Search results for: sulphuric acid attack resistance
5823 Preparation and Evaluation of Gelatin-Hyaluronic Acid-Polycaprolactone Membrane Containing 0.5 % Atorvastatin Loaded Nanostructured Lipid Carriers as a Nanocomposite Scaffold for Skin Tissue Engineering
Authors: Mahsa Ahmadi, Mehdi Mehdikhani-Nahrkhalaji, Jaleh Varshosaz, Shadi Farsaei
Abstract:
Gelatin and hyaluronic acid are commonly used in skin tissue engineering scaffolds, but because of their low mechanical properties and high biodegradation rate, adding a synthetic polymer such as polycaprolactone could improve the scaffold properties. Therefore, we developed a gelatin-hyaluronic acid-polycaprolactone scaffold, containing 0.5 % atorvastatin loaded nanostructured lipid carriers (NLCs) for skin tissue engineering. The atorvastatin loaded NLCs solution was prepared by solvent evaporation method and freeze drying process. Synthesized atorvastatin loaded NLCs was added to the gelatin and hyaluronic acid solution, and a membrane was fabricated with solvent evaporation method. Thereafter it was coated by a thin layer of polycaprolactone via spine coating set. The resulting scaffolds were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analyses. Moreover, mechanical properties, in vitro degradation in 7 days period, and in vitro drug release of scaffolds were also evaluated. SEM images showed the uniform distributed NLCs with an average size of 100 nm in the scaffold structure. Mechanical test indicated that the scaffold had a 70.08 Mpa tensile modulus which was twofold of tensile modulus of normal human skin. A Franz-cell diffusion test was performed to investigate the scaffold drug release in phosphate buffered saline (pH=7.4) medium. Results showed that 72% of atorvastatin was released during 5 days. In vitro degradation test demonstrated that the membrane was degradated approximately 97%. In conclusion, suitable physicochemical and biological properties of membrane indicated that the developed gelatin-hyaluronic acid-polycaprolactone nanocomposite scaffold containing 0.5 % atorvastatin loaded NLCs could be used as a good candidate for skin tissue engineering applications.Keywords: atorvastatin, gelatin, hyaluronic acid, nano lipid carriers (NLCs), polycaprolactone, skin tissue engineering, solvent casting, solvent evaporation
Procedia PDF Downloads 2525822 Investigation of Heating Behaviour of E-Textile Structures
Authors: Hande Sezgin, Senem Kursun Bahadır, Yakup Erhan Boke, Fatma Kalaoğlu
Abstract:
Electronic textiles (e-textiles) are fabrics that contain electronics and interconnections with them. In this study, two types of base yarns (cotton and acrylic) and three conductive steel yarns with different linear resistance values (14Ω/m, 30Ω/m, 70Ω/m) were used to investigate the effect of base yarn type and linear resistance of conductive yarns on thermal behavior of e-textile structures. Thermal behavior of samples were examined by thermal camera.Keywords: conductive yarn, e-textiles, smart textiles, thermal analysis
Procedia PDF Downloads 5575821 Binding Studies and Structure Determination of the Recombinantly Produced Type-II 3-Dehydroquinate Dehydratase from Acinetobacter Baumannii
Authors: Naseer Iqbal, Mukesh Kumar, Pradeep Sharma, Satya Prakash Yadav, Punit Kaur, Sujata Sharma, T. P. Singh
Abstract:
Dehydroquinase (3-dehydroquinate dehydratase, DHQD, EC 4.2.1.10) is involved in shikimate pathway and catalyzes the conversion of dehydroquinate to dehydroshikimate. Shikimate pathway is important drug target as this pathway is absent in mammals. DHQD from Acinetobacter baumannii (AbDHQD) was cloned, expressed and purified to homogeneity. The binding studies showed that compounds quinic acid and citrazinic acid bound to AbDHQD at micromolar concentrations. AbDHQD was crystallized using 30% PEG-3350, 50mM tris-HCl, and 1.0M MgSO4 at PH 8.0. Crystals of AbDHQD were stabilized by transferring them into reservoir solution to which 25% glycerol was added for data collection at 100K. The X-ray intensity data were collected to 2.0Å resolution. The crystals belong to monoclinic space group P21 with cell dimensions, a = 82.3, b = 95.3, c = 132.3Å and β = 95.7°. The structure was solved with molecular replacement method and refined to Rcryst/Rfree factors of 0.200/0.232. The structures of 12 crystallographically independent molecules in the asymmetry unit were identical with r.m.s shifts for the C atoms ranging from 0.3 Å to 0.8 Å. They formed a dodecamer with four trimers arranged in a tetrahedral manner. The classical lid adopted an open conformation although a sulfate ion was observed in the substrate binding site. As a result of which, the compounds quinic acid and citrazinic acid did not bind to AbDHQD.Keywords: acinetobacter Bauman Nii, dehydroquinate dehydratase, dodecamer, open conformation
Procedia PDF Downloads 3615820 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe
Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati
Abstract:
This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PC-CPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of the experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have a significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rt, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66(ºC/W).Keywords: loop heat pipe, nanofluid, optimization, thermal resistance
Procedia PDF Downloads 4615819 Genomic and Transcriptomic Analysis of Antibiotic Resistance Genes in Biological Wastewater Treatment Systems Treating Domestic and Hospital Effluents
Authors: Thobela Conco, Sheena Kumari, Chika Nnadozie, Mahmoud Nasr, Thor A. Stenström, Mushal Ali, Arshad Ismail, Faizal Bux
Abstract:
The discharge of antibiotics and its residues into the wastewater treatment plants (WWTP’s) create a conducive environment for the development of antibiotic resistant pathogens. This presents a risk of potential dissemination of antibiotic resistant pathogens and antibiotic resistance genes into the environment. It is, therefore, necessary to study the level of antibiotic resistance genes (ARG’s) among bacterial pathogens that proliferate in biological wastewater treatment systems. In the current study, metagenomic and meta-transcriptomic sequences of samples collected from the influents, secondary effluents and post chlorinated effluents of three wastewater treatment plants treating domestic and hospital effluents in Durban, South Africa, were analyzed for profiling of ARG’s among bacterial pathogens. Results show that a variety of ARG’s, mostly, aminoglycoside, β-lactamases, tetracycline and sulfonamide resistance genes were harbored by diverse bacterial genera found at different stages of treatment. A significant variation in diversity of pathogen and ARGs between the treatment plant was observed; however, treated final effluent samples from all three plants showed a significant reduction in bacterial pathogens and detected ARG’s. Both pre- and post-chlorinated samples showed the presence of mobile genetic elements (MGE’s), indicating the inefficiency of chlorination to remove of ARG’s integrated with MGE’s. In conclusion, the study showed the wastewater treatment plant efficiently caused the reduction and removal of certain ARG’s, even though the initial focus was the removal of biological nutrients.Keywords: antibiotic resistance, mobile genetic elements, wastewater, wastewater treatment plants
Procedia PDF Downloads 2195818 Decarboxylation of Waste Coconut Oil and Comparison of Acid Values
Authors: Pabasara H. Gamage, Sisira K. Weliwegamage, Sameera R. Gunatilake, Hondamuni I. C De Silva, Parakrama Karunaratne
Abstract:
Green diesel is an upcoming category of biofuels, which has more practical advantages than biodiesel. Production of green diesel involves production of hydrocarbons from various fatty acid sources. Though green diesel is chemically similar to fossil fuel hydrocarbons, it is more environmentally friendly. Decarboxylation of fatty acid sources is one of green diesel production methods and is less expensive and more energy efficient compared to hydrodeoxygenation. Free fatty acids (FFA), undergo decarboxylation readily than triglycerides. Waste coconut oil, which is a rich source of FFA, can be easily decarboxylated than other oils which have lower FFA contents. These free fatty acids can be converted to hydrocarbons by decarboxylation. Experiments were conducted to carry out decarboxylation of waste coconut oil in a high pressure hastealloy reactor (Toption Goup LTD), in the presence of soda lime and mixtures of soda lime and alumina. Acid value (AV) correlates to the amount of FFA available in a sample of oil. It can be shown that with the decreasing of AV, FFAs have converted to hydrocarbons. First, waste coconut oil was reacted with soda lime alone, at 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure for 2 hours. AVs of products at different temperatures were compared. AV of products decreased with increasing temperature. Thereafter, different mixtures of soda lime and alumina (100% Soda lime, 1:1 soda lime and alumina and 100% alumina) were employed at temperatures 150 °C, 200 °C, and 250 °C and 1.2 MPa pressure. The lowest AV of 2.99±0.03 was obtained when 1:1 soda lime and alumina were employed at 250 °C. It can be concluded with respect to the AV that the amount of FFA decreased when decarboxylation temperature was increased. Soda lime:alumina 1:1 mixture showed the lowest AV among the compositions studied. These findings lead to formulate a method to successfully synthesize hydrocarbons by decarboxylating waste coconut oil in the presence of soda lime and alumina (1:1) at elevated tempertaures such as 250 °C.Keywords: acid value, free fatty acids, green diesel, high pressure reactor, waste coconut oil
Procedia PDF Downloads 3005817 Biogas Production from Kitchen Waste for a Household Sustainability
Authors: Vuiswa Lucia Sethunya, Tonderayi Matambo, Diane Hildebrandt
Abstract:
South African’s informal settlements produce tonnes of kitchen waste (KW) per year which is dumped into the landfill. These landfill sites are normally located in close proximity to the household of the poor communities; this is a problem in which the young children from those communities end up playing in these landfill sites which may result in some health hazards because of methane, carbon dioxide and sulphur gases which are produced. To reduce this large amount of organic materials being deposited into landfills and to provide a cleaner place for those within the community especially the children, an energy conversion process such as anaerobic digestion of the organic waste to produce biogas was implemented. In this study, the digestion of various kitchen waste was investigated in order to understand and develop a system that is suitable for household use to produce biogas for cooking. Three sets of waste of different nutritional compositions were digested as per acquired in the waste streams of a household at mesophilic temperature (35ᵒC). These sets of KW were co-digested with cow dung (CW) at different ratios to observe the microbial behaviour and the system’s stability in a laboratory scale system. The gas chromatography-flame ionization detector analyses have been performed to identify and quantify the presence of organic compounds in the liquid samples from co-digested and mono-digested food waste. Acetic acid, propionic acid, butyric acid and valeric acid are the fatty acids which were studied. Acetic acid (1.98 g/L), propionic acid (0.75 g/L) and butyric acid (2.16g/L) were the most prevailing fatty acids. The results obtained from organic acids analysis suggest that the KW can be an innovative substituent to animal manure for biogas production. The faster degradation period in which the microbes break down the organic compound to produce the fatty acids during the anaerobic process of KW also makes it a better feedstock during high energy demand periods. The C/N ratio analysis showed that from the three waste streams the first stream containing vegetables (55%), fruits (16%), meat (25%) and pap (4%) yielded more methane-based biogas of 317mL/g of volatile solids (VS) at C/N of 21.06. Generally, this shows that a household will require a heterogeneous composition of nutrient-based waste to be fed into the digester to acquire the best biogas yield to sustain a households cooking needs.Keywords: anaerobic digestion, biogas, kitchen waste, household
