Search results for: index properties
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12190

Search results for: index properties

1660 The Cytoprotective Role of Antioxidants in Mammalian Cells Exposed to Variable Temperature, Pressure Overload and Radiation in the Stratosphere

Authors: Dawid Przystupski, Agata Gorska, Paulina Rozborska, Weronika Bartosik, Olga Michel, Joanna Rossowska, Anna Szewczyk, Malgorzata Drag-Zalesinska, Jedrzej Gorski, Julita Kulbacka

Abstract:

Researchers are still looking for an answer to the question which has been fascinating the mankind for generations, specifically – is there life beyond Earth? As long as routine flights to other planets remain beyond our reach, there is a need to find alternative ways to conduct the astrobiological research. It is worth noticing that the part of the Earth’s atmosphere, stratosphere, has been found to show subcosmic environmental conditions, namely temperatures around -50°C, very rarefied air, increased cosmic radiation and the Sun’s ultraviolet radiation. This phenomenon gives rise to the opportunity for the use of stratospheric environment as a research model for the space conditions. Therefore the idea of conducting astrobiological experiments during the stratospheric flights arose. Up to now, the preliminary work in this field included launching balloons containing solely microbiological samples into the stratosphere to figure out if they would be able to survive under the stratospheric conditions. In our study, we take this concept further, sending the human healthy and cancerous cells treated with various compounds to investigate whether these medicines are capable to protect the cells against stratospheric stress. Due to oxidative stress caused by ionizing radiation and temperature shock, we used natural compounds which display antioxidant properties. In this way, we were able to reduce the reactive oxygen species production affecting cells, which results in their death. After-flight laboratory tests of biological samples from the stratosphere have been performed and indicated the most active antioxidants as potential agents which can minimize the harmful impacts of stratospheric conditions, especially radiation and temperature.

Keywords: antioxidants, stratosphere, balloon flight, oxidative stress, cell death, radiation

Procedia PDF Downloads 138
1659 Oxidative Stability of Methyl and Ethyl Microalgae Biodiesel with Synthetic Antioxidants

Authors: Willian L. G. Silva, Fabio R. M. Batista, Matthieu Tubino

Abstract:

Microalgae can be considered a potential source of oil for biodiesel synthesis since this microorganism can grow rapidly in either fresh or salty water, not competing with food production. There are several favorable conditions in Brazil for this type of culture due to the country’s great amount of water. Another very positive aspect of this type of culture is its ability to fix atmospheric CO2, contributing to the reduction of greenhouse gases and their effects on global warming. Despite this biodiesel environmental advantages it degrades resulting in changes in its physical and chemical properties. In this work, the methyl and ethyl microalgae biodiesel oxidative stability was studied in the absence and presence of a synthetic antioxidant. The synthetic antioxidants used were propyl gallate (PG) and tert-butylhydroquinone (TBHQ), at a 0,12% (w/w) concentration. The biodiesel mixture was kept in a sealed glass flask, sheltered from light, and at room temperature (about 25 ºC) for 180 days. During this period, aliquots from this biodiesel were subjected to induced degradation by the Rancimat method, which determines an important quality parameter, provided in the current methods, and is used to monitor the degradation processes that occur in the biodiesel over time. The induction period (IP) expresses the biodiesel oxidative stability. It was stablished that the minimum accepted IP value for biodiesel is 8 hours. The results show that ethylic biodiesel increased its IP value from 7,6 hours to 31 hours when using PG, and to 67 hours when using TBHQ, exceeding the minimum accepted IP value. When the antioxidants were added to the methylic biodiesel samples, the IP was raised to 28 hours when using PG, and to 62 hours when using TBHQ. These values were maintained throughout the entire period of study (180 days). On the other hand, the biodiesel samples without additives maintained an IP above the allowed value for only 30 days. Therefore, in order to preserve microalgae biodiesel for longer periods of time, it is necessary to add antioxidants to both derivatives, i.e., the ethylic and methylic.

Keywords: biodiesel, microalgae, oxidative stability, storage, synthetic antioxidants

Procedia PDF Downloads 463
1658 LAMOS - Layered Amorphous Metal Oxide Gas Sensors: New Interfaces for Gas Sensing Applications

Authors: Valentina Paolucci, Jessica De Santis, Vittorio Ricci, Giacomo Giorgi, Carlo Cantalini

Abstract:

Despite their potential in gas sensing applications, the major drawback of 2D exfoliated metal dichalcogenides (MDs) is that they suffer from spontaneous oxidation in air, showing poor chemical stability under dry/wet conditions even at room temperature, limiting their practical exploitation. The aim of this work is to validate a synthesis strategy allowing microstructural and electrical stabilization of the oxides that inevitably form on the surface of 2D dichalcogenides. Taking advantage of spontaneous oxidation of MDs in air, we report on liquid phase exfoliated 2D-SnSe2 flakes annealed in static air at a temperature below the crystallization temperature of the native a-SnO2 oxide. This process yields a new class of 2D Layered Amorphous Metal Oxides Sensors (LAMOS), specifically few-layered amorphous a-SnO2, showing excellent gas sensing properties. Sensing tests were carried out at low operating temperature (i.e. 100°C) by exposing a-SnO2 to both oxidizing and reducing gases (i.e. NO2, H2S and H2) and different relative humidities ranging from 40% to 80% RH. The formation of stable nanosheets of amorphous a-SnO2 guarantees excellent reproducibility and stability of the response over one year. These results pave the way to new interesting research perspectives out considering the opportunity to synthesize homogeneous amorphous textures with no grain boundaries, no grains, no crystalline planes with different orientations, etc., following gas sensing mechanisms that likely differ from that of traditional crystalline metal oxide sensors. Moreover, the controlled annealing process could likely be extended to a large variety of Transition Metal Dichalcogenides (TMDs) and Metal Chalcogenides (MCs), where sulfur, selenium, or tellurium atoms can be easily displaced by O2 atoms (ΔG < 0), enabling the synthesis of a new family of amorphous interfaces.

Keywords: layered 2D materials, exfoliation, lamos, amorphous metal oxide sensors

Procedia PDF Downloads 125
1657 The Comparison of Safety Factor in Dry and Rainy Condition at Coal Bearing Formation. Case Study: Lahat Area South Sumatera Province, Indonesia

Authors: Teguh Nurhidayat, Nurhamid, Dicky Muslim, Zufialdi Zakaria, Irvan Sophian

Abstract:

This paper presents the role of climate change as the factor that induces landslide. Case study is located at Lahat Regency, South Sumatera Province, Indonesia. Study area has high economic value of coal reserves (mostly subbituminous – bituminous), which is developable for open pit coal mining in the future. Seams are found in Muara Enim Formation. This formation is at south Sumatera basin which is formed at Tertiary as a result of collision between the indian plate and eurasian plate. South Sumatera basin which is a basin located in back arc basin. This study aims to unravel the relationship between slope stability with different season condition in tropical climate. Undisturbed soil samples were obtained in the field along with other geological data. Laboratory works were carried out to obtain physical and mechanical properties of soils. Methodology to analyze slope stability is bishop method. Bishop methods are used to identify safety factor of slope. Result shows that slopes in rainy season conditions are more prone to landslides than in dry season. In the dry seasons with moisture content is 22.65%, safety factor is 1.28 the slope in stable condition. If rain is approaching with moisture content increasing to 97.8%, the slope began to be critical. On wet condition groundwater levels is increased, followed by γ (unit weight), c (cohesion), and φ (angle of friction) at 18.04, 5,88 kN/m2, and 28,04°, respectively, which ultimately determines the security factor FS to be 1.01 (slope in unstable conditions).

