Natoinal Seismic Network stations, it was possible to record some activity from Abu Dabbab area. The recorded earthquakes at Abu Dabbab area as recorded from 1982 to 2014 shows that the earthquake epicenters are distributed in the same direction of the main trends of the faults in the area, which is parallel to the Red Sea coast. The spectral analysis was made for some earthquakes. The source parameters, seismic moment (Mo), source dimension (r), stress drop (Δδ), and apparent stress (δ) are determined for these events. The spectral analysis technique was completed using MAG software program.

Keywords: Abu Dabbab, seismicity, seismic moment, source parameter

Procedia PDF Downloads 462
2787 Empirical Analytical Modelling of Average Bond Stress and Anchorage of Tensile Bars in Reinforced Concrete

Authors: Maruful H. Mazumder, Raymond I. Gilbert

Abstract:

The design specifications for calculating development and lapped splice lengths of reinforcement in concrete are derived from a conventional empirical modelling approach that correlates experimental test data using a single mathematical equation. This paper describes part of a recently completed experimental research program to assess the effects of different structural parameters on the development length requirements of modern high strength steel reinforcing bars, including the case of lapped splices in large-scale reinforced concrete members. The normalized average bond stresses for the different variations of anchorage lengths are assessed according to the general form of a typical empirical analytical model of bond and anchorage. Improved analytical modelling equations are developed in the paper that better correlate the normalized bond strength parameters with the structural parameters of an empirical model of bond and anchorage.

Keywords: bond stress, development length, lapped splice length, reinforced concrete

Procedia PDF Downloads 438
2786 Outdoor Thermal Environment Measurement and Simulations in Traditional Settlements in Taiwan

Authors: Tzu-Ping Lin, Shing-Ru Yang

Abstract:

Climate change has a significant impact on human living environment, while the traditional settlement may suffer extreme thermal stress due to its specific building type and living behavior. This study selected Lutaoyang, which is the largest settlement in mountainous areas of Tainan County, for the investigation area. The microclimate parameters, such as air temperature, relative humidity, wind speed, and mean radiant temperature. The micro climate parameters were also simulated by the ENVI-met model. The results showed the banyan tree area providing good thermal comfort condition due to the shading. On the contrary, the courtyard (traditionally for the crops drying) surrounded by low rise building and consisted of artificial pavement contributing heat stress especially in summer noon. In the climate change simulations, the courtyard will become very hot and are not suitable for residents activities. These analytical results will shed light on the sustainability related to thermal environment in traditional settlements and develop adaptive measure towards sustainable development under the climate change challenges.

Keywords: thermal environment, traditional settlement, ENVI-met, Taiwan

Procedia PDF Downloads 479
2785 A Penny for Your Thoughts: Mind Wandering Tendencies of Individuals with Autistic Traits

Authors: Leilani Forby, Farid Pazhoohi, Alan Kingstone

Abstract:

There is abundant research on the nature and content of mind wandering (MW) in neurotypical (NT) adults, however, there is little to no research in these areas on autistic individuals. The objective of the current study was to uncover any differences between low and high autistic trait individuals in their MW. In particular, we examined their attitudes toward, and the themes and temporal dimensions (past, present, future) of, their MW episodes. For our online study, we recruited 518 students (394 women and 124 men), between the ages of 18 and 51 years (M = 20.93, SD = 3.40) from the undergraduate Human Subject Pool at the University of British Columbia. Participants completed the Short Imaginal Processes Inventory (SIPI), which includes the three subscales Positive-Constructive Daydreaming (SIPI-PC), Guilt and Fear of Failure Daydreaming (SIPI-GFF), and Poor Attentional Control (SIPI-PAC). Participants also completed the Past (IPI-past) and Present (IPI-present) subscales of the Imaginal Processes Inventory (IPI), the Deliberate (MW-D) and Spontaneous (MW-S) Mind Wandering scales, the Short Form Perceived Stress Scale (PSS-4), and the 10-item Autism Quotient (AQ-10). Results showed that overall, participant AQ-10 scores were significantly correlated with MW-S, SIPI-GFF, and PSS-4 scores, such that as the number of autistic traits endorsed by participants increased, so did their reports of spontaneous mind wandering, guilt and fear of failure themed day dreaming, and stress levels. This same pattern held for female participants, however, AQ-10 scores were positively correlated with only PSS-4 scores for males. These results suggest that compared to males with autistic traits, MW in females with autistic traits is more similar to individuals with low autistic traits in terms of content and intentionality. Results are discussed in terms of clinical implications, their limitations, and suggested directions for future research.