Procedia PDF Downloads 2005816 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks
Authors: Bachir Chemani, Halima Chemani
Abstract:
The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.Keywords: clay, coal, resistance to compression, insulating bricks
Procedia PDF Downloads 3295815 Physicochemical and Biochemical Characterization of an Oil of Pistacia Lentiscus Fruits and Its Effects on Blood Lipid Profile (10364 EJSR)
Authors: Merzougui Imene, Gherib Asma, Henchiri Cherifa
Abstract:
This study has allowed to confirm the physico chemical characteristics and fatty acid composition by GC of the oil of Pistacia lentiscus extracted by traditional method and evaluate its effect on some blood lipid parameters. The results showed that the main physico chemical characteristics of Pistacia lentiscus oil are: moisture (0.84 %), a relatively high iodine value (80,44) indicating that this oil has an important degree of unsaturation. The oil is mainly composed of unsaturated fatty acids (MUFA) where oleic acid dominate with 47,01 % of total fatty acids and PUFA's represented by linoleic acid (19,26 %). Concerning the biological survey, oil, at 10% and 20% doses of diet for 15 and 30 days of two periods of treatment, resulted in beneficial effects on the lipid profile of Wistar albinos rats previously fed with animal and vegetable fats. We observed decreases in total cholesterol, triglycerides (TGA), total lipids and LDL-C, and an increase in HDL-C "good cholesterol" probably related to the presence of a large amount of (MUFA) and (PUFA).Keywords: Pistacia lentiscus, oil, lipid profile, monounsaturated fatty acids, polyunsaturated fatty acids
Procedia PDF Downloads 3615814 Sequential Padding: A Method to Improve the Impact Resistance in Body Armor Materials
Authors: Ankita Srivastava, Bhupendra S. Butola, Abhijit Majumdar
Abstract:
Application of shear thickening fluid (STF) has been proved to increase the impact resistance performance of the textile structures to further use it as a body armor material. In the present research, STF was applied on Kevlar woven fabric to make the structure lightweight and flexible while improving its impact resistance performance. It was observed that getting a fair amount of add-on of STF on Kevlar fabric is difficult as Kevlar fabric comes with a pre-coating of PTFE which hinders its absorbency. Hence, a method termed as sequential padding is developed in the present study to improve the add-on of STF on Kevlar fabric. Contrary to the conventional process, where Kevlar fabric is treated with STF once using any one pressure, in sequential padding method, the Kevlar fabrics were treated twice in a sequential manner using combination of two pressures together in a sample. 200 GSM Kevlar fabrics were used in the present study. STF was prepared by adding PEG with 70% (w/w) nano-silica concentration. Ethanol was added with the STF at a fixed ratio to reduce viscosity. A high-speed homogenizer was used to make the dispersion. Total nine STF treated Kevlar fabric samples were prepared by using varying combinations and sequences of three levels of padding pressure {0.5, 1.0 and 2.0 bar). The fabrics were dried at 80°C for 40 minutes in a hot air oven to evaporate ethanol. Untreated and STF treated fabrics were tested for add-on%. Impact resistance performance of samples was also tested on dynamic impact tester at a fixed velocity of 6 m/s. Further, to observe the impact resistance performance in actual condition, low velocity ballistic test with 165 m/s velocity was also performed to confirm the results of impact resistance test. It was observed that both add-on% and impact energy absorption of Kevlar fabrics increases significantly with sequential padding process as compared to untreated as well as single stage padding process. It was also determined that impact energy absorption is significantly better in STF treated Kevlar fabrics when 1st padding pressure is higher, and 2nd padding pressure is lower. It is also observed that impact energy absorption of sequentially padded Kevlar fabric shows almost 125% increase in ballistic impact energy absorption (40.62 J) as compared to untreated fabric (18.07 J).The results are owing to the fact that the treatment of fabrics at high pressure during the first padding is responsible for uniform distribution of STF within the fabric structures. While padding with second lower pressure ensures the high add-on of STF for over-all improvement in the impact resistance performance of the fabric. Therefore, it is concluded that sequential padding process may help to improve the impact performance of body armor materials based on STF treated Kevlar fabrics.Keywords: body armor, impact resistance, Kevlar, shear thickening fluid
Procedia PDF Downloads 2415813 Modification Effect of CeO2 on Pt-Pd Nano Sized Catalysts for Formic Acid Oxidation
Authors: Ateeq Ur Rehman
Abstract:
This article deals with the promotional effects of CeO2 on PtPd/CeO2-OMC electrocatalysts. The synthesized catalysts are characterized using different physicochemical techniques and evaluated in a formic acid oxidation fuel cell. N2 adsorption/desorption analysis shows that CeO2 modification increases the surface area of OMC from 1005 m2/g to 1119 m2/g. SEM, XRD and TEM analysis reveal that the presence of CeO2 enhances the active metal(s) dispersion on the CeO2-OMC surface. The average particle size of the dispersed metal decreases with the increase of Pt/Pd ratio on CeO2-OMC support. Cyclic voltametry measurement of Pd/CeO2-OMC gives 12 % higher anodic current activity with 83 mV negative shift of the peak potential as compared to unmodified Pd/OMC. In bimetallic catalysts, the addition of Pt improves the activity and stability of the catalysts significantly. Among the bimetallic samples, Pd3Pt1/CeO2-OMC displays superior current density (74.6 mA/cm2), which is 28.3 times higher than that of Pt/CeO2-OMC. It also shows higher stability in extended period of runs with least indication of CO poisoning effects.Keywords: CeO2, ordered mesoporous carbon (OMC), nano particles, formic acid fuel cell