Keywords: rainfall, moisture content, slope analysis, landslide prone

Procedia PDF Downloads 315
1656 Core-Shell Type Magnetic Nanoparticles for Targeted Drug Delivery

Authors: Yogita Patil-Sen

Abstract:

Magnetic nanoparticles such as those made of iron oxide have been widely explored as biocatalysts, contrast agents, and drug delivery systems. However, some of the challenges associated with these particles are agglomeration and biocompatibility, which lead to concern of toxicity of the particles, especially for drug delivery applications. Coating the particles with biocompatible materials such as lipids and peptides have shown to improve the mentioned issues. Thus, these core-shell type nanoparticles are emerging as the new class of nanomaterials for targeted drug delivery applications. In this study, various types of core-shell magnetic nanoparticles are prepared and characterized using techniques, such as Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Vibrating Sample Magnetometer (VSM) and Thermogravimetric Analysis (TGA). The heating ability of nanoparticles is tested under oscillating magnetic field. The efficacy of the nanoparticles as drug carrier is also investigated. The loading of an anticancer drug, Doxorubicin at 18 °C is measured up to 48 hours using UV-visible spectrophotometer. The drug release profile is obtained under thermal incubation condition at 37 °C and compared with that under the influence of oscillating field. The results suggest that the core-shell nanoparticles exhibit superparamagnetic behaviour, although, coating reduces the magnetic properties of the particles. Both the uncoated and coated particles show good heating ability, again it is observed that coating decreases the heating behaviour of the particles. However, coated particles show higher drug loading efficiency than the uncoated particles and the drug release is much more controlled under the oscillating magnetic field. Thus, the results strongly indicate the suitability of the prepared core-shell type nanoparticles as drug delivery vehicles and their potential in magnetic hyperthermia applications and for hyperthermia cancer therapy.

Keywords: core-shell, hyperthermia, magnetic nanoparticles, targeted drug delivery

Procedia PDF Downloads 337
1655 Advanced Structural Analysis of Energy Storage Materials

Authors: Disha Gupta

Abstract:

The aim of this research is to conduct X-ray and e-beam characterization techniques on lithium-ion battery materials for the improvement of battery performance. The key characterization techniques employed are the synchrotron X-ray Absorption Spectroscopy (XAS) combined with X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to obtain a more holistic approach to understanding material properties. This research effort provides additional battery characterization knowledge that promotes the development of new cathodes, anodes, electrolyte and separator materials for batteries, hence, leading to better and more efficient battery performance. Both ex-situ and in-situ synchrotron experiments were performed on LiFePO₄, one of the most common cathode material, from different commercial sources and their structural analysis, were conducted using Athena/Artemis software. This analysis technique was then further extended to study other cathode materials like LiMnxFe(₁₋ₓ)PO₄ and even some sulphate systems like Li₂Mn(SO₄)₂ and Li₂Co0.5Mn₀.₅ (SO₄)₂. XAS data were collected for Fe and P K-edge for LiFePO4, and Fe, Mn and P-K-edge for LiMnxFe(₁₋ₓ)PO₄ to conduct an exhaustive study of the structure. For the sulphate system, Li₂Mn(SO₄)₂, XAS data was collected at both Mn and S K-edge. Finite Difference Method for Near Edge Structure (FDMNES) simulations were also conducted for various iron, manganese and phosphate model compounds and compared with the experimental XANES data to understand mainly the pre-edge structural information of the absorbing atoms. The Fe K-edge XAS results showed a charge compensation occurring on the Fe atom for all the differently synthesized LiFePO₄ materials as well as the LiMnxFe(₁₋ₓ)PO₄ systems. However, the Mn K-edge showed a difference in results as the Mn concentration changed in the materials. For the sulphate-based system Li₂Mn(SO₄)₂, however, no change in the Mn K-edge was observed, even though electrochemical studies showed Mn redox reactions.

Keywords: li-ion batteries, electrochemistry, X-ray absorption spectroscopy, XRD

Procedia PDF Downloads 151
1654 Effect of Cellulase Pretreatment for n-Hexane Extraction of Oil from Garden Cress Seeds

Authors: Boutemak Khalida, Dahmani Siham

Abstract:

Garden cress (Lepidium Sativum L.) belonging to the family Brassicaceae, is edible growing annual herb. Its various parts (roots, leaves and seeds) have been used to treat various human ailments. Its seed extracts have been screened for various biological activities like hypotensive, antimicrobial, bronchodilator, hypoglycaemic and antianemic. The aim of the present study is to optimize the process parameters (cellulase concentration and incubation time) of enzymatic pre-treatment of the garden cress seeds and to evaluate the effect of cellulase pre-treatment of the crushed seeds on the oil yield, physico-chemical properties and antibacterial activity and comparing to non-enzymatic method. The optimum parameters of cellulase pre-treatment were as follows: cellulase of 0,1% w/w and incubation time of 2h. After enzymatic pre-treatment, the oil was extracted by n-hexane for 1.5 h, the oil yield was 4,01% for cellulase pre-treatment as against 10,99% in the control sample. The decrease in yield might be caused a result of mucilage. Garden cress seeds are covered with a layer of mucilage which gels on contact with water. At the same time, the antibacterial activity was carried out using agar diffusion method against 4 food-borne pathogens (Escherichia coli, Salmonella typhi,Staphylococcus aureus, Bacillus subtilis). The results showed that bacterial strains are very sensitive to the oil with cellulase pre-treatment. Staphylococcus aureus is extremely sensitive with the largest zone of inhibition (40 mm), Escherichia coli and salmonella typhi had a very sensitive to the oil with a zone of inhibition (26 mm). Bacillus subtilizes is averagely sensitive which gave an inhibition of 16 mm. But it does not exhibit sensivity to the oil without enzymatic pre-treatment with a zone inhibition (< 8 mm). Enzymatic pre-treatment could be useful for antimicrobial activity of the oil, and hold a good potential for use in food and pharmaceutical industries.

Keywords: Lepidium sativum L., cellulase, enzymatic pretreatment, antibacterial activity.