Keywords: autism, deliberate, mind wandering, spontaneous, perceived stress

Procedia PDF Downloads 146
2784 Flow Behavior of a ScCO₂-Stimulated Geothermal Reservoir under in-situ Stress and Temperature Conditions

Authors: B. L. Avanthi Isaka, P. G. Ranjith

Abstract:

The development of technically-sound enhanced geothermal systems (EGSs) is identified as a viable solution for world growing energy demand with immense potential, low carbon dioxide emission and importantly, as an environmentally friendly option for renewable energy production. The use of supercritical carbon dioxide (ScCO₂) as the working fluid in EGSs by replacing traditional water-based method is promising due to multiple advantages prevail in ScCO₂-injection for underground reservoir stimulation. The evolution of reservoir stimulation using ScCO₂ and the understanding of the flow behavior of a ScCO₂-stimulated geothermal reservoir is vital in applying ScCO₂-EGSs as a replacement for water-based EGSs. The study is therefore aimed to investigate the flow behavior of a ScCO₂-fractured rock medium at in-situ stress and temperature conditions. A series of permeability tests were conducted for ScCO₂ fractured Harcourt granite rock specimens at 90ºC, under varying confining pressures from 5–60 MPa using the high-pressure and high-temperature tri-axial set up which can simulate deep geological conditions. The permeability of the ScCO₂-fractured rock specimens was compared with that of water-fractured rock specimens. The results show that the permeability of the ScCO₂-fractured rock specimens is one order higher than that of water-fractured rock specimens and the permeability exhibits a non-linear reduction with increasing confining pressure due to the stress-induced fracture closure. Further, the enhanced permeability of the ScCO₂-induced fracture with multiple secondary branches was explained by exploring the CT images of the rock specimens. However, a single plain fracture was induced under water-based fracturing.

Keywords: supercritical carbon dioxide, fracture permeability, granite, enhanced geothermal systems

Procedia PDF Downloads 147
2783 Surface Activation of Carbon Nanotubes Generating a Chemical Interaction in Epoxy Nanocomposite

Authors: Mohamed Eldessouki, Ebraheem Shady, Yasser Gowayed

Abstract:

Carbon nanotubes (CNTs) are known for having high elastic properties with high surface area that promote them as good candidates for reinforcing polymeric matrices. In composite materials, CNTs lack chemical bonding with the surrounding matrix which decreases the possibility of better stress transfer between the components. In this work, a chemical treatment for activating the surface of the multi-wall carbon nanotubes (MWCNT) was applied and the effect of this functionalization on the elastic properties of the epoxy nanocomposites was studied. Functional amino-groups were added to the surface of the CNTs and it was evaluated to be about 34% of the total weight of the CNTs. Elastic modulus was found to increase by about 40% of the neat epoxy resin at CNTs’ weight fraction of 0.5%. The elastic modulus was found to decrease after reaching a certain concentration of CNTs which was found to be 1% wt. The scanning electron microscopic pictures showed the effect of the CNTs on the crack propagation through the sample by forming stress concentrated spots at the nanocomposite samples.

