Search results for: cattle feed
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1438

Search results for: cattle feed

448 Water Gas Shift Activity of PtBi/CeO₂ Catalysts for Hydrogen Production

Authors: N. Laosiripojana, P. Tepamatr

Abstract:

The influence of bismuth on the water gas shift activities of Pt on ceria was studied. The flow reactor was used to study the activity of the catalysts in temperature range 100-400°C. The feed gas composition contains 5%CO, 10% H₂O and balance N₂. The total flow rate was 100 mL/min. The outlet gas was analyzed by on-line gas chromatography with thermal conductivity detector. The catalytic activities of bimetallic 1%Pt1%Bi/CeO₂ catalyst were greatly enhanced when compared with the activities of monometallic 2%Pt/CeO₂ catalyst. The catalysts were characterized by X-ray diffraction (XRD), Temperature-Programmed Reduction (TPR) and surface area analysis. X-ray diffraction pattern of Pt/CeO₂ and PtBi/CeO₂ indicated slightly shift of diffraction angle when compared with pure ceria. This result was due to strong metal-support interaction between platinum and ceria solid solution, causing conversion of Ce⁴⁺ to larger Ce³⁺. The distortions inside ceria lattice structure generated strain into the oxide lattice and facilitated the formation of oxygen vacancies which help to increase water gas shift performance. The H₂-Temperature Programmed Reduction indicated that the reduction peak of surface oxygen of 1%Pt1%Bi/CeO₂ shifts to lower temperature than that of 2%Pt/CeO₂ causing the enhancement of the water gas shift activity of this catalyst. Pt played an important role in catalyzing the surface reduction of ceria and addition of Bi alter the reduction temperature of surface ceria resulting in the improvement of the water gas shift activity of Pt catalyst.

Keywords: bismuth, platinum, water gas shift, ceria

Procedia PDF Downloads 348
447 Parametric Investigation of Wire-Cut Electric Discharge Machining on Steel ST-37

Authors: Mearg Berhe Gebregziabher

Abstract:

Wire-cut electric discharge machining (WEDM) is one of the advanced machining processes. Due to the development of the current manufacturing sector, there has been no research work done before about the optimization of the process parameters based on the availability of the workpiece of the Steel St-37 material in Ethiopia. Material Removal Rate (MRR) is considered as the experimental response of WCEDM. The main objective of this work is to investigate and optimize the process parameters on machining quality that gives high MRR during machining of Steel St-37. Throughout the investigation, Pulse on Time (TON), Pulse off Time (TOFF) and Velocities of Wire Feed (WR) are used as variable parameters at three different levels, and Wire tension, flow rate, type of dielectric fluid, type of the workpiece and wire material and dielectric flow rate are keeping as constants for each experiment. The Taguchi methodology, as per Taguchi‟ 's standard L9 (3^3) Orthogonal Array (OA), has been carried out to investigate their effects and to predict the optimal combination of process parameters over MRR. Signal to Noise ratio (S/N) and Analysis of Variance (ANOVA) were used to analyze the effect of the parameters and to identify the optimum cutting parameters on MRR. MRR was measured by using the Electronic Balance Model SI-32. The results indicated that the most significant factors for MRR are TOFF, TON and lastly WR. Taguchi analysis shows that, the optimal process parameters combination is A2B2C2, i.e., TON 6μs, TOFF 29μs and WR 2 m/min. At this level, the MRR of 0.414 gram/min has been achieved.

Keywords: ANOVA, MRR, parameter, Taguchi Methode

Procedia PDF Downloads 43
446 Establishment and Application of Numerical Simulation Model for Shot Peen Forming Stress Field Method

Authors: Shuo Tian, Xuepiao Bai, Jianqin Shang, Pengtao Gai, Yuansong Zeng

Abstract:

Shot peen forming is an essential forming process for aircraft metal wing panel. With the development of computer simulation technology, scholars have proposed a numerical simulation method of shot peen forming based on stress field. Three shot peen forming indexes of crater diameter, shot speed and surface coverage are required as simulation parameters in the stress field method. It is necessary to establish the relationship between simulation and experimental process parameters in order to simulate the deformation under different shot peen forming parameters. The shot peen forming tests of the 2024-T351 aluminum alloy workpieces were carried out using uniform test design method, and three factors of air pressure, feed rate and shot flow were selected. The second-order response surface model between simulation parameters and uniform test factors was established by stepwise regression method using MATLAB software according to the results. The response surface model was combined with the stress field method to simulate the shot peen forming deformation of the workpiece. Compared with the experimental results, the simulated values were smaller than the corresponding test values, the maximum and average errors were 14.8% and 9%, respectively.

Keywords: shot peen forming, process parameter, response surface model, numerical simulation

Procedia PDF Downloads 87
445 Biodiesel Production from Broiler Chicken Waste

Authors: John Abraham, Ramesh Saravana Kumar, Francis, Xavier, Deepak Mathew

Abstract:

Broiler slaughter waste has become a major source of pollution throughout the world. Utilization of broiler slaughter waste by dry rendering process produced Rendered Chicken Oil (RCO) a cheap raw material for biodiesel production and Carcass Meal a feed ingredient for pets and fishes. Conversion of RCO into biodiesel may open new vistas for generating wealth from waste besides controlling the major havoc of environmental pollution. A two-step process to convert RCO to good quality Biodiesel was invented. Acid catalysed esterification of FFA followed by base catalysed transesterification of triglycerides was carried out after meticulously standardising the methanol molar ratio, catalyst concentration, reaction temperature and reaction time to obtain the maximum biodiesel yield of 97.62% and lowest glycerol yield of 6.96%. RCO biodiesel blended was tested in a Mahindra Scorpio CRDI engine. The results revealed that the blending of commercial diesel with 20% RCO biodiesel lead to less engine wear, a quieter engine and better fuel economy. The better lubricating qualities of RCO B20 prevented over heating of engine, which prolongs the engine life. The blending of biodiesel at 20% to commercial diesel can reduce the import of costly crude oil and simultaneously, substantially reduce the engine emissions as proved by significantly lower smoke levels, thus mitigating climatic changes.