Procedia PDF Downloads 463
1653 Solubility and Dissolution Enhancement of Poorly Soluble Drugs Using Biosericin

Authors: Namdeo Jadhav, Nitin Salunkhe

Abstract:

Currently, sericin is being treated as waste of sericulture industry, especially at reeling process. Looking at prospective physicochemical properties, an attempt has been made to explore pharmaceutical applications of sericin waste in fabrication of medicated solid dispersions. Solid dispersions (SDs) of poorly soluble drugs (Lornoxicam, Meloxicam & Felodipine) were prepared by spray drying, solvent evaporation, ball milling and physical kneading in mass ratio of drug: sericin (1:0.5, 1:1, 1:1.5, 1:2, 1:2.5 and 1:3 w/w) and were investigated by solubility, ATR-FTIR, XRD and DSC, micromeritics and tablettability, surface morphology and in-vitro dissolution. It has been observed that sericin improves solubility of drugs by 8 to 10 times compared to pure drugs. The presence of hydrogen bonding between drugs and sericin was confirmed from the ATR-FTIR spectra. Amongst these methods, spray dried (1:2 w/w) SDs showed fully amorphous state representing molecularly distributed drug as confirmed from XRD and DSC study. Spray dried meloxicam SDs showed better compressibility and compactibility. The microphotograph of spray dried batches of lornoxicam (SDLX) and meloxicam SDs (SDMX) showed bowl shaped, and bowl plus spherical particles respectively, while spray dried felodipine SDs (SDFL) showed spherical shape. The SDLX, SDMX and SDFL (1:2 w/w) displayed better dissolution performance than other methods. Conclusively, hydrophilic matrix of sericin can be used to deliver poor water soluble drugs and its aerodynamic shape may show a great potential for various drug deliveries. If established as pharmaceutical excipient, sericin holds a potential to revolutionise economics of pharmaceutical industry, and sericulture farming, especially of Asian countries.

Keywords: biosericin, poorly soluble drugs, solid dispersion, solubility and dissolution improvement

Procedia PDF Downloads 256
1652 Multi-Particle Finite Element Modelling Simulation Based on Cohesive Zone Method of Cold Compaction Behavior of Laminar Al and NaCl Composite Powders

Authors: Yanbing Feng, Deqing Mei, Yancheng Wang, Zichen Chen

Abstract:

With the advantage of low volume density, high specific surface area, light weight and good permeability, porous aluminum material has the potential to be used in automotive, railway, chemistry and construction industries, etc. A layered powder sintering and dissolution method were developed to fabricate the porous surface Al structure with high efficiency. However, the densification mechanism during the cold compaction of laminar composite powders is still unclear. In this study, multi particle finite element modelling (MPFEM) based on the cohesive zone method (CZM) is used to simulate the cold compaction behavior of laminar Al and NaCl composite powders. To obtain its densification mechanism, the macro and micro properties of final compacts are characterized and analyzed. The robustness and accuracy of the numerical model is firstly verified by experimental results and data fitting. The results indicate that the CZM-based multi particle FEM is an effective way to simulate the compaction of the laminar powders and the fracture process of the NaCl powders. In the compaction of the laminar powders, the void is mainly filled by the particle rearrangement, plastic deformation of Al powders and brittle fracture of NaCl powders. Large stress is mainly concentrated within the NaCl powers and the contact force network is formed. The Al powder near the NaCl powder or the mold has larger stress distribution on its contact surface. Therefore, the densification process of cold compaction of laminar Al and NaCl composite powders is successfully analyzed by the CZM-based multi particle FEM.

Keywords: cold compaction, cohesive zone, multi-particle FEM, numerical modeling, powder forming

Procedia PDF Downloads 152
1651 Synthesis of Flexible Mn1-x-y(CexLay)O2-δ Ultrathin-Film Device for Highly-Stable Pseudocapacitance from end-of-life Ni-MH batteries

Authors: Samane Maroufi, Rasoul Khayyam Nekouei, Sajjad Sefimofarah, Veena Sahajwalla

Abstract:

The present work details a three-stage strategy based on selective purification of rare earth oxide (REOs) isolated from end-of-life nickel-metal hydride (Ni-MH) batteries leading to high-yield fabrication of defect-rich Mn1-x-y(CeₓLaᵧ)O2-δ film. In step one, major impurities (Fe and Al) were removed from a REE-rich solution. In step two, the resulting solution with trace content of Mn was further purified through electrodeposition which resulted in the synthesis of a non-stoichiometric Mn₋₁₋ₓ₋ᵧ(CeₓLaₓᵧ)O2-δ ultra-thin film, with controllable thicknesses (5-650 nm) and transmittance (~29-100%)in which Ce4+/3+ and La3+ ions were dissolved in MnO2-x lattice. Due to percolation impacts on the optoelectronic properties of ultrathin films, a representative Mn1-x-y(CexLay)O2-δ film with 86% transmittance exhibited an outstanding areal capacitance of 3.4 mF•cm-2, mainly attributed to the intercalation/de-intercalation of anionic O2- charge carriers through the atomic tunnels of the stratified Mn1-x-y(CexLay)O2-δ crystallites. Furthermore, the Mn1-x-y(CexLay)O2-δ exhibited excellent capacitance retention of ~90% after 16,000 cycles. Such stability was shown to be associated with intervalence charge transfers occurring among interstitial Ce/La cations and Mn oxidation states within the Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ structure. The energy and power densities of the transparent flexible Mn₋₁₋ₓ₋ᵧ(CexLay)O2-δ full-cell pseudocapacitor device with a solid-state electrolyte was measured to be 0.088 µWh.cm-2 and 843 µW.cm-2, respectively. These values showed insignificant changes under vigorous twisting and bending to 45-180˚, confirming these materials are intriguing alternatives for size-sensitive energy storage devices. In step three, the remaining solution purified further, that led to the formation of REOs (La, Ce, and Nd) nanospheres with ~40-50 nm diameter.

Keywords: spent Ni-MH batteries, green energy, flexible pseudocapacitor, rare earth elements

Procedia PDF Downloads 135
1650 Biochemical Studies on the Effects of Cymbopogon citratus (Lemon Grass) on Wistar Albino Rats

Authors: Adegbegi Ademuyiwa Joshua, Onoagbe Iyare

Abstract:

Medicinal plants have been recognized to have therapeutic effects and they may also have toxic side effects. The present study was undertaken to investigate the effect of extracts of Cymbopogon citratus on normal rats. Blood glucose levels of all animals were determined. Biochemical studies carried out to determine the oxidative status by measuring activities of superoxide dismutase (SOD) and catalase (CAT), and in the liver, kidney and pancrease. Oral administration of ethanolic and aqueous extract of C. citratus at a doses of 200 mg/kg body weight, for a period of 30 days, caused a significant (p<0.05) reduction in blood glucose levels. Effect on hormonal profile (TSH, T3, and T4) was also determined, and was found to be significantly higher in all the administered groups when compared with control. Lipid profiles levels; Total cholesterols, triglycerides, high density lipoprotein-cholesterol and low density lipoprotein-cholesterol were significantly (p>0.05) higher for all treated rats as compared against control. SOD, catalase, GSH and Vitamin C activities in the tissues (liver, kidney and pancrease) of the rats treated with the medicinal plants were generally higher or statistical slightly similar to control. Histopathology result showed that both ethanolic and aqueous extracts (200 mg/kg body weight) of C. citratus was safer as no adverse effects were observed in the organs examined. Findings in this study showed that this plant has hypoglycemic properties and did not exert oxidative damage; in some instances, particularly in the liver, kidney and pancreas as well as its relative safety and possible use for weight gain.

