Search results for: health care market
3100 Combined Proteomic and Metabolomic Analysis Approaches to Investigate the Modification in the Proteome and Metabolome of in vitro Models Treated with Gold Nanoparticles (AuNPs)
Authors: H. Chassaigne, S. Gioria, J. Lobo Vicente, D. Carpi, P. Barboro, G. Tomasi, A. Kinsner-Ovaskainen, F. Rossi
Abstract:
Emerging approaches in the area of exposure to nanomaterials and assessment of human health effects combine the use of in vitro systems and analytical techniques to study the perturbation of the proteome and/or the metabolome. We investigated the modification in the cytoplasmic compartment of the Balb/3T3 cell line exposed to gold nanoparticles. On one hand, the proteomic approach is quite standardized even if it requires precautions when dealing with in vitro systems. On the other hand, metabolomic analysis is challenging due to the chemical diversity of cellular metabolites that complicate data elaboration and interpretation. Differentially expressed proteins were found to cover a range of functions including stress response, cell metabolism, cell growth and cytoskeleton organization. In addition, de-regulated metabolites were annotated using the HMDB database. The "omics" fields hold huge promises in the interaction of nanoparticles with biological systems. The combination of proteomics and metabolomics data is possible however challenging.Keywords: data processing, gold nanoparticles, in vitro systems, metabolomics, proteomics
Procedia PDF Downloads 5053099 Water Hyacinth (Eichhornia crassipes) in Nigeria Coastal Waters; lmpacts, Challenges and Prospects
Authors: Efe Ogidiaka-Obende, Gabriel C. C. Ndinwa, John Atadiose, Ewoma O. Oduma
Abstract:
Water hyacinth (Eichhornia crassipes), which is a native of South America, is believed to have found its way into Nigeria waters through Pot-Novo creek, Benin Republic, in September 1984. This study attempts to review the impacts, challenges, and prospects of water hyacinths in Nigeria's coastal waters. Water hyacinth possesses a very high proliferation rate, and its infestation in Nigeria's coastal waters poses severe problems to the fishing, recreational, transportation, and health sector, amongst other activities. The weed has been reported to disrupt aquatic ecosystems, clog waterways, and create associated problems with water supply, irrigation, and drainage. To curb this menace, a huge amount of money is used yearly for its management, which is not sustainable. There is, however, a positive twist to this plant as it has the potential to be used as fertilizers, feed for fish, craft materials, biogas, and many more. Due to its high population and related economic importance and implications in Nigeria's coastal waters, it is highly recommended that more research works be carried out on the of making optimal use of this plant.Keywords: waste to wealth, environmental pollution, water hyacinth, biogas, sustainable development goals
Procedia PDF Downloads 893098 Prediction of Disability-Adjustment Mental Illness Using Machine Learning
Authors: S. R. M. Krishna, R. Santosh Kumar, V. Kamakshi Prasad
Abstract:
Machine learning techniques are applied for the analysis of the impact of mental illness on the burden of disease. It is calculated using the disability-adjusted life year (DALY). DALYs for a disease is the sum of years of life lost due to premature mortality (YLLs) + No of years of healthy life lost due to disability (YLDs). The critical analysis is done based on the Data sources, machine learning techniques and feature extraction method. The reviewing is done based on major databases. The extracted data is examined using statistical analysis and machine learning techniques were applied. The prediction of the impact of mental illness on the population using machine learning techniques is an alternative approach to the old traditional strategies, which are time-consuming and may not be reliable. The approach makes it necessary for a comprehensive adoption, innovative algorithms, and an understanding of the limitations and challenges. The obtained prediction is a way of understanding the underlying impact of mental illness on the health of the people and it enables us to get a healthy life expectancy. The growing impact of mental illness and the challenges associated with the detection and treatment of mental disorders make it necessary for us to understand the complete effect of it on the majority of the population. Procedia PDF Downloads 403097 Pseudo Modal Operating Deflection Shape Based Estimation Technique of Mode Shape Using Time History Modal Assurance Criterion
Authors: Doyoung Kim, Hyo Seon Park
Abstract:
Studies of System Identification(SI) based on Structural Health Monitoring(SHM) have actively conducted for structural safety. Recently SI techniques have been rapidly developed with output-only SI paradigm for estimating modal parameters. The features of these output-only SI methods consist of Frequency Domain Decomposition(FDD) and Stochastic Subspace Identification(SSI) are using the algorithms based on orthogonal decomposition such as singular value decomposition(SVD). But the SVD leads to high level of computational complexity to estimate modal parameters. This paper proposes the technique to estimate mode shape with lower computational cost. This technique shows pseudo modal Operating Deflections Shape(ODS) through bandpass filter and suggests time history Modal Assurance Criterion(MAC). Finally, mode shape could be estimated from pseudo modal ODS and time history MAC. Analytical simulations of vibration measurement were performed and the results with mode shape and computation time between representative SI method and proposed method were compared.Keywords: modal assurance criterion, mode shape, operating deflection shape, system identification
Procedia PDF Downloads 4113096 The Implementation of Animal Welfare for Garut Sheep Fighting Contest in West Java
Authors: Mustopa, Nadya R. Susilo, Rhizal D. Nuva
Abstract:
This study aims to determine the application of animal welfare in Garut sheep fighting contest at West Java. This study conducted by survey and discussion methods with 5 Garut sheep owners in the contest. The animal welfare is going to be proved by observing the condition of the cage, the cleanliness of it, the health of the sheep, feeding and water, also owner treatments for their sheep that will be served as a fighter. Observations made using stable conditions ACRES form with assessment scores ranged from 1 = very poor, 2 = poor, 3 = regular, 4 = good and 5 = very good, animal welfare conditions seen by conducting observations and interviews with garut sheep owners. The result shows that the Garut sheep fighting contest has fulfilled the criteria of animal welfare application. Application of animal welfare principle by the owner of Garut sheep terms of ACRES (Animal Concerns Research and Education Society) below standard, the average score obtained was 1.76 which is mean in a very bad ratings. Besides considering the animal welfare application, sheep owners also do special treatments for their Garut sheep with the purpose to produce fighters that are healthy and strong. So, if the sheep wins in Garut sheep fight contest, it will purchase a high-value prices.Keywords: animal welfare, contest, garut sheep, sheep fighting