Keywords: broiler waste, rendered chicken oil, biodiesel, engine testing

Procedia PDF Downloads 435
444 Prediction of Oil Recovery Factor Using Artificial Neural Network

Authors: O. P. Oladipo, O. A. Falode

Abstract:

The determination of Recovery Factor is of great importance to the reservoir engineer since it relates reserves to the initial oil in place. Reserves are the producible portion of reservoirs and give an indication of the profitability of a field Development. The core objective of this project is to develop an artificial neural network model using selected reservoir data to predict Recovery Factors (RF) of hydrocarbon reservoirs and compare the model with a couple of the existing correlations. The type of Artificial Neural Network model developed was the Single Layer Feed Forward Network. MATLAB was used as the network simulator and the network was trained using the supervised learning method, Afterwards, the network was tested with input data never seen by the network. The results of the predicted values of the recovery factors of the Artificial Neural Network Model, API Correlation for water drive reservoirs (Sands and Sandstones) and Guthrie and Greenberger Correlation Equation were obtained and compared. It was noted that the coefficient of correlation of the Artificial Neural Network Model was higher than the coefficient of correlations of the other two correlation equations, thus making it a more accurate prediction tool. The Artificial Neural Network, because of its accurate prediction ability is helpful in the correct prediction of hydrocarbon reservoir factors. Artificial Neural Network could be applied in the prediction of other Petroleum Engineering parameters because it is able to recognise complex patterns of data set and establish a relationship between them.

Keywords: recovery factor, reservoir, reserves, artificial neural network, hydrocarbon, MATLAB, API, Guthrie, Greenberger

Procedia PDF Downloads 441
443 Development of an Advanced Power Ultrasonic-Assisted Drilling System

Authors: M. A. Moghaddas, M. Short, N. Wiley, A. Y. Yi, K. F. Graff

Abstract:

The application of ultrasonic vibrations to machining processes has a long history, ranging from slurry-based systems able to drill brittle materials, to more recent developments involving low power ultrasonics for high precision machining, with many of these at the research and laboratory stages. The focus of this development is the application of high levels of ultrasonic power (1,000’s of watts) to standard, heavy duty machine tools – drilling being the immediate focus, with developments in milling in progress – with the objective of dramatically increasing system productivity through faster feed rates, this benefit arising from the thrust force reductions obtained by power ultrasonic vibrations. The presentation will describe development of an advanced drilling system based on a special, acoustically designed, rugged drill module capable of functioning under heavy duty production conditions, and making use of standard tool holder means, and able to obtain thrust force reductions while maintaining or improving surface finish and drilling accuracy. The characterization of the system performance will be described, and results obtained in drilling several materials (Aluminum, Stainless steel, Titanium) presented.

Keywords: dimensional accuracy, machine tool, productivity, surface roughness, thrust force, ultrasonic vibrations, ultrasonic-assisted drilling

Procedia PDF Downloads 277
442 Requirements Management in Agile

Authors: Ravneet Kaur

Abstract:

The concept of Agile Requirements Engineering and Management is not new. However, the struggle to figure out how traditional Requirements Management Process fits within an Agile framework remains complex. This paper talks about a process that can merge the organization’s traditional Requirements Management Process nicely into the Agile Software Development Process. This process provides Traceability of the Product Backlog to the external documents on one hand and User Stories on the other hand. It also gives sufficient evidence that the system will deliver the right functionality with good quality in the form of various statistics and reports. In the nutshell, by overlaying a process on top of Agile, without disturbing the Agility, we are able to get synergic benefits in terms of productivity, profitability, its reporting, and end to end visibility to all Stakeholders. The framework can be used for just-in-time requirements definition or to build a repository of requirements for future use. The goal is to make sure that the business (specifically, the product owner) can clearly articulate what needs to be built and define what is of high quality. To accomplish this, the requirements cycle follows a Scrum-like process that mirrors the development cycle but stays two to three steps ahead. The goal is to create a process by which requirements can be thoroughly vetted, organized, and communicated in a manner that is iterative, timely, and quality-focused. Agile is quickly becoming the most popular way of developing software because it fosters continuous improvement, time-boxed development cycles, and more quickly delivering value to the end users. That value will be driven to a large extent by the quality and clarity of requirements that feed the software development process. An agile, lean, and timely approach to requirements as the starting point will help to ensure that the process is optimized.

Keywords: requirements management, Agile

Procedia PDF Downloads 370
441 Development of a Research Platform to Revitalize People-Forest Relationship Through a Cycle of Architectural Embodiments

Authors: Hande Ünlü, Yu Morishita

Abstract:

The total area of forest land in Japan accounts for 67% of the national land; however, despite this wealth and hundred years history of silviculture, today Japanese forestry faces socio-economic stagnation in forestry. While the growing gap in the people-forest relationship causes the depopulation of many forest villages, this paper introduces a methodology aiming to develop a place-specific approach in revitalizing this relationship. The paper focuses on a case study from Taiki town in the Hokkaido region to analyze the place's specific socio-economic requirements through interviews and workshops with the local experts, researchers, and stakeholders. Based on the analyzed facts, a master outline of design requirements is developed to produce locally sourced architectural embodiments that aim to act as a unifying element between the forests and the people of Taiki town. In parallel, the proposed methodology aims to generate a cycle of research feed and a researcher retreat, a definition given by Memu Earth Lab to the researchers' stay at Memu in Taiki town for a defined period to analyze local resources, for the continuous improvement of the introduced methodology to revitalize the interaction between people and forest through architecture.