Keywords: medicinal plants, blood glucose, cymbopogon citratus, hypoglycaemic, oxidative status

Procedia PDF Downloads 473
1649 A Study on Al-Riba Al-Hukmi and Its Instances from View of Islam

Authors: Abolfazl Alishahi Ghalehjoughi, Bi Bi Zeinab Hoseni

Abstract:

Islam is a comprehensive religion, and has rules for any thing. Islam attaches respect and importance to properties as well, and outlaws some types of transaction. A type of transaction that is strictly forbidden by the Islam is riba (usury), for which special punishments is considered in the Qur’an and hadiths. Usury is divided into (riba qarzi) loan usury and riba muamili (transaction usury); sometimes, in transaction and interest free loan contracts, ziyadah aini (interest in kind and of the same kind as that of the object of transaction) is not stipulated, but performance of work, provision of an advantage or a service, or a respite is stipulated, in which case although no ziyadah aini is in place, the transaction still constitutes usury and is outlaw. For instance, if a bank stipulates in an interest free loan contract that it pays a person the interest free loan only if he/she deposits a sum in the bank, this is an instance of riba hukmi. Or, for muamilah sarfi (transaction is which object of transaction and consideration is gold or silver) to be legitimate, it necessary that both the object of transaction and the consideration be handed over between the parties, because if a party takes delivery of the considered or object of transaction while the other party does not, the party who has taken delivery will accrue a benefit, as he/she wins time until he/she makes delivery to the other party, and this tantamount to usury in muamilah sarfi. Or, if a person lends a sum to another person, while the lender is indebted to the borrower, if the lender stipulates that he/she lends such amount only if the borrower postpones the maturity date of the lender’s debt to borrower, which is in one month, for a particular period of time, such loan will constitute usury. This research first provides views on riba hukmi, and then proceeds to analysis of views, trying to study fundamentals and proof regarding prohibition of riba hukmi, and to analyze instances of riba hukmi according to religious and hadith books.

Keywords: Islam, riba, prohibition, riba hukmi

Procedia PDF Downloads 371
1648 Low-Complex, High-Fidelity Two-Grades Cyclo-Olefin Copolymer (COC) Based Thermal Bonding Technique for Sealing a Thermoplastic Microfluidic Biosensor

Authors: Jorge Prada, Christina Cordes, Carsten Harms, Walter Lang

Abstract:

The development of microfluidic-based biosensors over the last years has shown an increasing employ of thermoplastic polymers as constitutive material. Their low-cost production, high replication fidelity, biocompatibility and optical-mechanical properties are sought after for the implementation of disposable albeit functional lab-on-chip solutions. Among the range of thermoplastic materials on use, the Cyclo-Olefin Copolymer (COC) stands out due to its optical transparency, which makes it a frequent choice as manufacturing material for fluorescence-based biosensors. Moreover, several processing techniques to complete a closed COC microfluidic biosensor have been discussed in the literature. The reported techniques differ however in their implementation, and therefore potentially add more or less complexity when using it in a mass production process. This work introduces and reports results on the application of a purely thermal bonding process between COC substrates, which were produced by the hot-embossing process, and COC foils containing screen-printed circuits. The proposed procedure takes advantage of the transition temperature difference between two COC grades foils to accomplish the sealing of the microfluidic channels. Patterned heat injection to the COC foil through the COC substrate is applied, resulting in consistent channel geometry uniformity. Measurements on bond strength and bursting pressure are shown, suggesting that this purely thermal bonding process potentially renders a technique which can be easily adapted into the thermoplastic microfluidic chip production workflow, while enables a low-cost as well as high-quality COC biosensor manufacturing process.

Keywords: biosensor, cyclo-olefin copolymer, hot embossing, thermal bonding, thermoplastics

Procedia PDF Downloads 240
1647 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene

Procedia PDF Downloads 232
1646 Life Cycle Assessment of Rare Earth Metals Production: Hotspot Analysis of Didymium Electrolysis Process

Authors: Sandra H. Fukurozaki, Andre L. N. Silva, Joao B. F. Neto, Fernando J. G. Landgraf

Abstract:

Nowadays, the rare earth (RE) metals play an important role in emerging technologies that are crucial for the decarbonisation of the energy sector. Their unique properties have led to increasing clean energy applications, such as wind turbine generators, and hybrid and electric vehicles. Despite the substantial media coverage that has recently surrounded the mining and processing of rare earth metals, very little quantitative information is available concerning their subsequent life stages, especially related to the metallic production of didymium (Nd-Pr) in fluoride molten salt system. Here we investigate a gate to gate scale life cycle assessment (LCA) of the didymium electrolysis based on three different scenarios of operational conditions. The product system is modeled with SimaPro Analyst 8.0.2 software, and IMPACT 2002+ was applied as an impact assessment tool. In order to develop a life cycle inventories built in software databases, patents, and other published sources together with energy/mass balance were utilized. Analysis indicates that from the 14 midpoint impact categories evaluated, the global warming potential (GWP) is the main contributors to the total environmental burden, ranging from 2.7E2 to 3.2E2 kg CO2eq/kg Nd-Pr. At the damage step assessment, the results suggest that slight changes in materials flows associated with enhancement of current efficiency (between 2.5% and 5%), could lead a reduction up to 12% and 15% of human health and climate change damage, respectively. Additionally, this paper highlights the knowledge gaps and future research efforts needing to understand the environmental impacts of Nd-Pr electrolysis process from the life cycle perspective.

Keywords: didymium electrolysis, environmental impacts, life cycle assessment, rare earth metals

Procedia PDF Downloads 190
1645 Effect of Exit Annular Area on the Flow Field Characteristics of an Unconfined Premixed Annular Swirl Burner

Authors: Vishnu Raj, Chockalingam Prathap

Abstract:

The objective of this study was to explore the impact of variation in the exit annular area on the local flow field features and the flame stability of an annular premixed swirl burner (unconfined) operated with premixed n-butane air mixture at equivalence ratio (ϕ) = 1, 1 bar, and 300K. A swirl burner with an axial swirl generator having a swirl number of 1.5 was used. Three different burner heads were chosen to have the exit area increased from 100%, 160%, and 220% resulting in inner and outer diameters and cross-sectional areas as (1) 10mm&15mm, 98mm2 (2) 17.5mm&22.5mm, 157mm2 and (3) 25mm & 30mm, 216mm2. The bulk velocity and Reynolds number based on the hydraulic diameter and unburned gas properties were kept constant at 12 m/s and 4000. (i) Planar PIV with TiO2 seeding particles and (ii) OH* chemiluminescence were used to measure the velocity fields and reaction zones of the swirl flames at 5Hz, respectively. Velocity fields and the jet spreading rates measured at the isothermal and reactive conditions revealed that the presence of a flame significantly altered the flow field in the radial direction due to the gas expansion. Important observations from the flame measurements were: the height and maximum width of the recirculation bubbles normalized by the hydraulic diameter, and the jet spreading angles for the flames for the three exit area cases were: (a) 4.52, 1.95, 28ᵒ, (b) 6.78, 2.37, 34ᵒ, and (c) 8.73, 2.32, 37ᵒ. The lean blowout was also measured, and the respective equivalence ratios were: 0.80, 0.92, and 0.82. LBO was relatively narrow for the 157mm2 case. For this case, particle image velocimetry (PIV) measurements showed that Turbulent Kinetic Energy and turbulent intensity were relatively high compared to the other two cases, resulting in higher stretch rates and narrower lean blowout (LBO).