Keywords: carbon nanotubes functionalization, crack propagation, elastic modulus, epoxy nanocomposites

Procedia PDF Downloads 407
2782 Stresses Induced in Saturated Asphalt Pavement by Moving Loads

Authors: Yang Zhong, Meijie Xue

Abstract:

The purpose of this paper is to investigate the stresses and excess pore fluid pressure induced by the moving wheel pressure on saturated asphalt pavements, which is one of the reasons for a damage phenomenon in flexible pavement denoted stripping. The saturated asphalt pavement is modeled as multilayered poroelastic half space exerted by a wheel pressure, which is moving at a constant velocity along the surface of the pavement. The governing equations for the proposed analysis are based on the Biot’s theory of dynamics in saturated poroelastic medium. The governing partial differential equations are solved by using Laplace and Hankel integral transforms. The solutions for the stresses and excess pore pressure are expressed in the forms of numerical inversion Laplace and Hankel integral transforms. The numerical simulation results clearly demonstrate the induced deformation and water flow in the asphalt pavement.

Keywords: saturated asphalt pavements, moving loads, excess pore fluid pressure, stress of pavement, biot theory, stress and strain of pavement

Procedia PDF Downloads 289
2781 Effect of Silicon in Mitigating Cadmium Toxicity in Maize

Authors: Ghulam Hasan Abbasi, Moazzam Jamil, M. Anwar-Ul-Haq

Abstract:

Heavy metals are significant pollutants in environment and their toxicity is a problem for survival of living things while Silicon (Si) is one of the most ubiquitous macroelements, performing an essential function in healing plants in response to environmental stresses. A hydroponic experiment was conducted to investigate the role of exogenous application of silicon under cadmium stress in six different maize hybrids with five treatments comprising of control, 7.5 µM Cd + 5 mM Si, 7.5 µM Cd + 10 mM Si, 15 µM Cd + 5 mM Si and 15 µM Cd + 10 mM Si. Results revealed that treatments of plants with 10mM Si application under both 7.5µM Cd and 15 µM Cd stress resulted in maximum improvement in plant morphological attributes (root and shoot length, root and shoot fresh and dry weight, leaf area and relative water contents) and antioxidant enzymes (POD and CAT) relative to 5 mM Si application in all maize hybrids. Results regarding Cd concentrations showed that Cd was more retained in roots followed by shoots and then leaves and maximum reduction in Cd uptake was observed at 10mM Si application. Maize hybrid 6525 showed maximum growth and least concentration of Cd whereas maize hybrid 1543 showed the minimum growth and maximum Cd concentration among all maize hybrids.

Keywords: antioxidant, cadmium, maize, silicon

Procedia PDF Downloads 520
2780 Exploring Psychosocial Stressors in Crack Cocaine Use

Authors: Yaa Asuaba Duopah, Lisa Moran, Khalifa Elmusharaf, Dervla Kelly

Abstract:

Background: Research has identified a strong link between stress and drug use behaviours. Also, it has been established that the prolonged use of crack cocaine stimulates emotional, cognitive, neurological, and social changes. This paper examines the psychosocial stressors associated with crack cocaine use. Methodology: The study is qualitative and adopts a critical realist approach. Data was collected through 26 face-to-face, in-depth, semi-structured interviews with people who use crack cocaine. Study participants were recruited through two addiction services using purposive. Participants consisted of 15 males and 11 females between the ages of 24-57 years. Data were analysed using thematic analysis. Results: Cravings, financial hardship, family breakdown, and emotional stimulation were revealed as psychosocial stressors associated with crack cocaine use. Conclusion: Addressing the psychosocial stressors identified in this paper through targeted interventions and supportive policies is crucial for improving the well-being of persons who use crack cocaine. Collaboration between addiction, mental health, and support services is recommended to develop and deliver these interventions.