Keywords: architecture, Japanese forestry, local timber, people-forest relationship, research platform

Procedia PDF Downloads 178
440 Selective Laser Melting (SLM) Process and Its Influence on the Machinability of TA6V Alloy

Authors: Rafał Kamiński, Joel Rech, Philippe Bertrand, Christophe Desrayaud

Abstract:

Titanium alloys are among the most important material in the aircraft industry, due to its low density, high strength, and corrosion resistance. However, these alloys are considered as difficult to machine because they have poor thermal properties and high reactivity with cutting tools. The Selective Laser Melting (SLM) process becomes even more popular through industry since it enables the design of new complex components, that cannot be manufactured by standard processes. However, the high temperature reached during the melting phase as well as the several rapid heating and cooling phases, due to the movement of the laser, induce complex microstructures. These microstructures differ from conventional equiaxed ones obtained by casting+forging. Parts obtained by SLM have to be machined in order calibrate the dimensions and the surface roughness of functional surfaces. The ball milling technique is widely applied to finish complex shapes. However, the machinability of titanium is strongly influenced by the microstructure. So the objective of this work is to investigate the influence of the SLM process, i.e. microstructure, on the machinability of titanium, compared to conventional forming processes. The machinability is analyzed by measuring surface roughness, cutting forces, cutting tool wear for a range of cutting conditions (depth of cut ap, feed per tooth fz, spindle speed N) in accordance with industrial practices.

Keywords: ball milling, microstructure, surface roughness, titanium

Procedia PDF Downloads 297
439 Taguchi-Based Six Sigma Approach to Optimize Surface Roughness for Milling Processes

Authors: Sky Chou, Joseph C. Chen

Abstract:

This paper focuses on using Six Sigma methodologies to improve the surface roughness of a manufactured part produced by the CNC milling machine. It presents a case study where the surface roughness of milled aluminum is required to reduce or eliminate defects and to improve the process capability index Cp and Cpk for a CNC milling process. The six sigma methodology, DMAIC (design, measure, analyze, improve, and control) approach, was applied in this study to improve the process, reduce defects, and ultimately reduce costs. The Taguchi-based six sigma approach was applied to identify the optimized processing parameters that led to the targeted surface roughness specified by our customer. A L9 orthogonal array was applied in the Taguchi experimental design, with four controllable factors and one non-controllable/noise factor. The four controllable factors identified consist of feed rate, depth of cut, spindle speed, and surface roughness. The noise factor is the difference between the old cutting tool and the new cutting tool. The confirmation run with the optimal parameters confirmed that the new parameter settings are correct. The new settings also improved the process capability index. The purpose of this study is that the Taguchi–based six sigma approach can be efficiently used to phase out defects and improve the process capability index of the CNC milling process.

Keywords: CNC machining, six sigma, surface roughness, Taguchi methodology

Procedia PDF Downloads 242
438 Caecotrophy Behaviour of the Rabbits (Oryctolagus cuniculus)

Authors: Awadhesh Kishore

Abstract:

One of the most unique characteristics of rabbit feeding behaviour is caecotrophy, which involves the excretion and immediate consumption of specific faeces known as soft faeces. Caecotrophy in rabbits is the instinctual behaviour of eating soft faeces; reduced caecotrophy decreases rabbit growth and lipid synthesis in the liver. Caecotroph ingestion is highest when rabbits are fed a diet high in indigestible fibre. The colon produces two types of waste: hard and soft pellets. The hard pellets are expelled, but the soft pellets are re-ingested by the rabbit directly upon being expelled from the anus by twisting itself around and sucking in those pellets as they emerge from the anus. The type of alfalfa hay in the feed of the rabbits does not affect volatile fatty acid concentration, the pattern of fermentation, or pH in the faeces. The cecal content and the soft faeces contain significant amounts of retinoids and carotenoids, while in the tissues (blood, liver, and kidney), these pigments do not occur in substantial amounts. Preventing caecotrophy reduced growth and altered lipid metabolism, depressing the development of new approaches for rabbit feeding and production. Relative abundance is depressed for genes related to metabolic pathways such as vitamin C and sugar metabolism, vitamin B2 metabolism, and bile secretion. The key microorganisms that regulate the rapid growth performance of rabbits may provide useful references for future research and the development of microecological preparations.