Procedia PDF Downloads 2803095 Enhancing of Biogas Production from Slaughterhouse and Dairy Farm Waste with Pasteurization
Authors: Mahmoud Hassan Onsa, Saadelnour Abdueljabbar Adam
Abstract:
Wastes from slaughterhouses in most towns in Sudan are often poorly managed and sometimes discharged into adjoining streams due to poor implementation of standards, thus causing environmental and public health hazards and also there is a large amount of manure from dairy farms. This paper presents solution of organic waste from cow dairy farms and slaughterhouse the anaerobic digestion and biogas production. The paper presents the findings of experimental investigation of biogas production with and without pasteurization using cow manure, blood and rumen content were mixed at two proportions, 72.3% manure, 21.7%, rumen content and 6% blood for bio digester1with 62% dry matter at the beginning and without pasteurization and 72.3% manure, 21.7%, rumen content and 6% blood for bio-digester2 with 10% dry matter and pasteurization. The paper analyses the quantitative and qualitative composition of biogas: gas content, the concentration of methane. The highest biogas output 2.9 mL/g dry matter/day (from bio-digester2) together with a high quality biogas of 87.4% methane content which is useful for combustion and energy production and healthy bio-fertilizer but biodigester1 gave 1.68 mL/g dry matter/day with methane content 85% which is useful for combustion, energy production and can be considered as new technology of dryer bio-digesters.Keywords: anaerobic digestion, bio-digester, blood, cow manure, rumen content
Procedia PDF Downloads 7303094 Natural Radionuclides and Doses Assessment in Soil Samples from Agbara Industrial Estate, Ogun State, Nigeria
Authors: Ayorinde B. Ogunremi, Kehinde A. Adewoyin, Adebamwo Adebayo
Abstract:
Record of radionuclide concentration in an environment is essential to ensure human safety due to exposure to ionizing radiation. This study aimed at assessing the radionuclide concentration and doses from soil samples in the study area. Twenty soil samples were collected and dried in the oven at 110°C to remove the moisture, pulverized, and sieved. 200 g of each of the samples were sealed in cylindrical sample holders; they were left for four weeks to attain secular equilibrium between ²²⁶Ra and its decay daughters, after which the sample was analyzed using gamma-ray spectrometry. After the well-guided procedure for the calibrations, the analysis of the samples was carried out using a well-calibrated NaI (TI) and well-shielded detector coupled to a computer resident quantum MCA2100 R Multichannel analyzer for 36,000 s. The mean activity concentrations of ⁴⁰K, ²²⁶Ra, and ²³²Th obtained were calculated to be 272.37 ± 33.58, 10.97 ± 3.24, 9.39 ± 2.27 Bqkg-1 respectively. The average absorbed dose obtained was 22.10 nGy/h. The radium equivalent activity (Raeq) was estimated to be 43.27 Bq/kg. The activity concentrations (Bq/kg) were below the recommended values, which are 420, 33, and 45 for ⁴⁰K, ²²⁶Ra, and ²³²Th, respectively. Considering the results, we conclude thus, the radiation level within the estate poses no significant health risk on dwellers and workers.Keywords: absorbed, effective, multichannel, radionuclide
Procedia PDF Downloads 2183093 Effect of Inulin-Substituted Ice Cream on Waist Circumference and Blood Pressure of Adolescents with Abdominal Obesity
Authors: Nur H. Ahmad, Silvia S. Inge, Vanessa A. Julliete, A. Veraditias, Laila F. Febinda
Abstract:
Abdominal obesity is a risk factor for metabolic syndrome and mostly found in adolescents. Waist circumference is related to abdominal obesity which has a significant effect on the increase of blood pressure. Inulin is one of prebiotic, that has health benefits by offering the potential for lipid management, that can be useful to decrease the risk factor of metabolic syndrome. The aim of the research is to evaluate the effect of 10 gram inulin-substituted ice cream in waist circumference and blood pressure of abdominal obesity adolescents. Inulin had the ability to produce Short Chain Fatty Acid which can improve blood pressure and waist circumference. Systolic blood pressure was significantly decreased in the treatment group (p=0.028) with the mean of reduction 7.35 ± 11.59 mmHg. However, diastolic blood pressure and waist circumference showed no significant effect. Waist circumference, systolic blood pressure and diastolic blood pressure was decreased in control group. These results suggest that inulin-substituted ice cream used as therapeutics and prevention for the early onset of metabolic syndrome.Keywords: blood pressure, inulin, metabolic syndrome, waist circumference
Procedia PDF Downloads 4123092 Low Intake of Aspartame Induced Weight Gain and Damage of Brain and Liver Cells in Weanling Syrian Hamsters
Authors: Magda I. Hassan
Abstract:
This paper aims to investigate the health effects of aspartame on weanling male hamsters. 20 Golden Syrian hamsters drank only water (control) or water with 6, 11, and 18 mg aspartame/kg of body weight per day for 42 days. Food intake, weight gain, glucose blood level, and lipid profile were determined at the end of the experiment. The animals were sacrificed and histopathological examination of organs (liver, brain and heart) was done. Results revealed that animals in Asp.groups consumed significantly larger amount of food than the control (13.4±5.9, 8.6±2.5 and 8.8±3.0 vs 4.2±2.5 g/day, in succession). Hamsters in the control group showed higher total cholesterol and HDL levels than hamsters in aspartame 6, 11, 18 groups (160±19 vs 101±13, 130±22, 141±15 mg/dl & 144±9 vs 120±12, 118±13, 99±17 respectively (P<0•05)). The control group showed a glucose concentration below those of aspartame groups, indicating no effect of aspartame on glucose blood level. While, there were no significant differences in the triglycerides and LDL levels between control group and Asp.groups. Histopathological changes were observed, especially in brain and liver cells. Aspartame increases appetite and weight gain of young hamsters. Therefore, FDA should reconsider the acceptable daily intake (ADI) of aspartame for children.Keywords: aspartame, brain, food intake, hamsters
Procedia PDF Downloads 2863091 Using Machine-Learning Methods for Allergen Amino Acid Sequence's Permutations
Authors: Kuei-Ling Sun, Emily Chia-Yu Su