Keywords: psychological stress, substance misuse disorder, mental health, coping

Procedia PDF Downloads 55
2779 Variation in Total Iron and Zinc Concentration, Protein Quality, and Quantity of Maize Hybrids Grown under Abiotic Stress and Optimal Conditions

Authors: Tesfaye Walle Mekonnen

Abstract:

Maize is one of the most important staple food crops for most low-income households in the Sub-Saharan (SSA). Combined heat and drought stress is the major production threats that reduce the yield potential of biofortified maize and restrain various macro and micronutrient deficiencies highly prevalent in low-income people who rely solely on maize-based diets, SSA. This problem can be alleviated by crossing the biofortified inbred lines with different nutritional attributes, Fe, Zn, Protein, and Provitamin A, and developing agronomically superior and stable multi-nutrient maize of various genetic backgrounds. This aimed to understand the correlation between biofortified inbred lines per se and hybrid performance under combined heat and drought stress conditions (CSC). The experiment was conducted at CIMMYT, Zimbabwe, using α-lattice design with three replications. The hybrid effect was highly significant for zein fractions (α-, β-, γ- and δ-zein) zinc, (Zn), and iron (Fe) provitamin A, phytic acid, and grain yield. Under CSC, Fe, Zn concentration, provitamin A in grain and grain yield of hybrids were significantly decreased, however, the zein fraction content and phytic acid content increases in grain were increased under CSC. The phenotypic correlation between grain yield with Zn, Fe concentration, and Provitamin A in grain was strongly positive and higher under CSC than in well-watered conditions. The present investigation confirmed that under CSC, Fe, and Zn-enhanced hybrids could be forecasted to a certain scope based on the performance of and scientifically selected for desirable grain yield and related traits with CSC tolerance during hybrid development programs. In conclusion, the development of high-yielding and micronutrient-dense maize variety is possible under CSC, which could reduce the highly prevalent micronutrient in SSA.

Keywords: drought, Fe, heat, maize, protein, zein fractions, Zn

Procedia PDF Downloads 66
2778 Magnet Position Variation of the Electromagnetic Actuation System in a Torsional Scanner

Authors: Loke Kean Koay, Mani Maran Ratnam

Abstract:

A mechanically-resonant torsional spring scanner was developed in a recent study. Various methods were developed to improve the angular displacement of the scanner while maintaining the scanner frequency. However, the effects of rotor magnet radial position on scanner characteristics were not well investigated. In this study, the relationships between the magnet position and the scanner characteristics such as natural frequency, angular displacement and stress level were studied. A finite element model was created and an average deviation of 3.18% was found between the simulation and experimental results, qualifying the simulation results as a guide for further investigations. Three magnet positions on the transverse oscillating suspended plate were investigated by finite element analysis (FEA) and one of the positions were selected as the design position. The magnet position with the longest distance from the twist axis of the mirror was selected since it attains minimum stress level while exceeding the minimum critical flicker frequency and delivering the targeted angular displacement to the scanner.

Keywords: torsional scanner, design optimization, computer-aided design, magnet position variation

Procedia PDF Downloads 366
2777 Protective Effects of Coenzyme Q10 and N-Acetylcysteine on Myocardial Oxidative Stress, Inflammation, and Impaired Energy metabolism in Carbon Tetrachloride Intoxicated Rats

Authors: Nayira A. Abd Elbaky, Amal J. Fatani, Hazar Yaqub, Nouf M. Al-Rasheed, Naglaa El-Orabi, Mai Osman

Abstract:

The present work is aimed to evaluate the protective effect of N-acetyl cystiene (NAC), coenzyme Q10 (CoQ10), and their combination against carbon tetrachloride (CCl4)-induced cardiotoxicity in rats. CCl4 treatment significantly elevated the levels of cardiac oxidative stress bio markers including nitric oxide (NO) and malondialdehyde (MDA). A concomitant decrease in the level of reduced glutathione and the activity of membrane bound enzyme, calcium-adenosine triphosphatase were observed in the hearts of rats exposed to CCl4 compared to respective values in normal group. Quantitative analysis of myocardial energy metabolism revealed a significant decrease in the glucose content coupled with depletion in the activities of myocardial glycolytic enzymes as hexokinase (HK), phosphofructokinase (PFK) and lactate dehydrogenase (LDH) after CCl4 treatment. In addition, a significant elevation in myocardial hydroxyproline level was observed in CCl4 intoxicated rats indicating interstitial collagen accumulation. Pretreatment with either NAC, CoQ10 or their combination successively alleviated the alterations in myocardial oxidative stress and antioxidant markers, as well as effectively up-regulated the decrease in cardiac energetic biomarkers in CCl4 intoxicated rats. Moreover, these antioxidants markedly reduced myocardial hydroxyproline level versus that of CCl4-treated animals. In conclusion, the present results illustrated that the prophylactic use of the current antioxidant resulted in a remarkable cardioprotective effect against CCl4 induced myocardial damage, which suggest that they may candidates as prophylactic agents against different cardio-toxins.