Keywords: caecocolonic microorganisms, caecotrophy, fasting caecotrophy, rabbits, soft pellets

Procedia PDF Downloads 50
437 Dynamic Fault Diagnosis for Semi-Batch Reactor Under Closed-Loop Control via Independent RBFNN

Authors: Abdelkarim M. Ertiame, D. W. Yu, D. L. Yu, J. B. Gomm

Abstract:

In this paper, a new robust fault detection and isolation (FDI) scheme is developed to monitor a multivariable nonlinear chemical process called the Chylla-Haase polymerization reactor when it is under the cascade PI control. The scheme employs a radial basis function neural network (RBFNN) in an independent mode to model the process dynamics and using the weighted sum-squared prediction error as the residual. The recursive orthogonal Least Squares algorithm (ROLS) is employed to train the model to overcome the training difficulty of the independent mode of the network. Then, another RBFNN is used as a fault classifier to isolate faults from different features involved in the residual vector. The several actuator and sensor faults are simulated in a nonlinear simulation of the reactor in Simulink. The scheme is used to detect and isolate the faults on-line. The simulation results show the effectiveness of the scheme even the process is subjected to disturbances and uncertainties including significant changes in the monomer feed rate, fouling factor, impurity factor, ambient temperature and measurement noise. The simulation results are presented to illustrate the effectiveness and robustness of the proposed method.

Keywords: Robust fault detection, cascade control, independent RBF model, RBF neural networks, Chylla-Haase reactor, FDI under closed-loop control

Procedia PDF Downloads 498
436 Technologic Information about Photovoltaic Applied in Urban Residences

Authors: Stephanie Fabris Russo, Daiane Costa Guimarães, Jonas Pedro Fabris, Maria Emilia Camargo, Suzana Leitão Russo, José Augusto Andrade Filho

Abstract:

Among renewable energy sources, solar energy is the one that has stood out. Solar radiation can be used as a thermal energy source and can also be converted into electricity by means of effects on certain materials, such as thermoelectric and photovoltaic panels. These panels are often used to generate energy in homes, buildings, arenas, etc., and have low pollution emissions. Thus, a technological prospecting was performed to find patents related to the use of photovoltaic plates in urban residences. The patent search was based on ESPACENET, associating the keywords photovoltaic and home, where we found 136 patent documents in the period of 1994-2015 in the fields title and abstract. Note that the years 2009, 2010, 2011, 2012, 2013 and 2014 had the highest number of applicants, with respectively, 11, 13, 23, 29, 15 and 21. Regarding the country that deposited about this technology, it is clear that China leads with 67 patent deposits, followed by Japan with 38 patents applications. It is important to note that most depositors, 50% are companies, 44% are individual inventors and only 6% are universities. On the International Patent classification (IPC) codes, we noted that the most present classification in results was H02J3/38, which represents provisions in parallel to feed a single network by two or more generators, converters or transformers. Among all categories, there is the H session, which means Electricity, with 70% of the patents.

Keywords: photovoltaic, urban residences, technology forecasting, prospecting

Procedia PDF Downloads 301
435 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 steel, orthogonal array, optimization, surface roughness, Taguchi methodology

Procedia PDF Downloads 544
434 Optimal Dynamic Regime for CO Oxidation Reaction Discovered by Policy-Gradient Reinforcement Learning Algorithm

Authors: Lifar M. S., Tereshchenko A. A., Bulgakov A. N., Guda S. A., Guda A. A., Soldatov A. V.

Abstract:

Metal nanoparticles are widely used as heterogeneous catalysts to activate adsorbed molecules and reduce the energy barrier of the reaction. Reaction product yield depends on the interplay between elementary processes - adsorption, activation, reaction, and desorption. These processes, in turn, depend on the inlet feed concentrations, temperature, and pressure. At stationary conditions, the active surface sites may be poisoned by reaction byproducts or blocked by thermodynamically adsorbed gaseous reagents. Thus, the yield of reaction products can significantly drop. On the contrary, the dynamic control accounts for the changes in the surface properties and adjusts reaction parameters accordingly. Therefore dynamic control may be more efficient than stationary control. In this work, a reinforcement learning algorithm has been applied to control the simulation of CO oxidation on a catalyst. The policy gradient algorithm is learned to maximize the CO₂ production rate based on the CO and O₂ flows at a given time step. Nonstationary solutions were found for the regime with surface deactivation. The maximal product yield was achieved for periodic variations of the gas flows, ensuring a balance between available adsorption sites and the concentration of activated intermediates. This methodology opens a perspective for the optimization of catalytic reactions under nonstationary conditions.

Keywords: artificial intelligence, catalyst, co oxidation, reinforcement learning, dynamic control

Procedia PDF Downloads 131
433 Exploitation of Endophytes for the Management of Plant Pathogens

Authors: N. P. Eswara Reddy, S. Thahir Basha

Abstract:

Here, we report the success stories of potential leaf, seed and root endophytes against soil borne as well as foliar plant pathogens which are nutritionally adequate and safe for consumption. Endophytes are the microorganisms that reside asymptomatically in the tissues of higher plants are a robust source of potential biocontrol agents and it is presumed that the survival ability of endophytes may be better when compared to phylloplane microflora. Of all the 68 putative leaf endophytes, the endophytes viz., EB9 (100%), and EB35 (100%) which were superior in controlling Colletotrichum gloeosporioides causing mango anthracnose were identified as Brevundimonas bullata (EB09) and Bacillus thuringiensis (EB35) and further delayed in ripening of mango fruits up to 21 days. As a part, the seed endophyte GSE-4 was identified as Archoromobacter spp. against Sclerotium rolfsii causing stem rot of groundnut and the root endophyte REB-8 against Rhizoctonia bataticola causing dry root rot of chickpea was identified as Bacillus subtilis. Both recorded least percent disease incidence (PDI) and increased plant growth promotion, respectively. Further, the novel Bacillus subtilis (SEB-2) against Macrophomina pahseolina causing charcoal rot of sunflower provides an ample scope for exploring the endophytes at large scale. The talc-based formulations of these endophytes developed can be commercialized after toxicological studies. At the bottom line these unexplored endophytes are the need of the hour against aggressive plant pathogens and to maintain the quality and abundance of food and feed and also to fetch marginal economy to the farmers will be discussed.