Abstract:
Allergy is a hypersensitive overreaction of the immune system to environmental stimuli, and a major health problem. These overreactions include rashes, sneezing, fever, food allergies, anaphylaxis, asthmatic, shock, or other abnormal conditions. Allergies can be caused by food, insect stings, pollen, animal wool, and other allergens. Their development of allergies is due to both genetic and environmental factors. Allergies involve immunoglobulin E antibodies, a part of the body’s immune system. Immunoglobulin E antibodies will bind to an allergen and then transfer to a receptor on mast cells or basophils triggering the release of inflammatory chemicals such as histamine. Based on the increasingly serious problem of environmental change, changes in lifestyle, air pollution problem, and other factors, in this study, we both collect allergens and non-allergens from several databases and use several machine learning methods for classification, including logistic regression (LR), stepwise regression, decision tree (DT) and neural networks (NN) to do the model comparison and determine the permutations of allergen amino acid’s sequence.Keywords: allergy, classification, decision tree, logistic regression, machine learning
Procedia PDF Downloads 3073090 Using Information and Communication Technologies in Teaching Translation: Students of English as a Case Study
Authors: Guessabi Fatiha
Abstract:
Nowadays, there is no sphere of human life that does not use Information and Communication Technologies (ICTs) in practice. This type of development grew widely in the last years of the 20th century and impacted many fields such as education, health, financing, job markets, communication, governments, industrial productivity, etc. Recently, in higher education, the use of ICTs has been essential and significant during the Covid19 pandemic. Thanks to technology, although the universities in Algeria were locked down during the period of covid19, learning was easily continued, and students were collaborating, communicating, socializing, and learning at a distance. Therefore, ICT tools are required in translation courses to enhance and improve translation teaching. This research explores the use of ICT in teaching and learning translation. The research comes along with a theoretical framework; the literature review is produced to highlight some essential ICT concepts and translation teaching. In order to achieve the study objective, a questionnaire is distributed to the third-year English LMD students at Tahri Mohamed University, and an interview is addressed to the translation teacher. The results and discussion obtained from this investigation confirmed the hypothesis and revealed that the use of ICT is essential in translation courses and it improves translation teaching. Hence, by using ICT in the classroom, the students become more active, and the teachers of translation become knowledge facilitators and leaders.Keywords: COVID19, ICT, learning, students, teaching, TMU, translation
Procedia PDF Downloads 1293089 Application of Computer Aided Engineering Tools in Performance Prediction and Fault Detection of Mechanical Equipment of Mining Process Line
Abstract:
Nowadays, to decrease the number of downtimes in the industries such as metal mining, petroleum and chemical industries, predictive maintenance is crucial. In order to have efficient predictive maintenance, knowing the performance of critical equipment of production line such as pumps and hydro-cyclones under variable operating parameters, selecting best indicators of this equipment health situations, best locations for instrumentation, and also measuring of these indicators are very important. In this paper, computer aided engineering (CAE) tools are implemented to study some important elements of copper process line, namely slurry pumps and cyclone to predict the performance of these components under different working conditions. These modeling and simulations can be used in predicting, for example, the damage tolerance of the main shaft of the slurry pump or wear rate and location of cyclone wall or pump case and impeller. Also, the simulations can suggest best-measuring parameters, measuring intervals, and their locations.Keywords: computer aided engineering, predictive maintenance, fault detection, mining process line, slurry pump, hydrocyclone
Procedia PDF Downloads 4073088 The Causes and Consequences of Anti-muslim Prejudice: Evidence from a National Scale Longitudinal Study in New Zealand
Authors: Aarif Rasheed, Joseph Bulbulia
Abstract:
Western democracies exhibit signs of distinctive anti-Muslim prejudice, but little is known about its causes and effects on Muslim minorities. Here, drawing on nine years of responses from a nationally representative longitudinal sample of New Zealanders (New Zealand Attitudes and Values Study, N > 31,000), we systematically investigate the demographic and ideological predictors of factors that predict both positive and negative change in Muslim attitudes. First, we find that that education, moderate and liberal political ideology, and positive views about religion predict greater Muslim acceptance. Second, we find a there though there is a general trend for increasing acceptance over nine years, we find evidence of increasing extremism at the margins. Third, focusing on the Muslim sub-sample and comparing it to other religious sub-groups, we find substantially higher reports of perceived anti-religious prejudice. Collectively, these results point to serious challenges to the health of New Zealand as a democracy where people can worship freely without discrimination. Finally, we find consistency in our responses with the reported experiences of victims of the Christchurch attacks, in terms of harassment, assault, slurs, and other hostile behaviour both before and after the attacks.Keywords: democracy, longitudinal, Muslim, panel data, prejudice
Procedia PDF Downloads 1453087 Times2D: A Time-Frequency Method for Time Series Forecasting
Authors: Reza Nematirad, Anil Pahwa, Balasubramaniam Natarajan
Abstract:
Time series data consist of successive data points collected over a period of time. Accurate prediction of future values is essential for informed decision-making in several real-world applications, including electricity load demand forecasting, lifetime estimation of industrial machinery, traffic planning, weather prediction, and the stock market. Due to their critical relevance and wide application, there has been considerable interest in time series forecasting in recent years. However, the proliferation of sensors and IoT devices, real-time monitoring systems, and high-frequency trading data introduce significant intricate temporal variations, rapid changes, noise, and non-linearities, making time series forecasting more challenging. Classical methods such as Autoregressive integrated moving average (ARIMA) and Exponential Smoothing aim to extract pre-defined temporal variations, such as trends and seasonality. While these methods are effective for capturing well-defined seasonal patterns and trends, they often struggle with more complex, non-linear patterns present in real-world time series data. In recent years, deep learning has made significant contributions to time series forecasting. Recurrent Neural Networks (RNNs) and their variants, such as Long short-term memory (LSTMs) and Gated Recurrent Units (GRUs), have been widely adopted for modeling sequential data. However, they often suffer from the locality, making it difficult to capture local trends and rapid fluctuations. Convolutional Neural Networks (CNNs), particularly Temporal Convolutional Networks (TCNs), leverage convolutional layers to capture temporal dependencies by applying convolutional filters along the temporal dimension. Despite their advantages, TCNs struggle with capturing relationships between distant time points due to the locality of one-dimensional convolution kernels. Transformers have revolutionized time series forecasting with their powerful attention mechanisms, effectively capturing long-term dependencies and relationships between distant time points. However, the attention mechanism may struggle to discern dependencies directly from scattered time points due to intricate temporal patterns. Lastly, Multi-Layer Perceptrons (MLPs) have also been employed, with models like N-BEATS and LightTS demonstrating success. Despite this, MLPs often face high volatility and computational complexity challenges in long-horizon forecasting. To address intricate temporal variations in time series data, this study introduces Times2D, a novel framework that parallelly integrates 2D spectrogram and derivative heatmap techniques. The spectrogram focuses on the frequency domain, capturing periodicity, while the derivative patterns emphasize the time domain, highlighting sharp fluctuations and turning points. This 2D transformation enables the utilization of powerful computer vision techniques to capture various intricate temporal variations. To evaluate the performance of Times2D, extensive experiments were conducted on standard time series datasets and compared with various state-of-the-art algorithms, including DLinear (2023), TimesNet (2023), Non-stationary Transformer (2022), PatchTST (2023), N-HiTS (2023), Crossformer (2023), MICN (2023), LightTS (2022), FEDformer (2022), FiLM (2022), SCINet (2022a), Autoformer (2021), and Informer (2021) under the same modeling conditions. The initial results demonstrated that Times2D achieves consistent state-of-the-art performance in both short-term and long-term forecasting tasks. Furthermore, the generality of the Times2D framework allows it to be applied to various tasks such as time series imputation, clustering, classification, and anomaly detection, offering potential benefits in any domain that involves sequential data analysis.Keywords: derivative patterns, spectrogram, time series forecasting, times2D, 2D representation
Procedia PDF Downloads 443086 The Use of Ketamine in Conjunction with Antidepressants for Treatment Resistant Depression
Authors: Zumra Mehmedovic, Susan Luhrmann
Abstract:
Treatment-resistant depression (TRD) is a debilitating mental health disorder for which there are very few available treatment options. Current research suggests that ketamine may be a safe and effective option for the treatment of TRD. Research utilizing a review of the literature was conducted to determine if ketamine in conjunction with antidepressants is more effective than antidepressants alone in the treatment of TRD. The literature consists of ten journal articles which include quantitative studies based on primary research. A critique of the literature was done to determine whether the findings are reliable, critiquing elements influencing the believability and robustness of the research. The research was based on the neuroplasticity theory of depression, hypothesizing that ketamine, in conjunction with antidepressants, will be more effective than antidepressants alone as they have different mechanisms of action. All the studies except one found ketamine in conjunction with antidepressants to be a more effective treatment than antidepressants alone in the treatment of TRD. Results of the studies indicate that ketamine is effective in treating TRD at various doses, settings, and routes of administration. Further research is necessary, though, to further explore and confirm the findings. Several gaps in literature were identified, including the optimal dose of ketamine, its long-term efficacy and safety, and effects of ketamine in repeated doses. The research topic is highly significant to advanced practice nursing, as based on the findings, ketamine can be utilized as a safe and effective treatment for TRD.Keywords: ketamine, major depressive disorder, treatment-resistant depression, treatment
Procedia PDF Downloads 1393085 Reliability of an Application for the System for Observing Play and Recreation in Communities in the Recreovia of Bucaramanga, Colombia
Authors: Erika Tatiana Paredes Prada, Diana Marina Camargo Lemos
Abstract:
Introduction: Recreovía as a public health strategy contributes to encourage the practice and adherence to physical activity (PA) recommendations, by temporarily closing the roads to motorized vehicles. The determination of the PA requires the evaluation of the reliability of the measurement instruments, in order to sustain the continuity and relevance of Recreovía as a community intervention. Objective: Establish the inter-rater reliability of the App for the System for Observing Play and Recreation in Communities (iSOPARC®) in the Recreovía of Bucaramanga, Colombia. Methods: Five trained observers at two observation points on the 2.3 km of the Recreovía (14th Street and 32nd Street) used the App (iSOPARC®), between 08:00 a.m. and 12:00 m. in periods of 20 minutes during a regular Sunday. Reliability analysis was performed using the Intraclass Correlation Coefficient (ICC 2.1). Results: A total of 2682 users were observed (43.6 % women) in 7 observations. ICC showed a range between 0.96 and 0.99 for the PA level and ICC between 0.95 and 0.99 for age group for the two observation points. Conclusion: The reliability found for the iSOPARC® guarantees the consecutive measurement of the PA level at the Recreovía, which will allow measuring it is effectiveness in the medium and long term, as a community intervention strategy.Keywords: environment, observation, physical activity, recreation, reliability
Procedia PDF Downloads 3293084 Content of Trace Elements in Agricultural Soils from Central and Eastern Europe
Authors: S. Krustev, V. Angelova, K. Ivanov, P. Zaprjanova
Abstract:
Approximately a dozen trace elements are vital for the development of all plants and some other elements are significant for some species. Heavy metals do not belong to this group of elements that are essential to plants, but some of them such as copper and zinc, have a dual effect on their growth. Concentration levels of these elements in the different regions of the world vary considerably. Their high concentrations in some parts of Central and Eastern Europe cause concern for human health and degrade the quality of agricultural produce from these areas. This study aims to compare the prevalence and levels of the major trace elements in some rural areas of Central and Eastern Europe. Soil samples from different regions of the Czech Republic, Slovakia, Austria, Hungary, Serbia, Romania, Bulgaria and Greece far from large industrial centers have been studied. The main methods for their determination are the atomic spectral techniques – atomic absorption and plasma atomic emission. As a result of this study, data on microelements levels in soils of 17 points from the main grain-producing regions of Central and Eastern Europe are presented and systematized. The content of trace elements was in the range of 5.0-84.1 mg.kg⁻¹ for Cu, 0.3-1.4 mg.kg⁻¹ for Cd, 26.1-225.5 mg.kg⁻¹ for Zn, 235.5-788.6 mg.kg⁻¹ for Mn and 4.1-25.8 mg.kg⁻¹ for Pb.Keywords: trace elements, heavy metals, agricultural soils, Central and Eastern Europe
Procedia PDF Downloads 1713083 Skills Needed Amongst Secondary School Students for Artificial Intelligence Development in Southeast Nigeria
Authors: Chukwuma Mgboji
Abstract:
Since the advent of Artificial Intelligence, robots have become a major stay in developing societies. Robots are deployed in Education, Health, Food and in other spheres of life. Nigeria a country in West Africa has a very low profile in the advancement of Artificial Intelligence especially in the grass roots. The benefits of Artificial intelligence are not fully maximised and harnessed. Advances in artificial intelligence are perceived as impossible or observed as irrelevant. This study seeks to ascertain the needed skills for the development of artificialintelligence amongst secondary schools in Nigeria. The study focused on South East Nigeria with Five states namely Imo, Abia, Ebonyi, Anambra and Enugu. The sample size is 1000 students drawn from Five Government owned Universities offering Computer Science, Computer Education, Electronics Engineering across the Five South East states. Survey method was used to solicit responses from respondents. The findings from the study identified mathematical skills, analytical skills, problem solving skills, computing skills, programming skills, algorithm skills amongst others. The result of this study to the best of the author’s knowledge will be highly beneficial to all stakeholders involved in the advancements and development of artificial intelligence.Keywords: artificial intelligence, secondary school, robotics, skills
Procedia PDF Downloads 1563082 Carotenoids a Biologically Important Bioactive Compound
Authors: Aarti Singh, Anees Ahmad
Abstract:
Carotenoids comprise a group of isoprenoid pigments. Carotenes, xanthophylls and their derivatives have been found to play an important role in all living beings through foods, neutraceuticals and pharmaceuticals. α-carotene, β-carotene and β-cryptoxanthin play a vital role in humans to provide vitamin A source for the growth, development and proper functioning of immune system and vision. They are very crucial for plants and humans as they protect from photooxidative damage and are excellent antioxidants quenching singlet molecular oxygen and peroxyl radicals. Diet including more intake of carotenoids results in reduced threat of various chronic diseases such as cancer (lung, breast, prostrate, colorectal and ovarian cancers) and coronary heart diseases. The blue light filtering efficiency of the carotenoids in liposomes have been reported to be maximum in lutein followed by zeaxanthin, β-carotene and lycopene. Lycopene plays a vital role for the protection from CVD. Lycopene in serum is directly related to reduced risk of osteoporosis in postmenopausal women. Carotenoids have major role in the treatment of skin disorders. There is need to identify and isolate novel carotenoids from diverse natural sources for human health benefits.Keywords: antioxidants, carotenoids, neutraceuticals, osteoporosis, pharmaceuticals
Procedia PDF Downloads 3773081 The Constitution of Kenya, 2010, and the Feminist Legal Theory
Authors: Tecla Rita Karendi, Andy Cons Matata
Abstract:
Although before and at the advent of colonial administration, several women such as Mekatilili wa Menza and Muthoni Nyanjiru took up leadership positions in resisting the colonial administration. Kenya is generally considered a patriarchal society. Many women who tried to take up positions of leadership in postcolonial Kenya, such as the Nobel Prize winner Wangari Maathai, were branded as prostitutes or generally immoral women. However, the Constitution of Kenya, 2010, has since made a huge impact not only in the area of affirmative action but also in various aspects of the feminist legal theory such as the constitutional requirement that no more than two-thirds of the members of the elective or appointive bodies should be of the same gender. This favours women who are often sidelined in elective posts such as parliament or county assemblies and state-appointed posts in the parastatals and commissions. The constitution also recognizes the right to abortion, which was outrightly outlawed in the independence constitution. Certain practices adverse to women’s health, such as wife inheritance, female genital mutilation, and property rights, are either outlawed or framed to recognized women’s rights. The education of the girl-child is also now considered a priority, unlike in the past. Despite these developments, a lot remains to be done.Keywords: feminist legal theory, constitution of Kenya, 2010, affirmative action, leadership
Procedia PDF Downloads 2313080 The Bioaccumulation of Lead (Pb), Cadmium (Cd), and Chromium (Cr) in Relation to Personal and Social Habits in Electronic Repair Technicians in Kaduna Metropolis, Nigeria: A Pilot Study
Authors: M. A. Lawal, A. Uzairu, M. S. Sallau
Abstract:
The presence and bioaccumulation of lead (Pb), cadmium (Cd), and chromium (Cr) in blood, urine, nail, and hair samples of electronic repair technicians in Kaduna-Nigeria were assessed using Fast Sequential Atomic Absorption Spectrophotometry. 10 electronic repair technicians from within Kaduna Metropolis volunteered for the pilot study. The mean blood concentrations of Pb, Cd, and Cr in the subjects were 29.33 ± 4.80, 7.78 ± 10.57, and 24.78 ± 21.77 µg/dL, respectively. The mean urine concentrations of Pb, Cd, and Cr were 24.18 ± 2.98, 6.81 ± 10.05, and 14.78 ± 14.20 µg/dL, respectively. Mean nail metal values of 37.13 ± 4.08, 1.00 ± 1.21, and 18.49 ± 12.71 µg/g were obtained for Pb, Cd, and Cr, respectively while mean hair metal values of 39.41 ± 5.63, 1.09 ± 1.14, and 19.13 ± 11.61 µg/g for Pb, Cd, and Cr, respectively. Positive Pearson correlation coefficients were observed between Pb/Cd, Pb/Cr, and Cd/Cr in all samples and they indicate the metals are likely from the same pollution source. The mean concentrations of the metals in all samples were higher than the WHO, ILO, and ACGIH standards, implying the repairers are likely occupationally exposed and are subject to serious health concerns. Social habits like smoking were found to significantly affect the concentrations of these metals. The level of education, use of safety devices, period of exposure, the nature of electronics and the age of the repairers were also found to remarkably affect the concentrations of the metals.Keywords: bioaccumulation, electronic repair technicians, heavy metals, occupational hazard
Procedia PDF Downloads 3723079 X-Ray Shielding Properties of Bismuth-Borate Glass Doped with Rare-Earth Ions
Authors: Vincent Kheswa
Abstract:
X-rays are ionizing electromagnetic radiation that is used in various industries such as computed tomography scans, dental X-rays, and screening freight trains. However, they pose health risks to humans if they are not shielded properly. In recent years, many researchers around the globe have been searching for nontoxic best possible glass materials for shielding X-rays. In this work, the x-ray shielding properties of 45Na₂O + 10 Bi₂O₃ + (5 - x)TiO₂+ (x) Nb₂O₅ + 40 P₂O₅, were x = 0, 1, 3, 5 mol%, glass materials were studied. The results revealed that the glass sample with the highest TiO2 content has the highest mass and linear attenuation coefficients and lowest half-value thickness, tenth-value thickness and mean-free path in the 20 to 80 keV energy region. The sample with 3 mol% of Nb₂O₅ has the highest mass and linear attenuation coefficients and the lowest half-value thickness, tenth-value thickness, and mean-free path at 15 keV and photon energies between 80 to 300 keV. It was, therefore, concluded that 45Na₂O + 10 Bi₂O₃ + 5 TiO₂ + 40 P₂O₅ glass is best for shielding x-rays of energies between 20 and 80 keV, while 45Na₂O + 10 Bi₂O₃ + 2 TiO₂ + 3 Nb₂O₅ + 40 P₂O₅ is best for shielding 15 keV x-rays and x-rays of energies between 80 keV and 300 keV.Keywords: bismuth-titanium-phosphate glass, x-ray shielding, LAC, MAC, radiation shielding
Procedia PDF Downloads 613078 Quality Evaluation of Bread Enriched with Red Sweet Pepper Powder (Capsicum annuum)
Authors: Ramandeep Kaur, Kamaljit Kaur, Preeti Ahluwalia, Poonam A. Sachdev
Abstract:
Bread is an ideal vehicle to impart bioactive compounds to the consumers in a convenient manner. This study evaluated bread enriched with red sweet pepper powder (RSP) at 2, 4, 6, 8, 10% and compared to control bread (without RSP). The bread crumbs were assayed for bioactive, physical, nutritional, textural, color, and sensory properties. Bread supplemented with RSP improved its color, nutritional, and bioactive properties. The low moisture content and increased hardness were observed at higher levels of RSP. Color intensity (expressed as L*, a*, b* values) of bread with 2 and 4% RSP were lower than those of high levels, and the same trend was observed for protein, fibre and ash content of bread. Significant (p < 0.05) increases were recorded for bioactive compounds such as total phenols (0.145 to 235 mg GAE/g), antioxidant activity (56% to 78%) and flavonoids (0.112 to 0.379 mg/g) as the level of powder increased. Bread enriched with 8% RSP showed improved sensory profile as compared to control, whereas a further increase in RSP decreased the sensory and textural properties. Thus, RSP act as a natural colorant and functional food that enhanced the functional and nutritional properties of bread and can be used to customize bread for specific health needs.Keywords: breads, bioactive compounds, red sweet pepper powder, sensory scores
Procedia PDF Downloads 1593077 ICT Training Programs in Tourism and Hospitality Institutes: An Analytical Study of Types, Effectiveness, and Graduate Perceived Importance
Authors: Magdy Abdel-Aleem Abdel-Ati Mayouf, Islam Al Sayed Hussein Al Sayed
Abstract:
Development of tourism and hospitality faculties' graduates is a key to the future health of hospitality and tourism sectors. Meanwhile information and communication technologies (ICTs) increasingly become the driving engine for productivity improvement and business opportunities in tourism and hospitality industry. Tourism and hospitality education and training must address these developments to enhance the ability of future managers to adopt a variety of ICT tools and strategies to increase their organization's efficiency and competitiveness. Therefore, this study aims to explore the types and effectiveness of ICT training offered by faculties of tourism and hotels in Egypt, and evaluating the importance of that training from the graduate's point of view. The study targets the graduates who graduated in the present ten years from three different faculties of tourism and hotels. Results argued the types, levels and effectiveness of ICT training offered in these faculties and the extent to which training programs were appreciated by graduates working in different fields, and finally, it recommended particular practices to enhance the training efficiency and raising the perceived benefits of it for workers in tourism and hospitality fields.Keywords: training, IT, graduated, tourism and hospitality, education
Procedia PDF Downloads 3663076 An Artificial Intelligence Framework to Forecast Air Quality
Authors: Richard Ren
Abstract:
Air pollution is a serious danger to international well-being and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Air pollution is a serious danger to international wellbeing and economies - it will kill an estimated 7 million people every year, costing world economies $2.6 trillion by 2060 due to sick days, healthcare costs, and reduced productivity. In the United States alone, 60,000 premature deaths are caused by poor air quality. For this reason, there is a crucial need to develop effective methods to forecast air quality, which can mitigate air pollution’s detrimental public health effects and associated costs by helping people plan ahead and avoid exposure. The goal of this study is to propose an artificial intelligence framework for predicting future air quality based on timing variables (i.e. season, weekday/weekend), future weather forecasts, as well as past pollutant and air quality measurements. The proposed framework utilizes multiple machine learning algorithms (logistic regression, random forest, neural network) with different specifications and averages the