Keywords: chemiluminescence, jet spreading rate, lean blowout, swirl flow

Procedia PDF Downloads 68
1644 Microstructural Evolution of an Interface Region in a Nickel-Based Superalloy Joint Produced by Direct Energy Deposition

Authors: Matthew Ferguson, Tatyana Konkova, Ioannis Violatos

Abstract:

Microstructure analysis of additively manufactured (AM) materials is an important step in understanding the interrelationship between mechanical properties and materials performance. Literature on the effect of laser-based AM process parameters on the microstructure in the substrate-deposit interface is limited. The interface region, the adjoining area of substrate and deposit, is characterized by the presence of the fusion zone (FZ) and heat-affected zone (HAZ), experiencing rapid thermal gyrations resulting in thermal-induced transformations. Inconel 718 was utilized as work material for both the substrate and deposit. Three blocks of Inconel 718 material were deposited by Direct Energy Deposition (DED) using three different laser powers, 550W, 750W and 950W, respectively. A coupled thermo-mechanical transient approach was utilized to correlate temperature history to the evolution of microstructure. The thermal history of the deposition process was monitored with the thermocouples installed inside the substrate material. The interface region of the blocks was analyzed with Optical Microscopy (OM) and Scanning Electron Microscopy (SEM), including the electron back-scattered diffraction (EBSD) technique. Laser power was found to influence the dissolution of intermetallic precipitated phases in the substrate and grain growth in the interface region. Microstructure and thermal history data were utilized to draw conclusive comparisons between the investigated process parameters.

Keywords: additive manufacturing, direct energy deposition, electron back-scattered diffraction, finite element analysis, inconel 718, microstructure, optical microscopy, scanning electron microscopy, substrate-deposit interface region

Procedia PDF Downloads 204
1643 An EBSD Investigation of Ti-6Al-4Nb Alloy Processed by Plan Strain Compression Test

Authors: Anna Jastrzebska, K. S. Suresh, T. Kitashima, Y. Yamabe-Mitarai, Z. Pakiela

Abstract:

Near α titanium alloys are important materials for aerospace applications, especially in high temperature applications such as jet engine. Mechanical properties of Ti alloys strongly depends on their processing route, then it is very important to understand micro-structure change by different processing. In our previous study, Nb was found to improve oxidation resistance of Ti alloys. In this study, micro-structure evolution of Ti-6Al-4Nb (wt %) alloy was investigated after plain strain compression test in hot working temperatures in the α and β phase region. High-resolution EBSD was successfully used for precise phase and texture characterization of this alloy. 1.1 kg of Ti-6Al-4Nb ingot was prepared using cold crucible levitation melting. The ingot was subsequently homogenized in 1050 deg.C for 1h followed by cooling in the air. Plate like specimens measuring 10×20×50 mm3 were cut from an ingot by electrical discharge machining (EDM). The plain strain compression test using an anvil with 10 x 35 mm in size was performed with 3 different strain rates: 0.1s-1, 1s-1and 10s-1 in 700 deg.C and 1050 deg.C to obtain 75% of deformation. The micro-structure was investigated by scanning electron microscopy (SEM) equipped with electron backscatter diffraction (EBSD) detector. The α/β phase ratio and phase morphology as well as the crystallographic texture, subgrain size, misorientation angles and misorientation gradients corresponding to each phase were determined over the middle and the edge of sample areas. The deformation mechanism in each working temperature was discussed. The evolution of texture changes with strain rate was investigated. The micro-structure obtained by plain strain compression test was heterogeneous with a wide range of grain sizes. This is because deformation and dynamic recrystallization occurred during deformation at temperature in the α and β phase. It was strongly influenced by strain rate.

Keywords: EBSD, plain strain compression test, Ti alloys

Procedia PDF Downloads 384
1642 Expanding Entrepreneurial Capabilities through Business Incubators: A Case Study of Idea Hub Nigeria

Authors: Kenechukwu Ikebuaku

Abstract:

Entrepreneurship has long been offered as the panacea for poor economic growth and high rate of unemployment. Business incubation is considered an effective means for enhancing entrepreneurial actitivities while engendering socio-economic development. Information Technology Developers Entrepreneurship Accelerator (iDEA), is a software business incubation programme established by the Nigerian government as a means of boosting digital entrepreneurship activities and reducing unemployment in the country. This study assessed the contribution of iDEA Nigeria’s entrepreneurship programmes towards enhancing the capabilities of its tenants. Using the capability approach and the sustainable livelihoods approach, the study analysed iDEA programmes’ contribution towards the expansion of participants’ entrepreneurial capabilities. Apart from identifying a set of entrepreneurial capabilities from both the literature and empirical analysis, the study went further to ascertain how iDEA incubation has helped to enhance those capabilities for its tenants. It also examined digital entrepreneurship as a valued functioning and as an intermediate functioning leading to other valuable functioning. Furthermore, the study examined gender as a conversion factor in digital entrepreneurship. Both qualitative and quantitative research methods were used for the study, and measurement of key variables was made. While the entire population was utilised to collect data for the quantitative research, purposive sampling was used to select respondents for semi-structured interviews in the qualitative research. However, only 40 beneficiaries agreed to take part in the survey while 10 respondents were interviewed for the study. Responses collected from questionnaires administered were subjected to statistical analysis using SPSS. The study developed indexes to measure the perception of the respondents, on how iDEA programmes have enhanced their entrepreneurial capabilities. The Capabilities Enhancement Perception Index (CEPI) computed indicated that the respondents believed that iDEA programmes enhanced their entrepreneurial capabilities. While access to power supply and reliable internet have the highest positive deviations around mean, negotiation skills and access to customers/clients have the highest negative deviation. These were well supported by the findings of the qualitative analysis in which the participants unequivocally narrated how the resources provided by iDEA aid them in their entrepreneurial endeavours. It was also found that iDEA programmes have a significant effect on the tenants’ access to networking opportunities, both with other emerging entrepreneurs and established entrepreneurs. While assessing gender as a conversion factor, it was discovered that there was very low female participation within the digital entrepreneurship ecosystem. The root cause of this gender disparity was found in unquestioned cultural beliefs and social norms which relegate women to a subservient position and household duties. The findings also showed that many of the entrepreneurs could be considered opportunity-based entrepreneurs rather than necessity entrepreneurs, and that digital entrepreneurship is a valued functioning for iDEA tenants. With regards to challenges facing digital entrepreneurship in Nigeria, infrastructural/institutional inadequacies, lack of funding opportunities, and unfavourable government policies, were considered inimical to entrepreneurial capabilities in the country.