Procedia PDF Downloads 3155812 Optimization of Carbon Nanotube Content of Asphalt Nanocomposites with Regard to Resistance to Permanent Deformation
Authors: João V. Staub de Melo, Glicério Trichês, Liseane P. Thives
Abstract:
This paper presents the results of the development of asphalt nanocomposites containing carbon nanotubes (CNTs) with high resistance to permanent deformation, aiming to increase the performance of asphalt surfaces in relation to the rutting problem. Asphalt nanocomposites were prepared with the addition of different proportions of CNTs (1%, 2% and 3%) in relation to the weight of asphalt binder. The base binder used was a conventional binder (50-70 penetration) classified as PG 58-22. The optimum percentage of CNT addition in the asphalt binder (base) was determined through the evaluation of the rheological and empirical characteristics of the nanocomposites produced. In order to evaluate the contribution and the effects of the nanocomposite (optimized) in relation to the rutting, the conventional and nanomodified asphalt mixtures were tested in a French traffic simulator (Orniéreur). The results obtained demonstrate the efficient contribution of the asphalt nanocomposite containing CNTs to the resistance to permanent deformation of the asphalt mixture.Keywords: asphalt nanocomposites, asphalt mixtures, carbon nanotubes, nanotechnology, permanent deformation
Procedia PDF Downloads 2855811 Stability and Performance Improvement of a Two-Degree-of-Freedom Robot under Interaction Using the Impedance Control
Authors: Seyed Reza Mirdehghan, Mohammad Reza Haeri Yazdi
Abstract:
In this paper, the stability and the performance of a two-degree-of-freedom robot under an interaction with a unknown environment has been investigated. The time when the robot returns to its initial position after an interaction and the primary resistance of the robot against the impact must be reduced. Thus, the applied torque on the motor will be reduced. The impedance control is an appropriate method for robot control in these conditions. The stability of the robot at interaction moment was transformed to be a robust stability problem. The dynamic of the unknown environment was modeled as a weight function and the stability of the robot under an interaction with the environment has been investigated using the robust control concept. To improve the performance of the system, a force controller has been designed which the normalized impedance after interaction has been reduced. The resistance of the robot has been considered as a normalized cost function and its value was 0.593. The results has showed reduction of resistance of the robot against impact and the reduction of convergence time by lower than one second.Keywords: impedance control, control system, robots, interaction
Procedia PDF Downloads 4305810 Biofiltration Odour Removal at Wastewater Treatment Plant Using Natural Materials: Pilot Scale Studies
Authors: D. Lopes, I. I. R. Baptista, R. F. Vieira, J. Vaz, H. Varela, O. M. Freitas, V. F. Domingues, R. Jorge, C. Delerue-Matos, S. A. Figueiredo
Abstract:
Deodorization is nowadays a need in wastewater treatment plants. Nitrogen and sulphur compounds, volatile fatty acids, aldehydes and ketones are responsible for the unpleasant odours, being ammonia, hydrogen sulphide and mercaptans the most common pollutants. Although chemical treatments of the air extracted are efficient, these are more expensive than biological treatments, namely due the use of chemical reagents (commonly sulphuric acid, sodium hypochlorite and sodium hydroxide). Biofiltration offers the advantage of avoiding the use of reagents (only in some cases, nutrients are added in order to increase the treatment efficiency) and can be considered a sustainable process when the packing medium used is of natural origin. In this work the application of some natural materials locally available was studied both at laboratory and pilot scale, in a real wastewater treatment plant. The materials selected for this study were indigenous Portuguese forest materials derived from eucalyptus and pinewood, such as woodchips and bark, and coconut fiber was also used for comparison purposes. Their physico-chemical characterization was performed: density, moisture, pH, buffer and water retention capacity. Laboratory studies involved batch adsorption studies for ammonia and hydrogen sulphide removal and evaluation of microbiological activity. Four pilot-scale biofilters (1 cubic meter volume) were installed at a local wastewater treatment plant treating odours from the effluent receiving chamber. Each biofilter contained a different packing material consisting of mixtures of eucalyptus bark, pine woodchips and coconut fiber, with added buffering agents and nutrients. The odour treatment efficiency was monitored over time, as well as other operating parameters. The operation at pilot scale suggested that between the processes involved in biofiltration - adsorption, absorption and biodegradation - the first dominates at the beginning, while the biofilm is developing. When the biofilm is completely established, and the adsorption capacity of the material is reached, biodegradation becomes the most relevant odour removal mechanism. High odour and hydrogen sulphide removal efficiencies were achieved throughout the testing period (over 6 months), confirming the suitability of the materials selected, and mixtures thereof prepared, for biofiltration applications.Keywords: ammonia hydrogen sulphide and removal, biofiltration, natural materials, odour control in wastewater treatment plants
Procedia PDF Downloads 3025809 The Effects of Acid Rain, Smog Cars on Antioxidant Systems, Associated Enzyme and H⁺-ATPase Activity in Rice Cultivars (Oriza sativa L.)