results of the three top-performing models to eliminate inaccuracies, weaknesses, and biases from any one individual model. Over time, the proposed framework uses new data to self-adjust model parameters and increase prediction accuracy. To demonstrate its applicability, a prototype of this framework was created to forecast air quality in Los Angeles, California using datasets from the RP4 weather data repository and EPA pollutant measurement data. The results showed good agreement between the framework’s predictions and real-life observations, with an overall 92% model accuracy. The combined model is able to predict more accurately than any of the individual models, and it is able to reliably forecast season-based variations in air quality levels. Top air quality predictor variables were identified through the measurement of mean decrease in accuracy. This study proposed and demonstrated the efficacy of a comprehensive air quality prediction framework leveraging multiple machine learning algorithms to overcome individual algorithm shortcomings. Future enhancements should focus on expanding and testing a greater variety of modeling techniques within the proposed framework, testing the framework in different locations, and developing a platform to automatically publish future predictions in the form of a web or mobile application. Accurate predictions from this artificial intelligence framework can in turn be used to save and improve lives by allowing individuals to protect their health and allowing governments to implement effective pollution control measures.Keywords: air quality prediction, air pollution, artificial intelligence, machine learning algorithms
Procedia PDF Downloads 1303075 Use of DNA Barcoding and UPLC-MS to Authenticate Agathosma spp. in South African Herbal Products
Authors: E. Pretorius, A. M. Viljoen, M. van der Bank
Abstract:
Introduction: The phytochemistry of Agathosma crenulata and A. betulina has been studied extensively, while their molecular analysis through DNA barcoding remains virtually unexplored. This technique can confirm the identity of plant species included in a herbal product, thereby ensuring the efficacy of the herbal product and the accuracy of its label. Materials and methods: Authentic Agathosma reference material of A. betulina (n=16) and A. crenulata (n=10) were obtained. Thirteen commercial products were purchased from various health shops around Johannesburg, South Africa, using the search term “Agathosma” or “Buchu.” The plastid regions matK and ycf1 were used to barcode the Buchu products, and BRONX analysis confirmed the taxonomic identity of the samples. UPLC-MS analyses were also performed. Results: Only (30/60) 60% of the traded samples tested from 13 suppliers contained A. betulina in their herbal products. Similar results were also obtained for the UPLC-MS analysis. Conclusion: In this study, we demonstrate the application of DNA barcoding in combination with phytochemical analysis to authenticate herbal products claiming to contain Agathosma plants as an ingredient in their products. This supports manufacturing efforts to ensure that herbal products that are safe for the consumer.Keywords: Buchu, substitution, barcoding, BRONX algorithm, matK, ycf1, UPLC-MS
Procedia PDF Downloads 1303074 Effects of Transcutaneous Electrical Pelvic Floor Muscle Stimulation on Peri-Vulva Area on Stress Urinary Incontinence: A Preliminary Study
Authors: Kim Ji-Hyun, Jeon Hye-Seon, Kwon Oh-Yun, Park Eun-Young, Hwang Ui-Jae, Gwak Gyeong-Tae, Yoon Hyeo-Bin
Abstract:
Stress urinary incontinence (SUI), a common women health problem, is an involuntary leakage of urine while sneezing, coughing, or physical exertion caused by insufficient strength of the pelvic floor and sphincter muscles. SUI also leads to decrease in quality of life and limits sexual activities. SUI is related to the increased bladder neck angle, bladder neck movement, funneling index, urethral width, and decreased urethral length. Various pelvic floor muscle electrical stimulation (ES) interventions have been applied to improve the symptoms of the people with SUI. ES activates afferent fibers of pudendal nerve and smoothly induces contractions of the pelvic floor muscles such as striated periurethral muscles and striated pelvic floor muscles. ES via intravaginal electrodes are the most frequently used types of the pelvic floor muscle ES for the female SUI. However, inserted electrode is uncomfortable and it increases the risks of infection. The purpose of this preliminary study was to determine if the 8-week transcutaneous pelvic floor ES would be effective to improve the symptoms and satisfaction of the females with SUI. Easy-K, specially designed ES equipment for the people with SUI, was used in this study. The oval shape stimulator can be placed on a toilet seat, and the surface has invaded electrode fit to contact with the entire vulva area while users are sitting on the stimulator. Five women with SUI were included in this experiment. Prior to the participation, subjects were instructed about procedures and precautions in using the ES. They have used the stimulator once a day for 20 minutes for each session at home. Outcome data was collected 3 times at the baseline, 4 weeks and 8 weeks after the intervention. Intravaginal sonography was used to measure the bladder neck angle, bladder neck movement, funneling index, thickness of an anterior rhabdosphincter and a posterior rhabdosphincter, urethral length, and urethral width. Leavator ani muscle (LAM) contraction strength was assessed by manual palpation according to the oxford scoring system. In addition, incontinence quality of life (IQOL) and female sexual function index (FSFI) questionnaires were used to obtain addition subjective information. Friedman test, a nonparametric statistical test, was used to determine the effectiveness of the ES. The Wilcoxon test was used for the post-hoc analysis and the significance level was set at .05. The bladder neck angle, funneling index and urethral width were significantly decreased after 8-weeks of intervention (p<.05). LAM contraction score, urethral length and anterior and posterior rhabdosphicter thickness were statistically increased by the intervention (p<.05). However, no significant change was found in the bladder neck movement. Although total score of the IQOL did not improve, the score of the ‘avoidance’ subscale of IQOL had significant improved (p<.05). FSFI had statistical difference in FSFI total score and ‘desire’ subscale (p<.05). In conclusion, 8-week use of a transcutaneous ES on peri-vulva area improved dynamic mechanical structures of the pelvic floor musculature as well as IQOL and conjugal relationship.Keywords: electrical stimulation, Pelvic floor muscle, sonography, stress urinary incontinence, women health