Keywords: entrepreneurial capabilities, unemployment, business incubators, development

Procedia PDF Downloads 239
1641 Preparation and Electro-Optic Characteristics of Polymer Network Liquid Crystals Based On Polymethylvinilpirydine and Polyethylene Glycol

Authors: T. D. Ibragimov, A. R. Imamaliyev, G. M. Bayramov

Abstract:

The polymer network liquid crystals based on the liquid crystals Н37 and 5CB with polymethylvinilpirydine (PMVP) and polyethylene glycol (PEG) have been developed. Mesogene substance 4-n-heptyoxibenzoic acid (HOBA) is served for stabilization of obtaining composites. Kinetics of network formation is investigated by methods of polarization microscopy and integrated small-angle scattering. It is shown that gel-like states of the composite H-37 + PMVP + HOBA and 5CB+PEG+HOBA are formed at polymer concentration above 7 % and 9 %, correspondingly. At slow cooling, the system separates into a liquid crystal –rich phase and a liquid crystal-poor phase. At this case, transition of these phases in the H-37 + PMVP + HOBA (87 % + 12 % + 1 %) composite to an anisotropic state occurs at 49 оС and и 41 оС, accordingly, while the composite 5CB+PEG+HOBA (85% +13 % +2%) passes to anisotropic state at 36 оС corresponding to the isotropic-nematic transition of pure 5CB. The basic electro-optic parameters of the obtained composites are determined at room temperature. It is shown that the threshold voltage of the composite H-37 + PMVP + HOBA increase in comparison with pure H-37 and, accordingly, there is a shift of voltage dependence of rise times to the high voltage region. The contrast ratio worsens while decay time improves in comparison with the pure liquid crystal at all applied voltage. The switching times of the composite 5CB + PEG + HOBA (85% +13 % +2%) show anomalous behavior connected with incompleteness of the transition to an anisotropic state. Experimental results are explained by phase separation of the system, diminution of a working area of electro-optical effects and influence of areas with the high polymer concentration on areas with their low concentration.

Keywords: liquid crystals, polymers, small-angle scattering, optical properties

Procedia PDF Downloads 619
1640 Empirical Measures to Enhance Germination Potential and Control Browning of Tissue Cultures of Andrographis paniculata

Authors: Nidhi Jindal, Ashok Chaudhury, Manisha Mangal

Abstract:

Andrographis paniculata, (Burm f.) Wallich ex. Nees (Family Acanthaceae) popularly known as King of Bitters, is an important medicinal herb. It has an astonishingly wide range of medicinal properties such as anti-inflammatory,antidiarrhoeal, antiviral, antimalarial, hepatoprotective, cardiovascular, anticancer, and immunostimulatory activities. It is widely cultivated in southern Asia. Though propagation of this herb generally occurs through seeds, it has many germination problems which intrigued scientists to work out on the alternative techniques for its mass production. The potential of tissue culture techniques as an alternative tool for AP multiplication was found to be promising. However, the high mortality rate of explants caused by phenolic browning of explants is one of the difficulties reported. Low multiplication rates were reported in the proliferation phase, as well as cultures decline characterized by leaf fall and loss of overall vigor. In view of above problems, a study was undertaken to overcome seed dormancy to improve germination potential and to investigate further on the possible means for successful proliferation of cultures via preventive approaches to overcome failures caused by phenolic browning. Experiments were conducted to improve germination potential and among all the chemical and mechanical trials, scarification of seeds with sand paper proved to be the best method to enhance the germination potential (82.44%) within 7 days. Similarly, several pretreatments and media combinations were tried to overcome browning of explants leading to the conclusion that addition of 0.1% citric acid and 0.2% of ascorbic acid in the media followed by rapid sub culturing of explants controlled browning and decline of explants by 67.45%.

Keywords: plant tissue culture, empirical measure, germination, tissue culture

Procedia PDF Downloads 415
1639 Comparison of Various Landfill Ground Improvement Techniques for Redevelopment of Closed Landfills to Cater Transport Infrastructure

Authors: Michael D. Vinod, Hadi Khabbaz

Abstract:

Construction of infrastructure above or adjacent to landfills is becoming more common to capitalize on the limited space available within urban areas. However, development above landfills is a challenging task due to large voids, the presence of organic matter, heterogeneous nature of waste and ambiguity surrounding landfill settlement prediction. Prior to construction of infrastructure above landfills, ground improvement techniques are being employed to improve the geotechnical properties of landfill material. Although the ground improvement techniques have little impact on long term biodegradation and creep related landfill settlement, they have shown some notable short term success with a variety of techniques, including methods for verifying the level of effectiveness of ground improvement techniques. This paper provides geotechnical and landfill engineers a guideline for selection of landfill ground improvement techniques and their suitability to project-specific sites. Ground improvement methods assessed and compared in this paper include concrete injected columns (CIC), dynamic compaction, rapid impact compaction (RIC), preloading, high energy impact compaction (HEIC), vibro compaction, vibro replacement, chemical stabilization and the inclusion of geosynthetics such as geocells. For each ground improvement technique a summary of the existing theory, benefits, limitations, suitable modern ground improvement monitoring methods, the applicability of ground improvement techniques for landfills and supporting case studies are provided. The authors highlight the importance of implementing cost-effective monitoring techniques to allow observation and necessary remediation of the subsidence effects associated with long term landfill settlement. These ground improvement techniques are primarily for the purpose of construction above closed landfills to cater for transport infrastructure loading.

Keywords: closed landfills, ground improvement, monitoring, settlement, transport infrastructure

Procedia PDF Downloads 226
1638 One Species into Five: Nucleo-Mito Barcoding Reveals Cryptic Species in 'Frankliniella Schultzei Complex': Vector for Tospoviruses

Authors: Vikas Kumar, Kailash Chandra, Kaomud Tyagi

Abstract:

The insect order Thysanoptera includes small insects commonly called thrips. As insect vectors, only thrips are capable of Tospoviruses transmission (genus Tospovirus, family Bunyaviridae) affecting various crops. Currently, fifteen species of subfamily Thripinae (Thripidae) have been reported as vectors for tospoviruses. Frankliniella schultzei, which is reported as act as a vector for at least five tospovirses, have been suspected to be a species complex with more than one species. It is one of the historical unresolved issues where, two species namely, F. schultzei Trybom and F. sulphurea Schmutz were erected from South Africa and Srilanaka respectively. These two species were considered to be valid until 1968 when sulphurea was treated as colour morph (pale form) and synonymised under schultzei (dark form) However, these two have been considered as valid species by some of the thrips workers. Parallel studies have indicated that brown form of schultzei is a vector for tospoviruses while yellow form is a non-vector. However, recent studies have shown that yellow populations have also been documented as vectors. In view of all these facts, it is highly important to have a clear understanding whether these colour forms represent true species or merely different populations with different vector carrying capacities and whether there is some hidden diversity in 'Frankliniella schultzei species complex'. In this study, we aim to study the 'Frankliniella schultzei species complex' with molecular spectacles with DNA data from India and Australia and Africa. A total of fifty-five specimens was collected from diverse locations in India and Australia. We generated molecular data using partial fragments of mitochondrial cytochrome c oxidase I gene (mtCOI) and 28S rRNA gene. For COI dataset, there were seventy-four sequences, out of which data on fifty-five was generated in the current study and others were retrieved from NCBI. All the four different tree construction methods: neighbor-joining, maximum parsimony, maximum likelihood and Bayesian analysis, yielded the same tree topology and produced five cryptic species with high genetic divergence. For, rDNA, there were forty-five sequences, out of which data on thirty-nine was generated in the current study and others were retrieved from NCBI. The four tree building methods yielded four cryptic species with high bootstrap support value/posterior probability. Here we could not retrieve one cryptic species from South Africa as we could not generate data on rDNA from South Africa and sequence for rDNA from African region were not available in the database. The results of multiple species delimitation methods (barcode index numbers, automatic barcode gap discovery, general mixed Yule-coalescent, and Poisson-tree-processes) also supported the phylogenetic data and produced 5 and 4 Molecular Operational Taxonomic Units (MOTUs) for mtCOI and 28S dataset respectively. These results of our study indicate the likelihood that F. sulphurea may be a valid species, however, more morphological and molecular data is required on specimens from type localities of these two species and comparison with type specimens.