Authors: Heidarali Malmir
Abstract:
The effects of acid rain (AR), smog’s cars (SC), and combined AR+SC on the antioxidants enzymes, lipid-soluble antioxidants, and water-soluble antioxidants were studied in the two cultivars of rice. The results showed that simulated AR significantly increased the total glutathione (TGSH), thiobarbituric acid (TBA), and α-tocopherol, accompanied by decreases in dry weight and leaves area in the two cultivars, and this change was more obvious in Shirudi cultivar than in Aus cultivar (p≤0.05). Under SC stress cultivar shirudi had higher H+-ATPase, glutathione peroxidase (GSH-px), and catalase (CAT) activities than cultivar Aus. The results of superoxide dismutase (SOD) activity, TGSH, and α-tocopherol levels affected by AR treatments were very different to those of SOD activity, TGSH, and α-tocopherol levels, as shown in SC treatment. It seems that SOD activity coupled with the water-soluble antioxidants and α-tocopherol levels correlated with the lipid-soluble antioxidants. It is suggested that α-tocopherol increases H+-ATPase activity.Keywords: H+-ATPase, membrane permeability, lipid soluble antioxidants, water soluble antioxidants, associated enzyme
Procedia PDF Downloads 835808 The Role of Social Media in the Rise of Islamic State in India: An Analytical Overview
Authors: Yasmeen Cheema, Parvinder Singh
Abstract:
The evolution of Islamic State (acronym IS) has an ultimate goal of restoring the caliphate. IS threat to the global security is main concern of international community but has also raised a factual concern for India about the regular radicalization of IS ideology among Indian youth. The incident of joining Arif Ejaz Majeed, an Indian as ‘jihadist’ in IS has set strident alarm in law & enforcement agencies. On 07.03.2017, many people were injured in an Improvised Explosive Device (IED) blast on-board of Bhopal Ujjain Express. One perpetrator of this incident was killed in encounter with police. But, the biggest shock is that the conspiracy was pre-planned and the assailants who carried out the blast were influenced by the ideology perpetrated by the Islamic State. This is the first time name of IS has cropped up in a terror attack in India. It is a red indicator of violent presence of IS in India, which is spreading through social media. The IS have the capacity to influence the younger Muslim generation in India through its brutal and aggressive propaganda videos, social media apps and hatred speeches. It is a well known fact that India is on the radar of IS, as well on its ‘Caliphate Map’. IS uses Twitter, Facebook and other social media platforms constantly. Islamic State has used enticing videos, graphics, and articles on social media and try to influence persons from India & globally that their jihad is worthy. According to arrested perpetrator of IS in different cases in India, the most of Indian youths are victims to the daydreams which are fondly shown by IS. The dreams that the Muslim empire as it was before 1920 can come back with all its power and also that the Caliph and its caliphate can be re-established are shown by the IS. Indian Muslim Youth gets attracted towards these euphemistic ideologies. Islamic State has used social media for disseminating its poisonous ideology, recruitment, operational activities and for future direction of attacks. IS through social media inspired its recruits & lone wolfs to continue to rely on local networks to identify targets and access weaponry and explosives. Recently, a pro-IS media group on its Telegram platform shows Taj Mahal as the target and suggested mode of attack as a Vehicle Born Improvised Explosive Attack (VBIED). Islamic State definitely has the potential to destroy the Indian national security & peace, if timely steps are not taken. No doubt, IS has used social media as a critical mechanism for recruitment, planning and executing of terror attacks. This paper will therefore examine the specific characteristics of social media that have made it such a successful weapon for Islamic State. The rise of IS in India should be viewed as a national crisis and handled at the central level with efficient use of modern technology.Keywords: ideology, India, Islamic State, national security, recruitment, social media, terror attack
Procedia PDF Downloads 2305807 Detecting Venomous Files in IDS Using an Approach Based on Data Mining Algorithm
Authors: Sukhleen Kaur
Abstract:
In security groundwork, Intrusion Detection System (IDS) has become an important component. The IDS has received increasing attention in recent years. IDS is one of the effective way to detect different kinds of attacks and malicious codes in a network and help us to secure the network. Data mining techniques can be implemented to IDS, which analyses the large amount of data and gives better results. Data mining can contribute to improving intrusion detection by adding a level of focus to anomaly detection. So far the study has been carried out on finding the attacks but this paper detects the malicious files. Some intruders do not attack directly, but they hide some harmful code inside the files or may corrupt those file and attack the system. These files are detected according to some defined parameters which will form two lists of files as normal files and harmful files. After that data mining will be performed. In this paper a hybrid classifier has been used via Naive Bayes and Ripper classification methods. The results show how the uploaded file in the database will be tested against the parameters and then it is characterised as either normal or harmful file and after that the mining is performed. Moreover, when a user tries to mine on harmful file it will generate an exception that mining cannot be made on corrupted or harmful files.Keywords: data mining, association, classification, clustering, decision tree, intrusion detection system, misuse detection, anomaly detection, naive Bayes, ripper
Procedia PDF Downloads 4145806 Synthesis and Characterization of Carboxymethyl Cellulose-Chitosan Based Composite Hydrogels for Biomedical and Non-Biomedical Applications
Abstract:
Hydrogels have attracted much academic and industrial attention due to their unique properties and potential biomedical and non-biomedical applications. Limitations on extending their applications have resulted from the synthesis of hydrogels using toxic materials and complex irreproducible processing techniques. In order to promote environmental sustainability, hydrogel efficiency, and wider application, this study focused on the synthesis of composite hydrogels matrices from an edible non-toxic crosslinker-citric acid (CA) using a simple low energy processing method based on carboxymethyl cellulose (CMC) and chitosan (CSN) natural polymers. Composite hydrogels were developed by chemical crosslinking. The results demonstrated that CMC:2CSN:CA exhibited good performance properties and super-absorbency 21× its original weight. This makes it promising for biomedical applications such as chronic wound healing and regeneration, next generation skin substitute, in situ bone regeneration and cell delivery. On the other hand, CMC:CSN:CA exhibited durable well-structured internal network with minimum swelling degrees, water absorbency, excellent gel fraction, and infra-red reflectance. These properties make it a suitable composite hydrogel matrix for warming effect and controlled and efficient release of loaded materials. CMC:2CSN:CA and CMC:CSN:CA composite hydrogels developed also exhibited excellent chemical, morphological, and thermal properties.Keywords: citric acid, fumaric acid, tartaric acid, zinc nitrate hexahydrate
Procedia PDF Downloads 1525805 Numerical Assessment on the Unsaturated Behavior of Silty Sand
Authors: Seyed Abolhassan Naeini, Ali Namaei
Abstract:
This investigation presents the behavior of the unsaturated silty sand by calculating the shear resistance of the specimens by numerical method. In order to investigate this behavior, a series of triaxial tests have been simulated in constant water condition. The finite difference software FLAC3D has been carried out for analyzing the shear resistance and the results are compared with findings from a previous laboratory tests. Constant water tests correspond to a field condition where the rate of the loading is much quicker than the rate at which the pore water is able to drain out of the soil. Tests were simulated on two groups of the silty sands. The obtained results show that the FLAC software may be able to simulate the behavior of specimens with the low suction value magnitude. As the initial suction increased, the differences between numerical and experimental results increased, especially in loose sand. Since some assumptions were used for input parameters, a conclusive result needs more investigations.Keywords: finite difference, shear resistance, unsaturated silty sand, constant water test
Procedia PDF Downloads 1205804 Solid Dosages Form Tablet: A Summary on the Article by Shashank Tiwari
Authors: Shashank Tiwari
Abstract:
The most common method of drug delivery is the oral solid dosage form, of which tablets and capsules are predominant. The tablet is more widely accepted and used compared to capsules for a number of reasons, such as cost/price, tamper resistance, ease of handling and packaging, ease of identification, and manufacturing efficiency. Over the past several years, the issue of tamper resistance has resulted in the conversion of most over-the-counter (OTC) drugs from capsules to predominantly all tablets.Keywords: capsule, drug delivery, dosages, solid, tablet
Procedia PDF Downloads 4395803 Parental Perceptions and Practices toward Childhood Asthma
Authors: Amani K. Abu-Shaheen, Abdullah Nofal, Humariya Heena
Abstract:
Introduction: Parental perceptions and practices are important for improving the asthma outcomes in children; indeed, evidence shows that parents of asthmatic children harbor considerable misperceptions of the disease. Objective: To identify the prevalence of asthma and to investigate the perceptions and practices of parents toward asthma and its management in Saudi children. Methods: A two-stage cross-sectional survey of 2000 parents of children aged 3–15 years from schools located in all five districts of Riyadh province located in central Saudi Arabia, was conducted. Data collection was accomplished using a self-administered questionnaire based on information obtained from the literature. Results: Of 1450 children whose parents participated in the study, 600 had asthma, dyspnea, or chest allergy. The overall number of children with parental reports of ever having been diagnosed with asthma was 478 (32.9%). The majority of parents (321, 53.5%) believed that asthma was a hereditary disease. Of these parents, 361 (60.3%) were concerned about side effects of inhaled steroids, and 192 (32%) about development of dependency on asthma medications. Three hundred sixty seven (61.2%) parents reported that they could treat the asthma attack at home and almost 76% of parents went to pediatric emergency department during asthma attack. Conclusions: In this study, the overall prevalence of children whose parents reported that they were diagnosed with asthma was high (32.9%). Furthermore, parents of children with asthma had misperceptions regarding asthma and exhibited ineffective practices in its management. To improve asthma care and compliance, adequate education should be provided to parents.Keywords: asthma, management, parents, quality of life
Procedia PDF Downloads 2745802 The Effects of Blanching, Boiling and Steaming on Ascorbic Acid Content, Total Phenolic Content, and Colour in Cauliflowers (Brassica oleracea var. Botrytis)
Authors: Huei Lin Lee, Wee Sim Choo
Abstract:
The effects of blanching, boiling and steaming on the ascorbic acid content, total phenolic content and colour in cauliflower (Brassica oleraceavar. Botrytis) was investigated. It was found that blanching was the best thermal processing to be applied on cauliflower compared to boiling and steaming processes. Blanching and steaming processes on cauliflower retained most of the ascorbic acid content (AAC) compared to those of boiling. As for the total phenolic content (TPC), blanching process retained a higher TPC in cauliflower compared to those of boiling and steaming processes. There were no significant differences between the TPC of boiled and steamed cauliflowers. As for the colour measurement, there were no significant differences in the colour of the cauliflower at different lead time (after processing to the point of consumption) of 30 minutes interval up to 3 hours but there were slight variations in L*, a*, and b* values among the thermal processed cauliflowers (blanched, boiled and steamed). The cauliflowers in this study were found to give a desirable white colour (L* value in the range of 77-83) in all the three thermal processes (blanching, boiling and steaming). There was no significant difference on the effect of lead time (30-minutes interval up to 3 hours) in raw and all the three thermal processed (blanched, boiled and steamed) cauliflowers.Keywords: ascorbic acid, cauliflower, colour, phenolics