Keywords: endophytes, plant pathogens, commercialization, abundance of food

Procedia PDF Downloads 420
432 Prediction of Music Track Popularity: A Machine Learning Approach

Authors: Syed Atif Hassan, Luv Mehta, Syed Asif Hassan

Abstract:

Hit song science is a field of investigation wherein machine learning techniques are applied to music tracks in order to extract such features from audio signals which can capture information that could explain the popularity of respective tracks. Record companies invest huge amounts of money into recruiting fresh talents and churning out new music each year. Gaining insight into the basis of why a song becomes popular will result in tremendous benefits for the music industry. This paper aims to extract basic musical and more advanced, acoustic features from songs while also taking into account external factors that play a role in making a particular song popular. We use a dataset derived from popular Spotify playlists divided by genre. We use ten genres (blues, classical, country, disco, hip-hop, jazz, metal, pop, reggae, rock), chosen on the basis of clear to ambiguous delineation in the typical sound of their genres. We feed these features into three different classifiers, namely, SVM with RBF kernel, a deep neural network, and a recurring neural network, to build separate predictive models and choosing the best performing model at the end. Predicting song popularity is particularly important for the music industry as it would allow record companies to produce better content for the masses resulting in a more competitive market.

Keywords: classifier, machine learning, music tracks, popularity, prediction

Procedia PDF Downloads 663
431 Water-Bentonite Interaction of Green Pellets through Micro-Structural Analysis

Authors: Satyananda Patra, Venugopal Rayasam

Abstract:

The quality of pellets produced is affected by quality and type of green pellets, amount of addition of binders and fluxing agents along with the provided firing conditions. The green pellet quality depends upon chemistry, mineralogy and granulometry of fines used for pellet making, the feed size, its moisture content and porosity. During firing of green pellets, ingredients present within reacts to form different phases and microstructure. So in turn, physical and metallurgical properties of pellets are influenced by amount and type of binder and flux addition, induration time and temperature. During iron making process, the metallurgical properties of fired pellets are decided by the type and amount of these phases and their chemistry. Green pelletizing and induration studies have been already carried out with magnetite and hematite ore fines but for Indian iron ores of high alumina content showing different pelletizing characters, these studies cannot be directly interpreted. The main objective of proposed research work is to understand the green pelletizing process and determine the water bentonite interaction at different levels. Swelling behavior of bentonite and microstructure of the green pellet are investigated. Conversion of iron ore fines into pellets, the key raw material and process variables that influence the pellet quality needs to be identified and a correlation should be established between them.

Keywords: iron ore, pelletization, binders, green pellets, microstructure

Procedia PDF Downloads 314
430 Effect of Lactic Acid Bacteria Inoculant on Fermentation Quality of Sweet Sorghum Silage

Authors: Azizza Mala, Babo Fadlalla, Elnour Mohamed, Siran Wang, Junfeng Li, Tao Shao

Abstract:

Sweet sorghum is considered one of the best plants for silage production and is now a more important feed crop in many countries worldwide. It is simple to ensile because of its high water-soluble carbohydrates (WSC) concentration and low buffer capacity. This study investigated the effect of adding Pediococcus acidilactici AZZ5 and Lactobacillus plantarum AZZ4 isolated from elephant grass on the fermentation quality of sweet sorghum silage. One commercial bacteria Lactobacillus Plantarum, Ecosyl MTD/1(C.B.)), and two strains were used as additives Pediococcus acidilactici (AZZ5), Lactobacillus plantarum subsp. Plantarum (AZZ4) at 6 log colony forming units (cfu)/g of fresh sweet sorghum grass in laboratory silos (1000g). After 15, 30, and 60 days, the silos for each treatment were opened. All of the isolated strains enhanced the silage quality of sweet sorghum silage compared to the control, as evidenced by significantly (P < 0.05) lower ammonia nitrogen (NH3-N) content and undesirable microbial counts, as well as greater lactic acid (L.A.) contents and lactic acid/acetic acid (LA/AA) ratios. In addition, AZZ4 performed better than all other inoculants during ensiling, as evidenced by a significant (P < 0.05) reduction in pH and ammonia-N contents and a significant increase in lactic acid contents.

Keywords: fermentation, lactobacillus plantarum, lactic acid bacteria, pediococcus acidilactic, sweet sorghum

Procedia PDF Downloads 91
429 Reservoir Inflow Prediction for Pump Station Using Upstream Sewer Depth Data

Authors: Osung Im, Neha Yadav, Eui Hoon Lee, Joong Hoon Kim

Abstract:

Artificial Neural Network (ANN) approach is commonly used in lots of fields for forecasting. In water resources engineering, forecast of water level or inflow of reservoir is useful for various kind of purposes. Due to advantages of ANN, many papers were written for inflow prediction in river networks, but in this study, ANN is used in urban sewer networks. The growth of severe rain storm in Korea has increased flood damage severely, and the precipitation distribution is getting more erratic. Therefore, effective pump operation in pump station is an essential task for the reduction in urban area. If real time inflow of pump station reservoir can be predicted, it is possible to operate pump effectively for reducing the flood damage. This study used ANN model for pump station reservoir inflow prediction using upstream sewer depth data. For this study, rainfall events, sewer depth, and inflow into Banpo pump station reservoir between years of 2013-2014 were considered. Feed – Forward Back Propagation (FFBF), Cascade – Forward Back Propagation (CFBP), Elman Back Propagation (EBP) and Nonlinear Autoregressive Exogenous (NARX) were used as ANN model for prediction. A comparison of results with ANN model suggests that ANN is a powerful tool for inflow prediction using the sewer depth data.

