Search results for: acenaphthene
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4

Search results for: acenaphthene

4 Synthesis of α-Diimin Nickel(II) Catalyst Supported on Graphene and Graphene Oxide for Ethylene Slurry Polymerization

Authors: Mehrji Khosravan, Mostafa Fathali-Sianib, Davood Soudbar, Sasan Talebnezhad, Mohammad-Reza Ebrahimi

Abstract:

The late transition metal catalyst of the end group of transition metals in the periodic table as Ni, Fe, Co, and Pd was grown up rapidly in polyolefin industries recently. These metals with suitable ligands exhibited special characteristic properties and appropriate activities in the production of polyolefins. The ligand 1,4-bis (2,6-diisopropyl phenyl) acenaphthene was synthesized by reaction of 2,6-diisopropyl aniline and acenaphthenequinone. The ligand was added to nickel (II) dibromide salt for synthesis the 1,4-bis (2,6 diisopropylphenyl) acenaphthene nickel (II) dibromide catalyst. The structure of the ligand characterized by IR technique. The catalyst then deposited on graphene and graphene oxide by vander walss-attachment for use in Ethylene slurry polymerization process in the presence of catalyst activator such as methylaluminoxane (MAO) in hexane solvent. The structure of the catalyst characterized by IR and TEM techniques and some of the polymers were characterized by DSC. The highest activity was achieved at 600 C for catalyst.

Keywords: α-diimine nickel (II) complex, graphene as supported catalyst, late transition metal, ethylene polymerization

Procedia PDF Downloads 350
3 Bioaccumulation of Polycyclic Aromatic Hydrocarbons in Padina boryana Alga Collected from a Contaminated Site at the Red Sea, Saudi Arabia

Authors: Huda Qari, I. A. Hassan

Abstract:

The brown alga Padina boryanawas was used for bioassay of polycyclic aromatic hydrocarbons (PAHs) accumulation at the seashore of Jeddah city. PAHs were determined in the coastal water and algal tissues by GC-MS. Acenaphthene (Ace) and dibenzo (a,h) anthracene (dB(a,h)An) were the main PAHs in seawater (50.02 and 46.18) and algal tissues (64.67 and 72.45), respectively. The ratios of low molecular weight/high molecular weight hydrocarbons (1.76 – 1.44), fluoranthene/pyrene (1.57 – 1.52) and phenanthrene/anthracene (0.86 – 0.67) in seawater and algal tissues, respectively, indicated the origin of the PAHs to be mainly petrogenic. This study has demonstrated the utility of using Padina boryanawas as a biomonitor of PAH contamination and bioavailability in the coastal waters.

Keywords: polycyclic aromatic hydrocarbons, Padina boryanawas, bioaccumulation, waste water

Procedia PDF Downloads 261
2 Spectroscopic Studies on Solubilization of Polycyclic Aromatic Hydrocarbons in Structurally Different Gemini Surfactants

Authors: Toshikee Yadav, Deepti Tikariha, Jyotsna Lakra, Kallol K. Ghosh

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are potent atmospheric pollutants that consist of two or more benzene rings. PAHs have low solubility in water. Their slow dissolution can contaminate large amounts of ground water for long period. They are hydrophobic, non-polar and neutral in nature and are known to have potential mutagenic or carcinogenic activity. In current scenario their removal from the environment, water and soil is still a great challenge and scientists worldwide are engaged to invent and design novel separation technology and decontaminating systems. Various physical, chemical, biological and their combined technologies have been applied to remediate organic-contaminated soils and groundwater. Surfactants play a vital role in the solubilization of these hydrophobic organic compounds. In the present investigation Solubilization capabilities of structurally different gemini surfactants i.e. butanediyl-1,4-bis(dimethyldodecylammonium bromide) (C12-4-C12,2Br−), 2-butanol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)-C12,2Br−), 2,3-butanediol-1,4-bis (dimethyldodecylammonium bromide) (C12-4(OH)2-C12,2Br−) for three polycyclic aromatic hydrocarbons (PAHs); phenanthrene (Phe),fluorene (Fluo) and acenaphthene (Ace) have been studied spectrophotometrically at 300 K. The result showed that the solubility of PAHs increases linearly with increasing surfactant concentration, as an implication of association between the PAHs and micelles. Molar solubilization ratio (MSR), micelle–water partition coefficient (Km) and Gibb's free energy of solubilization (ΔG°s) for PAHs have been determined in aqueous medium. (C12-4(OH)2-C12,2Br−) shows the higher solubilization for all PAHs. Findings of the present investigation may be useful to understand the role of appropriate surfactant system for the solubilization of toxic hydrophobic organic compounds.

Keywords: gemini surfactant, molar solubilization ratio, polycyclic aromatic hydrocarbon, solubilization

Procedia PDF Downloads 416
1 Removal of Polycyclic Aromatic Hydrocarbons Present in Tyre Pyrolytic Oil Using Low Cost Natural Adsorbents

Authors: Neha Budhwani

Abstract:

Polycyclic aromatic hydrocarbons (PAHs) are formed during the pyrolysis of scrap tyres to produce tyre pyrolytic oil (TPO). Due to carcinogenic, mutagenic, and toxic properties PAHs are priority pollutants. Hence it is essential to remove PAHs from TPO before utilising TPO as a petroleum fuel alternative (to run the engine). Agricultural wastes have promising future to be utilized as biosorbent due to their cost effectiveness, abundant availability, high biosorption capacity and renewability. Various low cost adsorbents were prepared from natural sources. Uptake of PAHs present in tyre pyrolytic oil was investigated using various low-cost adsor¬bents of natural origin including sawdust (shiham), coconut fiber, neem bark, chitin, activated charcol. Adsorption experiments of different PAHs viz. naphthalene, acenaphthalene, biphenyl and anthracene have been carried out at ambient temperature (25°C) and at pH 7. It was observed that for any given PAH, the adsorption capacity increases with the lignin content. Freundlich constant kf and 1/n have been evaluated and it was found that the adsorption isotherms of PAHs were in agreement with a Freundlich model, while the uptake capacity of PAHs followed the order: activated charcoal> saw dust (shisham) > coconut fiber > chitin. The partition coefficients in acetone-water, and the adsorption constants at equilibrium, could be linearly correlated with octanol–water partition coefficients. It is observed that natural adsorbents are good alternative for PAHs removal. Sawdust of Dalbergia sissoo, a by-product of sawmills was found to be a promising adsorbent for the removal of PAHs present in TPO. It is observed that adsorbents studied were comparable to those of some conventional adsorbents.

Keywords: natural adsorbent, PAHs, TPO, coconut fiber, wood powder (shisham), naphthalene, acenaphthene, biphenyl and anthracene

Procedia PDF Downloads 204