Procedia PDF Downloads 3145801 Breakthrough Highly-Effective Extraction of Perfluoroctanoic Acid Using Natural Deep Eutectic Solvents
Authors: Sana Eid, Ahmad S. Darwish, Tarek Lemaoui, Maguy Abi Jaoude, Fawzi Banat, Shadi W. Hasan, Inas M. AlNashef
Abstract:
Addressing the growing challenge of per- and polyfluoroalkyl substances (PFAS) pollution in water bodies, this study introduces natural deep eutectic solvents (NADESs) as a pioneering solution for the efficient extraction of perfluorooctanoic acid (PFOA), one of the most persistent and concerning PFAS pollutants. Among the tested NADESs, trioctylphosphine oxide: lauric acid (TOPO:LauA) in a 1:1 molar ratio was distinguished as the most effective, achieving an extraction efficiency of approximately 99.52% at a solvent-to-feed (S:F) ratio of 1:2, room temperature, and neutral pH. This efficiency is achieved within a notably short mixing time of only one min, which is significantly less than the time required by conventional methods, underscoring the potential of TOPO:LauA for rapid and effective PFAS remediation. TOPO:LauA maintained consistent performance across various operational parameters, including a range of initial PFOA concentrations (0.1 ppm to 1000 ppm), temperatures (15 °C to 100 °C), pH values (3 to 9), and S:F ratios (2:3 to 1:7), demonstrating its versatility and robustness. Furthermore, its effectiveness was consistently high over seven consecutive extraction cycles, highlighting TOPO:LauA as a sustainable, environmentally friendly alternative to hazardous organic solvents, with promising applications for reliable, repeatable use in combating persistent water pollutants such as PFOA.Keywords: deep eutectic solvents, natural deep eutectic solvents, perfluorooctanoic acid, water remediation
Procedia PDF Downloads 615800 Evaluation of Erosive Wear Resistance of Commercial Hard Coatings with Plasma Nitride and Without Plasma Nitride in Aluminium Die Casting
Authors: A. Mohammed, R. Lewis, M. Marshall
Abstract:
Commonly used coatings to protect tools in die casting were used. A heat treatment and then surface coating can have a large effect on erosion damage. Samples have been tested to evaluate their resistances to erosive wear and to assess how this compares with behaviour seen for untreated material. Five commercial (PN + TiN), (PN + TiAlCN), (TiN X 2), (TiN), and (TiAlCN) coatings have been evaluated for their wear resistance. The objective was to permit an optimized selection of coatings to be used to give good resistance to erosive wear. A test-Rig has been developed to study the erosive wear in aluminium die casting and provide an environment similar to industrial operation that is more practical than using actual machines. These surfaces were analysed using a Scanning Electron Microscope (SEM) and Optical Microscopes each with a different level of resolution. Examination of coating materials revealed an important parameter associated with the failure of the coating materials.This was adhesion of the coating material to the substrate surface. A well-adhered coating withstands wear much better compared to the poorest-adhering coating.Keywords: solid particle erosion, PVD-coatings, steel, erosion testing
Procedia PDF Downloads 2465799 Treatment of Acid Mine Lake by Ultrasonically Modified Fly Ash at Different Frequencies
Authors: Burcu Ileri, Deniz Sanliyuksel Yucel, Onder Ayyildiz
Abstract:
The oxidation of pyrite in water results in the formation of acid mine drainage, which typically forms extremely acid mine lake (AML) in the depression areas of abandoned Etili open-pit coal mine site, Northwest Turkey. Nine acid mine lakes of various sizes have been located in the Etili coal mine site. Hayirtepe AML is one of the oldest lake having a mean pH value of 2.9 and conductivity of 4550 μS/cm, and containing elevated concentrations of Al, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, and Zn. The water quality of the lake has been deteriorated due to its high chemical composition, in particular, increasing heavy metal pollution. In this study, fly ash (FA), a coal combustion by-product from fluidized bed thermal power plant in the northwestern part of Turkey, was used as an adsorbent for the treatment of Hayirtepe AML. The FA is a relatively abundant and cost effective material, but its use in adsorption processes usually require excessive adsorbent doses. To increase adsorption efficiency and lower the adsorbent dose, we modified the FA by means of ultrasonic treatment (20 kHz and 40 kHz). The images of scanning electron microscopy (SEM) have demonstrated that ultrasonic treatment not only decreased the size of ash particles but also created pits and cracks on their surfaces which in turn led to a significant increase in the BET surface area. Both FA and modified fly ash were later tested for the removal of heavy metals from the AML. The effect of various operating parameters such as ultrasonic power, pH, ash dose, and adsorption contact time were examined to obtain the optimum conditions for the treatment process. The results have demonstrated that removal of heavy metals by ultrasound-modified fly ash requires much shorter treatment times and lower adsorbent doses than those attained by the unmodified fly ash. This research was financially supported by the Scientific and Technological Research Council of Turkey (TUBITAK), (Project no: 116Y510).Keywords: acid mine lake, heavy metal, modified fly ash, ultrasonic treatment
Procedia PDF Downloads 1985798 Challenges in the Material and Action-Resistance Factor Design for Embedded Retaining Wall Limit State Analysis
Authors: Kreso Ivandic, Filip Dodigovic, Damir Stuhec
Abstract:
The paper deals with the proposed 'Material' and 'Action-resistance factor' design methods in designing the embedded retaining walls. The parametric analysis of evaluating the differences of the output values mutually and compared with classic approach computation was performed. There is a challenge with the criteria for choosing the proposed calculation design methods in Eurocode 7 with respect to current technical regulations and regular engineering practice. The basic criterion for applying a particular design method is to ensure minimum an equal degree of reliability in relation to the current practice. The procedure of combining the relevant partial coefficients according to design methods was carried out. The use of mentioned partial coefficients should result in the same level of safety, regardless of load combinations, material characteristics and problem geometry. This proposed approach of the partial coefficients related to the material and/or action-resistance should aimed at building a bridge between calculations used so far and pure probability analysis. The measure to compare the results was to determine an equivalent safety factor for each analysis. The results show a visible wide span of equivalent values of the classic safety factors.Keywords: action-resistance factor design, classic approach, embedded retaining wall, Eurocode 7, limit states, material factor design