Keywords: carbon tetrachloride, lipid peroxidation, antioxidant, energy metabolism, hydroxyproline

Procedia PDF Downloads 400
2776 Genomic and Proteomic Variability in Glycine Max Genotypes in Response to Salt Stress

Authors: Faheema Khan

Abstract:

To investigate the ability of sensitive and tolerant genotype of Glycine max to adapt to a saline environment in a field, we examined the growth performance, water relation and activities of antioxidant enzymes in relation to photosynthetic rate, chlorophyll a fluorescence, photosynthetic pigment concentration, protein and proline in plants exposed to salt stress. Ten soybean genotypes (Pusa-20, Pusa-40, Pusa-37, Pusa-16, Pusa-24, Pusa-22, BRAGG, PK-416, PK-1042, and DS-9712) were selected and grown hydroponically. After 3 days of proper germination, the seedlings were transferred to Hoagland’s solution (Hoagland and Arnon 1950). The growth chamber was maintained at a photosynthetic photon flux density of 430 μmol m−2 s−1, 14 h of light, 10 h of dark and a relative humidity of 60%. The nutrient solution was bubbled with sterile air and changed on alternate days. Ten-day-old seedlings were given seven levels of salt in the form of NaCl viz., T1 = 0 mM NaCl, T2=25 mM NaCl, T3=50 mM NaCl, T4=75 mM NaCl, T5=100 mM NaCl, T6=125 mM NaCl, T7=150 mM NaCl. The investigation showed that genotype Pusa-24, PK-416 and Pusa-20 appeared to be the most salt-sensitive. genotypes as inferred from their significantly reduced length, fresh weight and dry weight in response to the NaCl exposure. Pusa-37 appeared to be the most tolerant genotype since no significant effect of NaCl treatment on growth was found. We observed a greater decline in the photosynthetic variables like photosynthetic rate, chlorophyll fluorescence and chlorophyll content, in salt-sensitive (Pusa-24) genotype than in salt-tolerant Pusa-37 under high salinity. Numerous primers were verified on ten soybean genotypes obtained from Operon technologies among which 30 RAPD primers shown high polymorphism and genetic variation. The Jaccard’s similarity coefficient values for each pairwise comparison between cultivars were calculated and similarity coefficient matrix was constructed. The closer varieties in the cluster behaved similar in their response to salinity tolerance. Intra-clustering within the two clusters precisely grouped the 10 genotypes in sub-cluster as expected from their physiological findings.Salt tolerant genotype Pusa-37, was further analysed by 2-Dimensional gel electrophoresis to analyse the differential expression of proteins at high salt stress. In the Present study, 173 protein spots were identified. Of these, 40 proteins responsive to salinity were either up- or down-regulated in Pusa-37. Proteomic analysis in salt-tolerant genotype (Pusa-37) led to the detection of proteins involved in a variety of biological processes, such as protein synthesis (12 %), redox regulation (19 %), primary and secondary metabolism (25 %), or disease- and defence-related processes (32 %). In conclusion, the soybean plants in our study responded to salt stress by changing their protein expression pattern. The photosynthetic, biochemical and molecular study showed that there is variability in salt tolerance behaviour in soybean genotypes. Pusa-24 is the salt-sensitive and Pusa-37 is the salt-tolerant genotype. Moreover this study gives new insights into the salt-stress response in soybean and demonstrates the power of genomic and proteomic approach in plant biology studies which finally could help us in identifying the possible regulatory switches (gene/s) controlling the salt tolerant genotype of the crop plants and their possible role in defence mechanism.