Keywords: DNA barcoding, species complex, thrips, species delimitation

Procedia PDF Downloads 129
1637 Conserving History: Evaluating and Selecting Effective Restoration Methods for a Fragment Mural Painting from Amarna

Authors: Kholod Khairy Salama, Shabban Hassan Thabet

Abstract:

In the present study, a comprehensive investigation has been undertaken into an Egyptian mural painting with feet wear slippers approach to choose the most successful restoration methods. The mural painting under examination dates back to the Amarna period; it was detached from a wall of an unknown tomb in Egypt, and currently, it is initially displayed in a showcase at the Egyptian Museum – Tahrir Square – Cairo, Egypt. The main objectives of this research were to (a) reveal the pigment used in the mural painting, (b) reveal the medium used with colours, (c) determine the technique of manufacturing, (e) determine the ground support, and (f) reveal the main deterioration aspects. The analytical techniques used for investigation were Optical Microscopy, Raman, X-ray Florescence, X-ray diffraction, and Fourier transform infrared coupled with attenuated total reflectance “FTIR-ATR”. The investigation revealed that the vital deterioration factors affecting the object. This research aims to examine and analyze the mural painting to choose the suitable method for the restoration process (a) define the colours through comparative analysis to choose the suitable material for cleaning, (b) define the natural structure of the ground support layer, which appeared as mud layer (c) determine the medium used with colours (d) diagnosis the presence of the white wash layer, and (e) choose the suitable restoration methods according to the results. Conclusion: This study focused mainly on the physical and chemical properties of the mural painting compound and the main changes that happened to the mural painting material, which caused deterioration and fall down of the painting parts, so we can find the best and optimum restoration ways for this object.

Keywords: mural paintings, Tal Al-Amarna, digital microscope, Raman, XRF, XRD, FTIR

Procedia PDF Downloads 76
1636 Ultrathin NaA Zeolite Membrane in Solvent Recovery: Preparation and Application

Authors: Eng Toon Saw, Kun Liang Ang, Wei He, Xuecheng Dong, Seeram Ramakrishna

Abstract:

Solvent recovery process is receiving utmost attention in recent year due to the scarcity of natural resource and consciousness of circular economy in chemical and pharmaceutical manufacturing process. Solvent dehydration process is one of the important process to recover and to purify the solvent for reuse. Due to the complexity of solvent waste or wastewater effluent produced in pharmaceutical industry resulting the wastewater treatment process become complicated, thus an alternative solution is to recover the valuable solvent in solvent waste. To treat solvent waste and to upgrade solvent purity, membrane pervaporation process is shown to be a promising technology due to the energy intensive and low footprint advantages. Ceramic membrane is adopted as solvent dehydration membrane owing to the chemical and thermal stability properties as compared to polymeric membrane. NaA zeolite membrane is generally used as solvent dehydration process because of its narrow and distinct pore size and high hydrophilicity. NaA zeolite membrane has been mainly applied in alcohol dehydration in fermentation process. At this stage, the membrane performance exhibits high separation factor with low flux using tubular ceramic membrane. Thus, defect free and ultrathin NaA membrane should be developed to increase water flux. Herein, we report a simple preparation protocol to prepare ultrathin NaA zeolite membrane supported on tubular ceramic membrane by controlling the seed size synthesis, seeding methods and conditions, ceramic substrate surface pore size selection and secondary growth conditions. The microstructure and morphology of NaA zeolite membrane will be examined and reported. Moreover, the membrane separation performance and stability will also be reported in isopropanol dehydration, ketone dehydration and ester dehydration particularly for the application in pharmaceutical industry.

Keywords: ceramic membrane, NaA zeolite, pharmaceutical industry, solvent recovery

Procedia PDF Downloads 246
1635 Elaboration and Validation of a Survey about Research on the Characteristics of Mentoring of University Professors’ Lifelong Learning

Authors: Nagore Guerra Bilbao, Clemente Lobato Fraile

Abstract:

This paper outlines the design and development of the MENDEPRO questionnaire, designed to analyze mentoring performance within a professional development process carried out with professors at the University of the Basque Country, Spain. The study took into account the international research carried out over the past two decades into teachers' professional development, and was also based on a thorough review of the most common instruments used to identify and analyze mentoring styles, many of which fail to provide sufficient psychometric guarantees. The present study aimed to gather empirical data in order to verify the metric quality of the questionnaire developed. To this end, the process followed to validate the theoretical construct was as follows: The formulation of the items and indicators in accordance with the study variables; the analysis of the validity and reliability of the initial questionnaire; the review of the second version of the questionnaire and the definitive measurement instrument. Content was validated through the formal agreement and consensus of 12 university professor training experts. A reduced sample of professors who had participated in a lifelong learning program was then selected for a trial evaluation of the instrument developed. After the trial, 18 items were removed from the initial questionnaire. The final version of the instrument, comprising 33 items, was then administered to a sample group of 99 participants. The results revealed a five-dimensional structure matching theoretical expectations. Also, the reliability data for both the instrument as a whole (.98) and its various dimensions (between .91 and .97) were very high. The questionnaire was thus found to have satisfactory psychometric properties and can therefore be considered apt for studying the performance of mentoring in both induction programs for young professors and lifelong learning programs for senior faculty members.