Procedia PDF Downloads 2315797 Quality Evaluation of Grape Seed Oils of the Ionian Islands Based on GC-MS and Other Spectroscopic Techniques
Authors: I. Oikonomou, I. Lappa, D. Daferera, C. Kanakis, L. Kiokakis, K. Skordilis, A. Avramouli, E. Kalli, C. Pappas, P. A. Tarantilis, E. Skotti
Abstract:
Grape seeds are waste products of wineries and often referred to as an important agricultural and industrial waste product with the potential to be used in pharmaceutical, food, and cosmetic applications. In this study, grape seed oil from traditional Ionian varieties was examined for the determination of the quality and the characteristics of each variety. Initially, the fatty acid methyl ester (FAME) profiles were analyzed using Gas Chromatography-Mass Spectrometry, after transesterification. Furthermore, other quality parameters of the grape seed oils were determined by Spectroscopy techniques, UV-Vis and Raman included. Moreover, the antioxidant capacity of the oil was measured by 2,2'-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) and 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assays and their antioxidant capacity expressed in Trolox equivalents. K and ΔΚ indices were measured in 232, 268, 270 nm, as an oil quality index. The results indicate that the air-dried grape seed total oil content ranged from 5.26 to 8.77% w/w, which is in accordance with the other grape seed varieties tested in similar studies. The composition of grape seed oil is predominated with linoleic and oleic fatty acids, with the linoleic fatty acid ranging from 53.68 to 69.95% and both the linoleic and oleic fatty acids totaling 78-82% of FAMEs, which is analogous to the fatty acid composition of safflower oil. The antioxidant assays ABTS and DPPH scored high, exhibiting that the oils have potential in the cosmetic and culinary businesses. Above that, our results demonstrate that Ionian grape seed oils have prospects that can go further than cosmetic or culinary use, into the pharmaceuticals industry. Finally, the reclamation of grape seeds from wineries waste stream is in accordance with the bio-economy strategic framework and contributes to environmental protection.Keywords: antioxidant capacity, fatty acid methyl esters, grape seed oil, GC-MS
Procedia PDF Downloads 2045796 An Experimental Study on the Influence of Mineral Admixtures on the Fire Resistance of High-Strength Concrete
Authors: Ki-seok Kwon, Dong-woo Ryu, Heung-Youl Kim
Abstract:
Although high-strength concrete has many advantages over generic concrete at normal temperatures (around 20℃), it undergoes spalling at high temperatures, which constitutes its structurally fatal drawback. In this study, fire resistance tests were conducted for 3 hours in accordance with ASTM E119 on bearing wall specimens which were 3,000mm x 3,000mm x 300mm in dimensions to investigate the influence the type of admixtures would exert on the fire resistance performance of high-strength concrete. Portland cement, blast furnace slag, fly ash and silica fume were used as admixtures, among which 2 or 3 components were combined to make 7 types of mixtures. In 56MPa specimens, the severity of spalling was in order of SF5 > F25 > S65SF5 > S50. Specimen S50 where an admixture consisting of 2 components was added did not undergo spalling. In 70MPa specimens, the severity of spalling was in order of SF5 > F25SF5 > S45SF5 and the result was similar to that observed in 56MPa specimens. Acknowledgements— This study was conducted by the support of the project, “Development of performance-based fire safety design of the building and improvement of fire safety” (18AUDP-B100356-04) which is under the management of Korea Agency for Infrastructure Technology Advancement as part of the urban architecture research project for the Ministry of Land, Infrastructure and Transport, for which we extend our deep thanks.Keywords: high strength concrete, mineral admixture, fire resistance, social disaster
Procedia PDF Downloads 1445795 Investigation of the Excitotoxicity Pathways in Neuroblastoma Cells
Authors: Merve Colak, Gizem Donmez Yalcin
Abstract:
Glutamate has many neurological functions in the central nervous system and is found at high concentrations in the brain. Increased levels of glutamate in the neuronal space are toxic, causing neuron damage and death. This is called glutamate-induced excitotoxicity. Excitotoxicity is among the causes of many neurological diseases such as trauma, cerebral ischemia, epilepsy, Parkinson's Disease, Alzheimer's Disease. Since neuroblastoma cells are known to be excitotoxic, we propose that excitotoxicity can be studied in neuroblastoma cells. Excitotoxicity can be induced using kainic acid in neuroblastoma cells. Measuring the secretion of glutamate, excitotoxicity can be analyzed in neuroblastoma cells.Keywords: glutamate, excitotoxicity, kainic acid, Sirt4
Procedia PDF Downloads 1585794 Development of 90y-Chitosan Complex for Radiosynovectomy
Authors: A. Mirzaei, S. Zolghadri, M. Athari-Allaf, H. Yousefnia, A. R. Jalilian
Abstract:
Rheumatoid arthritis is the most common autoimmune disease, leading to the destruction of the joints. The aim of this study was the preparation of 90Y-chitosan complex as a novel agent for radiosynovectomy. The complex was prepared in the diluted acetic acid solution. At the optimized condition, the radiochemical purity of higher than 99% was obtained by ITLC method on Whatman No. 1 and by using a mixture of methanol/water/acetic acid (4:4:2) as the mobile phase. The complex was stable in acidic media (pH=3) and its radiochemical purity was above 98% even after 48 hours. The biodistribution data in rats showed that there was no significant leakage of the injected activity even after 48 h. Considering all of the excellent features of the complex, 90Y-chitosan can be used to manipulate synovial inflammation effectively.Keywords: chitosan, Y-90, radiosynovectomy, biodistribution
Procedia PDF Downloads 484