Keywords: glycine max, salt stress, RAPD, genomic and proteomic variability

Procedia PDF Downloads 423
2775 Cumulus Cells of Mature Local Goat Oocytes Vitrified with Insulin Transferrin Selenium and Heat Shock Protein 70

Authors: Izzatul Ulfana, Angga Pratomo Cahyadi, Rimayanti, Widjiati

Abstract:

Freezing oocyte could cause temperature stress. Temperature stress triggers cell damage. Insulin Transferrin Selenium (ITS) and Heat Shock Protein 70 (HSP70) had been used to prevent damage to the oocyte after freezing. ITS and HSP70 could cause the difference protective effect. The aim of this research was to obtain an effective cryoprotectant for freezing local goat oocyte in cumulus cells change. The research began by collecting the ovary from a local slaughterhouse in Indonesia, aspiration follicle, in vitro maturation and the freezing had been used vitrification method. Examination of the morphology cells by native staining method. Data on the calculation morphology oocyte analyzed by Kruskall-Wallis Test. After the Kruskall-Wallis Test which indicated significance, followed by Mann-Whitney Test to compare between treatment groups. As a result, cryoprotectant ITS has the best culumus cells after warming

Keywords: Insulin Transferrin Selenium, Heat Shock Protein 70, cryoprotectant, vitrification

Procedia PDF Downloads 240
2774 Numerical Study on the Effect of Liquid Viscosity on Gas Wall and Interfacial Shear Stress in a Horizontal Two-Phase Pipe Flow

Authors: Jack Buckhill Khallahle

Abstract:

In this study, the calculation methods for interfacial and gas wall shear stress in two-phase flow over a stationary liquid surface with dissimilar liquid viscosities within a horizontal pipe are explored. The research focuses on understanding the behavior of gas and liquid phases as they interact in confined pipe geometries, with liquid-water and kerosene serving as the stationary surfaces. To achieve accurate modelling of flow variables such as pressure drop, liquid holdup, and shear stresses in such flow configurations, a 3D pipe model is developed for Computational Fluid Dynamics (CFD) simulation. This model simulates fully developed gas flow over a stationary liquid surface within a 2.2-liter reservoir of 6.25 meters length and 0.05 meters pipe diameter. The pipe geometry is specifically configured based on the experimental setup used by Newton et al [23]. The simulations employ the Volume of Fluid (VOF) model to track the gas-liquid interface in the two-phase domain. Additionally, the k-ω Shear Stress Transport (SST) turbulence model is used to address turbulence effects in the flow field. The governing equations are solved using the Pressure-Implicit with Splitting of Operators (PISO) algorithm. The model is validated by calculating liquid heights, gas wall, and interfacial shear stresses and comparing them against experimental data for both water and kerosene. Notably, the proposed interfacial friction factor correlation based on the employed pipe model aligns excellently with experimental data using the conventional two-phase flow calculation method. However, it is observed that the interfacial and gas wall shear stresses calculated from mathematical formulations involving hydrostatic force exhibit poor correlation with the experimental data.

Keywords: Two-Phase Flow, Horizontal Pipe, VOF Model, k-ω SST Model, Stationary Liquid Surface, Gas Wall and Interfacial Shear Stresses and Hydrostatic Force.

Procedia PDF Downloads 13
2773 Polyurethane Membrane Mechanical Property Study for a Novel Carotid Covered Stent

Authors: Keping Zuo, Jia Yin Chia, Gideon Praveen Kumar Vijayakumar, Foad Kabinejadian, Fangsen Cui, Pei Ho, Hwa Liang Leo

Abstract:

Carotid artery is the major vessel supplying blood to the brain. Carotid artery stenosis is one of the three major causes of stroke and the stroke is the fourth leading cause of death and the first leading cause of disability in most developed countries. Although there is an increasing interest in carotid artery stenting for treatment of cervical carotid artery bifurcation therosclerotic disease, currently available bare metal stents cannot provide an adequate protection against the detachment of the plaque fragments over diseased carotid artery, which could result in the formation of micro-emboli and subsequent stroke. Our research group has recently developed a novel preferential covered-stent for carotid artery aims to prevent friable fragments of atherosclerotic plaques from flowing into the cerebral circulation, and yet retaining the ability to preserve the flow of the external carotid artery. The preliminary animal studies have demonstrated the potential of this novel covered-stent design for the treatment of carotid therosclerotic stenosis. The purpose of this study is to evaluate the biomechanical property of PU membrane of different concentration configurations in order to refine the stent coating technique and enhance the clinical performance of our novel carotid covered stent. Results from this study also provide necessary material property information crucial for accurate simulation analysis for our stents. Method: Medical grade Polyurethane (ChronoFlex AR) was used to prepare PU membrane specimens. Different PU membrane configurations were subjected to uniaxial test: 22%, 16%, and 11% PU solution were made by mixing the original solution with proper amount of the Dimethylacetamide (DMAC). The specimens were then immersed in physiological saline solution for 24 hours before test. All specimens were moistened with saline solution before mounting and subsequent uniaxial testing. The specimens were preconditioned by loading the PU membrane sample to a peak stress of 5.5 Mpa for 10 consecutive cycles at a rate of 50 mm/min. The specimens were then stretched to failure at the same loading rate. Result: The results showed that the stress-strain response curves of all PU membrane samples exhibited nonlinear characteristic. For the ultimate failure stress, 22% PU membrane was significantly higher than 16% (p<0.05). In general, our preliminary results showed that lower concentration PU membrane is stiffer than the higher concentration one. From the perspective of mechanical properties, 22% PU membrane is a better choice for the covered stent. Interestingly, the hyperelastic Ogden model is able to accurately capture the nonlinear, isotropic stress-strain behavior of PU membrane with R2 of 0.9977 ± 0.00172. This result will be useful for future biomechanical analysis of our stent designs and will play an important role for computational modeling of our covered stent fatigue study.

Keywords: carotid artery, covered stent, nonlinear, hyperelastic, stress, strain

Procedia PDF Downloads 312
2772 Occupational Heat Stress Related Adverse Pregnancy Outcome: A Pilot Study in South India Workplaces

Authors: Rekha S., S. J. Nalini, S. Bhuvana, S. Kanmani, Vidhya Venugopal

Abstract:

Introduction: Pregnant women's occupational heat exposure has been linked to foetal abnormalities and pregnancy complications. The presence of heat in the workplace is expected to lead to Adverse Pregnancy Outcomes (APO), especially in tropical countries where temperatures are rising and workplace cooling interventions are minimal. For effective interventions, in-depth understanding and evidence about occupational heat stress and APO are required. Methodology: Approximately 800 pregnant women in and around Chennai who were employed in jobs requiring moderate to hard labour participated in the cohort research. During the study period (2014-2019), environmental heat exposures were measured using a Questemp WBGT monitor, and heat strain markers, such as Core Body Temperature (CBT) and Urine Specific Gravity (USG), were evaluated using an Infrared Thermometer and a refractometer, respectively. Using a valid HOTHAPS questionnaire, self-reported health symptoms were collected. In addition, a postpartum follow-up with the mothers was done to collect APO-related data. Major findings of the study: Approximately 47.3% of pregnant workers have workplace WBGTs over the safe manual work threshold value for moderate/heavy employment (Average WBGT of 26.6°C±1.0°C). About 12.5% of the workers had CBT levels above the usual range, and 24.8% had USG levels above 1.020, both of which suggested mild dehydration. Miscarriages (3%), stillbirths/preterm births (3.5%), and low birth weights (8.8%) were the most common unfavorable outcomes among pregnant employees. In addition, WBGT exposures above TLVs during all trimesters were associated with a 2.3-fold increased risk of adverse fetal/maternal outcomes (95% CI: 1.4-3.8), after adjusting for potential confounding variables including age, education, socioeconomic status, abortion history, stillbirth, preterm, LBW, and BMI. The study determined that WBGTs in the workplace had direct short- and long-term effects on the health of both the mother and the foetus. Despite the study's limited scope, the findings provided valuable insights and highlighted the need for future comprehensive cohort studies and extensive data in order to establish effective policies to protect vulnerable pregnant women from the dangers of heat stress and to promote reproductive health.