Procedia PDF Downloads 1533073 A Study on Assertiveness, Stigmatization, Gender Role Beliefs and Attitudes toward Seeking Professional Psychological Help among Young Adults in South East Asian
Authors: Chee Kwan Foong, Foong Mei Kei
Abstract:
This study aimed to investigate the influence of self-stigma, perceived public stigma, assertiveness and gender role beliefs on attitudes toward seeking professional psychological help. Two hundred and fifty young adults from universities in Brunei were recruited through convenience sampling to complete a survey. Individuals facing higher stigmatisation (both self-stigma and public-stigma) had less positive attitude towards seeking professional psychological help. Individuals who were more assertive had more positive attitude towards seeking professional psychological help. For males, individuals with more traditional gender role belief showed less positive attitude towards seeking professional psychological help. For female, there was no relationship between gender role beliefs and attitude towards seeking professional psychological help. Results confirmed there was a significant mediating effect between public stigma and attitude toward seeking professional psychological help. This study could guide the mental-health professionals in promoting more positive help-seeking attitude and raise the awareness about mental challenges which could assist in reducing stigmatization, and therefore, gain a deeper understanding.Keywords: assertiveness, attitude towards seeking professional psychological help, gender role beliefs, stigmatization
Procedia PDF Downloads 4023072 Fructooligosaccharide Prebiotics: Optimization of Different Cultivation Parameters on Their Microbial Production
Authors: Elsayed Ahmed Elsayed, Azza Noor El-Deen, Mohamed A. Farid, Mohamed A. Wadaan
Abstract:
Recently, a great attention has been paid to the use of dietary carbohydrates as prebiotic functional foods. Among the new commercially available products, fructooligosaccharides (FOS), which are microbial produced from sucrose, have attracted special interest due to their valuable properties and, thus, have a great economic potential for the sugar industrial branch. They are non-cariogenic sweeteners of low caloric value, as they are not hydrolyzed by the gastro-intestinal enzymes, promoting selectively the growth of the bifidobacteria in the colon, helping to eliminate the harmful microbial species to human and animal health and preventing colon cancer. FOS has been also found to reduce cholesterol, phospholipids and triglyceride levels in blood. FOS has been mainly produced by microbial fructosyltransferase (FTase) enzymes. The present work outlines bioprocess optimization for different cultivation parameters affecting the production of FTase by Penicillium aurantiogriseum AUMC 5605. The optimization involves both traditional as well as fractional factorial design approaches. Additionally, the production process will be compared under batch and fed-batch conditions. Finally, the optimized process conditions will be applied to 5-L stirred tank bioreactor cultivations.Keywords: prebiotics, fructooligosaccharides, optimization, cultivation
Procedia PDF Downloads 3893071 Reactive X Proactive Searches on Internet After Leprosy Institutional Campaigns in Brazil: A Google Trends Analysis
Authors: Paulo Roberto Vasconcellos-Silva
Abstract:
The "Janeiro Roxo" (Purple January) campaign in Brazil aims to promote awareness of leprosy and its early symptoms. The COVID-19 pandemic has adversely affected institutional campaigns, mostly considering leprosy a neglected disease by the media. Google Trends (GT) is a tool that tracks user searches on Google, providing insights into the popularity of specific search terms. Our prior research has categorized online searches into two types: "Reactive searches," driven by transient campaign-related stimuli, and "Proactive searches," driven by personal interest in early symptoms and self-diagnosis. Using GT we studied: (i) the impact of "Janeiro Roxo" on public interest in leprosy (assessed through reactive searches) and its early symptoms (evaluated through proactive searches) over the past five years; (ii) changes in public interest during and after the COVID-19 pandemic; (iii) patterns in the dynamics of reactive and proactive searches Methods: We used GT's "Relative Search Volume" (RSV) to gauge public interest on a scale from 0 to 100. "HANSENÍASE" (HAN) was a proxy for reactive searches, and "HANSENÍASE SINTOMAS" (leprosy symptoms) (H.SIN) for proactive searches (interest in leprosy or in self-diagnosis). We analyzed 261 weeks of data from 2018 to 2023, using polynomial trend lines to model trends over this period. Analysis of Variance (ANOVA) was used to compare weekly RSV, monthly (MM) and annual means (AM). Results: Over a span of 261 weeks, there was consistently higher Relative Search Volume (RSV) for HAN compared to H.SIN. Both search terms exhibited their highest (MM) in January months during all periods. COVID-19 pandemic: a decline was observed during the pandemic years (2020-2021). There was a 24% decrease in RSV for HAN and a 32.5% decrease for H.SIN. Both HAN and H.SIN regained their pre-pandemic search levels in January 2022-2023. Breakpoints indicated abrupt changes - in the 26th week (February 2019), 55th and 213th weeks (September 2019 and 2022) related to September regional campaigns (interrupted in 2020-2021). Trend lines for HAN exhibited an upward curve between 33rd-45th week (April to June 2019), a pandemic-related downward trend between 120th-136th week (December 2020 to March 2021), and an upward trend between 220th-240th week (November 2022 to March 2023). Conclusion: The "Janeiro Roxo" campaign, along with other media-driven activities, exerts a notable influence on both reactive and proactive searches related to leprosy topics. Reactive searches, driven by campaign stimuli, significantly outnumber proactive searches. Despite the interruption of the campaign due to the pandemic, there was a subsequent resurgence in both types of searches. The recovery observed in reactive and proactive searches post-campaign interruption underscores the effectiveness of such initiatives, particularly at the national level. This suggests that regional campaigns aimed at leprosy awareness can be considered highly successful in stimulating proactive public engagement. The evaluation of internet-based campaign programs proves valuable not only for assessing their impact but also for identifying the needs of vulnerable regions. These programs can play a crucial role in integrating regions and highlighting their needs for assistance services in the context of leprosy awareness.Keywords: health communication, leprosy, health campaigns, information seeking behavior, Google Trends, reactive searches, proactive searches, leprosy early identification
Procedia PDF Downloads 64