Keywords: artificial neural network, forecasting, reservoir inflow, sewer depth

Procedia PDF Downloads 317
428 Application Potential of Forward Osmosis-Nanofiltration Hybrid Process for the Treatment of Mining Waste Water

Authors: Ketan Mahawer, Abeer Mutto, S. K. Gupta

Abstract:

The mining wastewater contains inorganic metal salts, which makes it saline and additionally contributes to contaminating the surface and underground freshwater reserves that exist nearby mineral processing industries. Therefore, treatment of wastewater and water recovery is obligatory by any available technology before disposing it into the environment. Currently, reverse osmosis (RO) is the commercially acceptable conventional membrane process for saline wastewater treatment, but consumes an enormous amount of energy and makes the process expensive. To solve this industrial problem with minimum energy consumption, we tested the feasibility of forward osmosis-nanofiltration (FO-NF) hybrid process for the mining wastewater treatment. The FO-NF process experimental results for 0.029M concentration of saline wastewater treated by 0.42 M sodium-sulfate based draw solution shows that specific energy consumption of the FO-NF process compared with standalone NF was slightly above (between 0.5-1 kWh/m3) from conventional process. However, average freshwater recovery was 30% more from standalone NF with same feed and operating conditions. Hence, FO-NF process in place of RO/NF offers a huge possibility for treating mining industry wastewater and concentrates the metals as the by-products without consuming an excessive/large amount of energy and in addition, mitigates the fouling in long periods of treatment, which also decreases the maintenance and replacement cost of the separation process.

Keywords: forward osmosis, nanofiltration, mining, draw solution, divalent solute

Procedia PDF Downloads 118
427 Skill-Based or Necessity-Driven Entrepreneurship in Animal Agriculture for Sustainable Job and Wealth Creations

Authors: I. S. R. Butswat, D. Zahraddeen

Abstract:

This study identified and described some skill-based and necessity-driven entrepreneurship in animal agriculture (AA). AA is an integral segment of the world food industry, and provides a good and rapid source of income. The contribution of AA to the Sub-Saharan economy is quite significant, and there are still large opportunities that remain untapped in the sector. However, it is imperative to understand, simplify and package the various components of AA in order to pave way for rapid wealth creation, poverty eradication and women empowerment programmes in sub-Saharan Africa and other developing countries. The entrepreneurial areas of AA highlighted were animal breeding, livestock fattening, dairy production, poultry farming, meat production (beef, mutton, chevon, etc.), rabbit farming, wool/leather production, animal traction, animal feed industry, commercial pasture management, fish farming, sport animals, micro livestock production, private ownership of abattoirs, slaughter slabs, animal parks and zoos, among others. This study concludes that reproductive biotechnology such as oestrous synchronization, super-/multiple ovulation, artificial insemination and embryo transfer can be employed as a tool for improvement of genetic make-up of low-yielding animals in terms of milk, meat, egg, wool, leather production and other economic traits that will necessitate sustainable job and wealth creations.

Keywords: animal, agriculture, entreprenurship, wealth

Procedia PDF Downloads 247
426 Designing of Multi-Epitope Peptide Vaccines for Fasciolosis (Fasciola gigantica) using Immune Epitope and Analysis Resource (IEDB) Server

Authors: Supanan Chansap, Werachon Cheukamud, Pornanan Kueakhai, Narin Changklungmoa

Abstract:

Fasciola species (Fasciola spp.) is caused fasciolosis in ruminants such as cattle, sheep, and buffalo. Fasciola gigantica (F.gigantica) commonly infects tropical regions. Fasciola hepatica (F.hepatica) in temperate regions. Liver fluke infection affects livestock economically, for example, reduced milk and meat production, weight loss, sterile animals. Currently, Triclabendazole is used to treat liver flukes. However, liver flukes have also been found to be resistant to drugs in countries. Therefore, vaccination is an attractive alternative to prevent liver fluke infection. Peptide vaccines are new vaccine technologies that mimic epitope antigens that trigger an immune response. An interesting antigen used in vaccine production is catepsin L, a family of proteins that play an important role in the life of the parasite in the host. This study aims to identify immunogenic regions of protein and construct a multi-epidetope vaccine using an immunoinformatic tool. Fasciola gigantica Cathepsin L1 (FgCatL1), Fasciola gigantica Cathepsin L1G (FgCatL1G), and Fasciola gigantica Cathepsin L1H (FgCatL1H) were predicted B-cell and Helper T lymphocytes (HTL) by Immune Epitope and Analysis Resource (IEDB) servers. Both B-cell and HTL epitopes aligned with cathepsin L of the host and Fasciola hepatica (F. hepatica). Epitope groups were selected from non-conserved regions and overlapping sequences with F. hepatica. All overlapping epitopes were linked with the GPGPG and KK linker. GPGPG linker was linked between B-cell epitope. KK linker was linked between HTL epitope and B-cell and HTL epitope. The antigenic scores of multi-epitope peptide vaccine was 0.7824. multi-epitope peptide vaccine was non-allergen, non-toxic, and good soluble. Multi-epitope peptide vaccine was predicted tertiary structure and refinement model by I-Tasser and GalaxyRefine server, respectively. The result of refine structure model was good quality that was generated by Ramachandran plot analysis. Discontinuous and linear B-cell epitopes were predicted by ElliPro server. Multi-epitope peptide vaccine model was two and seven of discontinuous and linear B-cell epitopes, respectively. Furthermore, multi-epitope peptide vaccine was docked with Toll-like receptor 2 (TLR-2). The lowest energy ranged from -901.3 kJ/mol. In summary, multi-epitope peptide vaccine was antigenicity and probably immune response. Therefore, multi-epitope peptide vaccine could be used to prevent F. gigantica infections in the future.