Keywords: adverse outcome, heat stress, interventions, physiological strain, pregnant women

Procedia PDF Downloads 73
2771 Investigation of the Effects of 10-Week Nordic Hamstring Exercise Training and Subsequent Detraining on Plasma Viscosity and Oxidative Stress Levels in Healthy Young Men

Authors: H. C. Ozdamar , O. Kilic-Erkek, H. E. Akkaya, E. Kilic-Toprak, M. Bor-Kucukatay

Abstract:

Nordic hamstring exercise (NHE) is used to increase hamstring muscle strength, prevent injuries. The aim of this study was to reveal the acute, long-term effects of 10-week NHE, followed by 5, 10-week detraining on anthropometric measurements, flexibility, anaerobic power, muscle architecture, damage, fatigue, oxidative stress, plasma viscosity (PV), blood lactate levels. 40 sedentary, healthy male volunteers underwent 10 weeks of progressive NHE followed by 5, 10 weeks of detraining. Muscle architecture was determined by ultrasonography, stiffness by strain elastography. Anaerobic power was assessed by double-foot standing, long jump, vertical jump, flexibility by sit-lie, hamstring flexibility tests. Creatine kinase activity, oxidant/antioxidant parameters were measured from venous blood by a commercial kit, whereas PV was determined using a cone-plate viscometer. The blood lactate level was measured from the fingertip. NHE allowed subjects to lose weight, this effect was reversed by detraining for 5 weeks. Exercise caused an increase in knee angles measured by a goniometer, which wasn’t affected by detraining. 10-week NHE caused a partially reversed increase in anaerobic performance upon detraining. NHE resulted in increment of biceps femoris long head (BFub) area, pennation angle, which was reversed by detraining of 10-weeks. Blood lactate levels, muscle pain, fatigue were increased after each exercise session. NHE didn’t change oxidant/antioxidant parameters; 5-week detraining resulted in an increase in total oxidant capacity (TOC) and oxidative stress index (OSI). Detraining of 10 weeks caused a reduction of these parameters. Acute exercise caused a reduction in PV at 1 to 10 weeks. Pre-exercise PV measured on the 10th week was lower than the basal value. Detraining caused the increment of PV. The results may guide the selection of the exercise type to increase performance and muscle strength. Knowing how much of the gains will be lost after a period of detraining can contribute to raising awareness of the continuity of the exercise. This work was supported by PAU Scientific Research Projects Coordination Unit (Project number: 2018SABE034)

Keywords: anaerobic power, detraining, Nordic hamstring exercise, oxidative stress, plasma viscosity

Procedia PDF Downloads 127
2770 Load Bearing Capacity and Operational Effectiveness of Single Shear Joints of CFRP Composite Laminate with Spread Tow Thin Plies

Authors: Tabrej Khan, Tamer A. Sebaey, Balbir Singh, M. A. Umarfarooq

Abstract:

Spread-tow thin-ply-based technology has resulted in the progress of optimized reinforced composite plies with ultra-low thicknesses. There is wide use of composite bolted joints in the aircraft industry for load-bearing structures, and they are regarded as the primary source of stress concentration. The purpose of this study is to look into the bearing strength and structural performance of single shear bolt joint configurations in composite laminates, which are basically a combination of conventional thin-plies and thick-plies in some specific stacking sequence. The placement effect of thin-ply within the configured stack on bearing strength, as well as the potential damages, were investigated. Mechanical tests were used to understand the disfigurement mechanisms of the plies and their reciprocity, as well as to reflect on the single shear bolt joint properties and its load-bearing capacity. The results showed that changing the configuration of laminates by inserting the thin plies inside improved the bearing strength by up to 19%.

Keywords: hybrid composites, delamination, stress concentrations, mechanical testing, single bolt joint, thin-plies

Procedia PDF Downloads 65