Keywords: higher education, mentoring, professional development, university teaching

Procedia PDF Downloads 181
1634 The Effect of Music Therapy on Anxiety, Fear and Pain Management in 6-12 Year Old Children Undergoing Surgery

Authors: Özgür Bahadir, Meltem Kurtuncu

Abstract:

The study was designed as quasi-experimental and conducted to determine the effect of music therapy on anxiety, fear and pain management in 6-12-year-old children undergoing surgery. The present study was carried out between 01.01.2016 and 19.08.2016 in BEU. Application and Research Center. The children aged 6 -12 who applied for surgery between the mentioned dates constituted the universe of the study. In the quasi-experimental study that was conducted in the clinics where children received operational treatment, two groups were formed: experimental group (the children who received musical therapy before the surgery) and control group (the children who were administered surveys and the surgery service routines only). Each group consisted of 30 children, and the participants of the study were 60 children in total. Necessary permissions were obtained from the parents of the children hospitalized before the beginning of the implementation. The data was collected through Child Anxiety Sensitivity Index (CASI), “Fear In Medical Treatment Scale”, Face, Legs, Activity, Cry, Consolability Scale (FLACC), Visual Analog Scale (VAS) and Participant Information Form. In the analysis of the data, Kolmogorov-Smirnov distribution scale was used to examine the normality of the distribution along with descriptive statistics methods (Frequency, Percentage, Mean, Standard Deviation). Data was presented in the tables in numbers and percentages. Means were demonstrated along with the standard deviations. The research compared children received; case and control groups include socio-demographic perspective, non-significant difference statistically among similar groups are intertwined. The general level of fear regarding the medical processes before returning to service after the operation and 30 minutes before getting discharged was found to be significantly low in the experimental group compared to control group (p<0.05). No statistically significant difference was found between experimental and control groups in terms of general level of fear regarding the medical processes before the operation, during the operation day and in the recovery room after the operation (p>0.05). Total CASI AD (anxiety sensitivity) levels before the operation, day of the operation and 30 minutes before the discharge for patients in experimental group was found to be significantly higher than the control group (p>0.05). There was no statistically significant difference between the experimental and control groups in the total CASI AD levels for the post-operative recovery room and for returning to the service room after the operation (p>0.05). VAS levels for patients in the experimental group in the post-operative recovery room was significantly higher than the control group (p>0.05). There was no statistically significant difference between the groups in terms of VAS findings in returning to service room after the operation and in 30 minutes before the discharge (p>0.05). As a result of the research; applied children music therapy in the experimental group anxiety, fear, and pain of the scales, their scores average, is lower than the control group children in this situation an increase in the satisfaction of children and parents was observed. In line with this, music therapy preoperative anxiety, fear, and can be used as an effective method of decreasing postoperative pain clinics is suggested.

Keywords: anxiety, children, fear, music therapy, pain

Procedia PDF Downloads 224
1633 Investigations of Bergy Bits and Ship Interactions in Extreme Waves Using Smoothed Particle Hydrodynamics

Authors: Mohammed Islam, Jungyong Wang, Dong Cheol Seo

Abstract:

The Smoothed Particle Hydrodynamics (SPH) method is a novel, meshless, and Lagrangian technique based numerical method that has shown promises to accurately predict the hydrodynamics of water and structure interactions in violent flow conditions. The main goal of this study is to build confidence on the versatility of the Smoothed Particle Hydrodynamics (SPH) based tool, to use it as a complementary tool to the physical model testing capabilities and support research need for the performance evaluation of ships and offshore platforms exposed to an extreme and harsh environment. In the current endeavor, an open-sourced SPH-based tool was used and validated for modeling and predictions of the hydrodynamic interactions of a 6-DOF ship and bergy bits. The study involved the modeling of a modern generic drillship and simplified bergy bits in floating and towing scenarios and in regular and irregular wave conditions. The predictions were validated using the model-scale measurements on a moored ship towed at multiple oblique angles approaching a floating bergy bit in waves. Overall, this study results in a thorough comparison between the model scale measurements and the prediction outcomes from the SPH tool for performance and accuracy. The SPH predicted ship motions and forces were primarily within ±5% of the measurements. The velocity and pressure distribution and wave characteristics over the free surface depicts realistic interactions of the wave, ship, and the bergy bit. This work identifies and presents several challenges in preparing the input file, particularly while defining the mass properties of complex geometry, the computational requirements, and the post-processing of the outcomes.

Keywords: SPH, ship and bergy bit, hydrodynamic interactions, model validation, physical model testing

Procedia PDF Downloads 133
1632 Potentials of Henna Leaves as Dye and Its Fastness Properties on Fabric

Authors: Nkem Angela Udeani

Abstract:

Despite the widespread use of synthetic dyes, natural dyes are still exploited and used to enhance its inherent aesthetic qualities as a major material for the beautification of the body. Centuries before the discovery of synthetic dye, natural dyes were the only source of dye open to mankind. Dyes are extracted from plant - leaves, roots, and barks, insect secretions, and minerals. However, research findings have made it clear that of all, plant- leaves, roots, barks or flowers are the most explored and exploited. Henna (Lawsonia innermis) is one of those plants. The experiment has also shown that henna is used in body painting in conjunction with an alkaline (Ammonium Sulphate) as a fixing agent. This of course gives a clue that if colour derived from henna is properly investigated, it may not only be used as body decoration but possibly, may have affinity to fibre substrate. This paper investigates the dyeing potentials - dyeing ability and fastness qualities of henna dye extract on cotton and linen fibres using mordants like ammonium sulphate and other alkalies (hydrosulphate and caustic soda, potash, common salt and alum). Hot and cold water and ethanol solvent were used in the extraction of the dye to investigate the most effective method of extraction, dyeing ability and fastness qualities of these extracts under room temperature. The results of the experiment show that cotton have a high rate of dye intake than linen fibre. On a similar note, the colours obtained depend most on the solvent and or the mordant used. In conclusion, hot water extraction appear more effective. While the colours obtained from ethanol and both cold and hot method of extraction range from light to dark yellow, light green to army green, there are to some extent shades of brown hues.

Keywords: dye, fabrics, henna leaves, potential

Procedia PDF Downloads 475
1631 Biologically Synthesised Silver Nanoparticles Induces Autophagy and JNK Signaling as a Pro-Survival Response by Abrogating Reactive Oxygen Species Accumulation in Cancer Cells

Authors: Sudeshna Mukherjee, Leena Fageria, R. Venkataramana Dilip, Rajdeep Chowdhury, Jitendra Panwar

Abstract:

Metal nanoparticles in recent years have gained importance in cancer therapy due to their enhanced permeability retention effect. Among various nanomaterials, silver nanoparticles (AgNPs) have received considerable attention due to their unique properties like conductivity, chemical stability, relative lower toxicity and outstanding therapeutic potential, such as anti-inflammatory, antimicrobial and anti-cancerous activities. In this study, we took a greener approach to synthesize silver nanoparticle from fungus and analyze its effects on both epithelial and mesenchymal derived cancer cells. Much research has been done on nanoparticle-induced apoptosis, but little is known about its role in autophagy. In our study, the silver nanoparticles were seen to induce autophagy which was analyzed by studying the expression of several autophagy markers like, LC3B-II and ATG genes. Monodansylcadaverine (MDC) assay also revealed the induction of autophagy upon treatment with AgNPs. Inhibition of autophagy by chloroquine resulted in increased cell death suggesting autophagy as a survival strategy adopted by the cells. In parallel to autophagy induction, silver nanoparticles induced ROS accumulation. Interestingly, autophagy inhibition by chloroquine increased ROS level, resulting in enhanced cell death. We further analyzed MAPK signaling upon AgNP treatment. It was observed that along with autophagy, activation of JNK signaling served as pro-survival while ERK signaling served as a pro-death signal. Our results provide valuable insights into the role of autophagy upon AgNP exposure and provide cues to probabilistic strategies to effectively sensitize cancer cells.

Keywords: autophagy, JNK signalling, reactive oxygen species, silver nanoparticles

Procedia PDF Downloads 364