Keywords: fasciola gigantica, Immunoinformatic tools, multi-epitope, Vaccine

Procedia PDF Downloads 79
425 Nano-Structured Hydrophobic Silica Membrane for Gas Separation

Authors: Sajid Shah, Yoshimitsu Uemura, Katsuki Kusakabe

Abstract:

Sol-gel derived hydrophobic silica membranes with pore sizes less than 1 nm are quite attractive for gas separation in a wide range of temperatures. A nano-structured hydrophobic membrane was prepared by sol-gel technique on a porous α–Al₂O₃ tubular support with yttria stabilized zirconia (YSZ) as an intermediate layer. Bistriethoxysilylethane (BTESE) derived sol was modified by adding phenyltriethoxysilylethane (PhTES) as an organic template. Six times dip coated modified silica membrane having a thickness of about 782 nm was characterized by field emission scanning electron microscopy. Thermogravimetric analysis, together along contact angle and Fourier transform infrared spectroscopy, showed that hydrophobic properties were improved by increasing the PhTES content. The contact angle of water droplet increased from 37° for pure to 111.5° for the modified membrane. The permeance of single gas H₂ was higher than H₂:CO₂ ratio of 75:25 binary feed mixtures. However, the permeance of H₂ for 60:40 H₂:CO₂ was found lower than single and binary mixture 75:25 H₂:CO₂. The binary selectivity values for 75:25 H₂:CO₂ were 24.75, 44, and 57, respectively. Selectivity had an inverse relation with PhTES content. Hydrophobicity properties were improved by increasing PhTES content in the silica matrix. The system exhibits proper three layers adhesion or integration, and smoothness. Membrane system suitable in steam environment and high-temperature separation. It was concluded that the hydrophobic silica membrane is highly promising for the separation of H₂/CO₂ mixture from various H₂-containing process streams.

Keywords: gas separation, hydrophobic properties, silica membrane, sol–gel method

Procedia PDF Downloads 122
424 A Palmprint Identification System Based Multi-Layer Perceptron

Authors: David P. Tantua, Abdulkader Helwan

Abstract:

Biometrics has been recently used for the human identification systems using the biological traits such as the fingerprints and iris scanning. Identification systems based biometrics show great efficiency and accuracy in such human identification applications. However, these types of systems are so far based on some image processing techniques only, which may decrease the efficiency of such applications. Thus, this paper aims to develop a human palmprint identification system using multi-layer perceptron neural network which has the capability to learn using a backpropagation learning algorithms. The developed system uses images obtained from a public database available on the internet (CASIA). The processing system is as follows: image filtering using median filter, image adjustment, image skeletonizing, edge detection using canny operator to extract features, clear unwanted components of the image. The second phase is to feed those processed images into a neural network classifier which will adaptively learn and create a class for each different image. 100 different images are used for training the system. Since this is an identification system, it should be tested with the same images. Therefore, the same 100 images are used for testing it, and any image out of the training set should be unrecognized. The experimental results shows that this developed system has a great accuracy 100% and it can be implemented in real life applications.

Keywords: biometrics, biological traits, multi-layer perceptron neural network, image skeletonizing, edge detection using canny operator

Procedia PDF Downloads 371
423 Prediction of Cutting Tool Life in Drilling of Reinforced Aluminum Alloy Composite Using a Fuzzy Method

Authors: Mohammed T. Hayajneh

Abstract:

Machining of Metal Matrix Composites (MMCs) is very significant process and has been a main problem that draws many researchers to investigate the characteristics of MMCs during different machining process. The poor machining properties of hard particles reinforced MMCs make drilling process a rather interesting task. Unlike drilling of conventional materials, many problems can be seriously encountered during drilling of MMCs, such as tool wear and cutting forces. Cutting tool wear is a very significant concern in industries. Cutting tool wear not only influences the quality of the drilled hole, but also affects the cutting tool life. Prediction the cutting tool life during drilling is essential for optimizing the cutting conditions. However, the relationship between tool life and cutting conditions, tool geometrical factors and workpiece material properties has not yet been established by any machining theory. In this research work, fuzzy subtractive clustering system has been used to model the cutting tool life in drilling of Al2O3 particle reinforced aluminum alloy composite to investigate of the effect of cutting conditions on cutting tool life. This investigation can help in controlling and optimizing of cutting conditions when the process parameters are adjusted. The built model for prediction the tool life is identified by using drill diameter, cutting speed, and cutting feed rate as input data. The validity of the model was confirmed by the examinations under various cutting conditions. Experimental results have shown the efficiency of the model to predict cutting tool life.

Keywords: composite, fuzzy, tool life, wear

Procedia PDF Downloads 295
422 Degradation of Neonicotinoid Insecticides (Acetamiprid and Imidacloprid) Using Biochar of Rice Husk and Fruit Peels

Authors: Mateen Abbas, Abdul Muqeet Khan, Sadia Bashir, Muhammad Awais Khalid, Aamir Ghafoor, Zara Hussain, Mashal Shahid

Abstract:

The irrational use of insecticides in everyday life has drawn attention worldwide towards its harmful effects. To mitigate the toxic effects of insecticides to humans, present study was planned on the degradation/detoxification of the neonicotinoid insecticides including imidacloprid and acetamiprid. Biocarbon of fruit peels (Banana & Watermelon) and biochar (activated or non-activated) of rice husk was utilized as adsorbents for degradation of selected pesticides. Both activated and non-activated biochar were prepared for treatment and then applied in different concentrations (0.5 to 2.0 ppm) and dosage (1.0 to 2.5g) to insecticides (Acetamiprid & Imidacloprid) as well as studied at different times (30-120 minutes). Reverse Phase-High Performance Liquid Chromatography (RP-HPLC) coupled with Photodiode array detector was used to quantify the insecticides. Results depicted that activated biochar of rice husk minimized the 73% concentrations of both insecticides however, watermelon activated biocarbon degraded 72% of imidacloprid and 56% of acetamiprid. Results proved the efficiency of the method employed and it was also inferred that high concentration of biocarbon resulted in larger percentage of degradation. The applied method is cheaper, easy and accessible that can be used to minimize the pesticide residues in animal feed. Degradation using biochar proved significant degradation, eco-friendly and economic method to reduce toxicity of insecticides.

Keywords: insecticides, acetamiprid, imidacloprid, biochar, HPLC

Procedia PDF Downloads 153
421 The Promising Way to Minimize the Negative Effects of Iron Fortification

Authors: M. Juffrie, Siti Helmyati, Toto Sudargo, B. J. Istiti Kandarina

Abstract:

Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota.

Keywords: tempeh, synbiotic, iron, haemoglobin, gut microbiota

Procedia PDF Downloads 457
420 Rural Farmers-Herdsmen Conflicts, State Mediation Failure and Prospects of Traditional Institutions’ Intervention in Southwest Nigeria

Authors: Grace Adebo

Abstract:

Rural Farmers-herdsmen conflicts have resulted in a large number of causalities in many parts of Nigeria. Herds of cattle have died, while farmers recorded inestimable losses of their crops and harvests. The overall consequences have impacted negatively on food security across the country. There are divided opinions by scholars, agricultural experts and conflict analysts on the root causes of the conflicts and why traditional institutional interventions are ineffective in resolving the crisis. The study, therefore, aims to investigate the fundamentality of the conflicts’ causes in Southwest Nigeria and the correlates between traditional institutional authorities’ intervention and farmers-herdsmen conflicts in Southwest Nigeria. A structured interview schedule and focus group discussion were employed to elicit information from 180 farmers and 48 herdsmen selected through a multistage sampling procedure from the conflict zones in Southwest Nigeria. Collected data were analyzed using frequency counts, percentages, means and the Relative Importance Index (RII). The study found that climate change effects, farmland encroachment, crop damage, theft, and competition for land and water resources and pollution were the root causes of the violent herders-rural farmer’s clashes. The quest for wealth acquisition by some traditional rulers and some notable individuals in the conflict neighborhoods, occasioned tribal-mix herds possession and, thus undermining local institutional interventions and perverting justice through weak conflict resolution strategies, therefore, fueling further conflicts. Most farmers in the conflict zones have abandoned their farms for fear of death. This coupled with physical, social, economic and psychological consequences have deepened food insecurity and impaired the economic conditions of the herdsmen and the farmers. Currently, there are no mutually established mediation mechanisms as most states are opposed to the enactment of grazing laws to protect territorial encroachments of lands and subsequent multiplication of the herdsmen. It is suggested that government and Non-Governmental Organisation (NGOs) should encourage a functional stakeholder's forum for sustainable conflict resolution and establish a compensation scheme for losses incurred while extension agents are equipped with knowledge on conflict management strategies for peace attainment with the envisioned goal of achieving sustainable livelihoods and food security in Southwest Nigeria.

Keywords: conflict resolution, food security, herdsmen-farmers conflict, sustainable livelihoods, traditional institutions

Procedia PDF Downloads 112
419 Comparative Antihyperglycemic Activity of Serpentina (Andrographis paniculata) and Papait (Mollugo oppositifolia linn) Aqueous Extracts in Alloxan-Induced Diabetic Mice

Authors: Karina Marie G. Nicolas, Kimberly M. Visaya, Emmanuel R. Cauinian

Abstract:

A comparative study on the antihyperglycemic activity of aqueous extracts of Serpentina (Andrographis paniculata) and Papait (Mollugo oppositifolia linn) administered at 400mg/kg body weight per orem twice daily for 14 days was investigated using 24 alloxan-induced diabetic male, 6-8 weeks old ICR mice and Metformin as standard control. The blood glucose levels of all the animals in the treatment groups were not reduced to < 200mg/dl so as to consider them as non-diabetic but Papait showed a consistent blood glucose lowering effect from day 0 to 14 causing 36.07% reduction as compared to Serpentina which was observed to cause a fluctuating effect on blood glucose levels and a reduction of only 22.53% while the Metformin treated animals exhibited the highest reduction at 45.29%. The blood glucose levels at day 14 of animals treated with Papait (322.93 mg/dl) had comparable blood glucose levels (p<0.05) with the Metformin treated groups (284.50 mg/dl). Also, all the animals in the three treatment groups were still hypercholesterolemic with an observed consistent weight loss and a decrease in feed intake except for Serpentina which recorded a slight increase. Results of the study showed a superior antihyperglycemic activity of Papait compared with Serpentina.

Keywords: antihyperglycemic, diabetes, hypercholesterolemic, papait, serpentina

Procedia PDF Downloads 359