Search results for: tempeh
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: tempeh

5 Phytoestrogen Content of Fermented Lupin Tempeh and Natto

Authors: Niranjani Wickramsinghe, Mario Soares, Stuart Johnson, Ranil Cooray, Vijay Jayasena

Abstract:

Tempeh is a traditional fermented soya bean food in Indonesia which is produced from de-hulled soya fermented with Rhizopusoligosporus. Natto is a traditional Japanese food made from whole soya bean seed fermentation with the bacteriaBacillus subtilis natto. Lupin is a grain legume with a low content of the phytoestrogenic isoflavones genistein and daidzein compared to soya. However due a comparable nutrition profile and increased cost effectiveness relative to soy, lupin has been substituted into various oriental fermented foods such as tempe and natto. Lupin tempeh and lupin natto were prepared using either WS or DHS. Analysis for genistein and daidzein content was conducted using HPLC for time points zero, 12h, 24h, 36h, 48h and 72h after fermentation. Results revealed that the amount of genistein and daidzein significantly increased with time in both tempeh and natto. Both isoflavones peaked at 48h in lupin tempeh and earlier at 36h in lupin natto. WS tempeh and WS natto had significantly more genistein than WHS tempe and WHS natto. Diadzeincontent of WHS tended to be higher than WS across both products. It is concluded that, fermentation time increased the amount of genistein and daidzein content in both lupin tempeh and natto and the form of lupin raw material used affected the genistein level and to some extent the daidzein content of fermented products.

Keywords: lupin, natto, soya, tempeh

Procedia PDF Downloads 350
4 The Promising Way to Minimize the Negative Effects of Iron Fortification

Authors: M. Juffrie, Siti Helmyati, Toto Sudargo, B. J. Istiti Kandarina

Abstract:

Background: Iron fortification is one potential way to overcome anemia but it can cause gut microbiota imbalance. Probiotics addition can increase the growth of good gut bacteria while prebiotics can support the probiotics growth. Tempeh is rich in nutrients required for hemoglobin synthesis, such as protein, vitamin B12, vitamin C, zinc, iron and copper. Objective: To know the efficacy of fermented tempeh extract fortified with iron and synbiotic in maintain gut microbiota balance. Methods: Fermented synbiotic tempeh extract was made using Lactobacillus plantarum Dad13 and Fructo-oligosaccharides. A total of 32 anemic Wistar rats underwent the iron repletion phase then divided into 4 groups, given: 1) Fermented synbiotic tempeh extract with 50 ppm Fe/NaFeEDTA (Na), 2) Fermented synbiotic tempeh extract with 50 ppm Fe/FeSO4 (Fe), 3) Fermented synbiotic tempeh extract (St), and 4) not receive any interventions (Co). Rats were feed AIN-93 free Fe during intervention. Gut microbiota was measured with culture technique using selective media agar while hemoglobin concentration (Hb) was measured with photometric method before and after intervention. Results: There were significant increase in Hb after intervention in Na, Fe, and St, 6.85 to 11.80; 6.41 to 11.48 and 6.47 to 11.03 mg/dL, respectively (p <0.05). Co did not show increase in Hb (6.40 vs. 6.28 mg/dL). Lactobacilli increased in all groups while both of Bifidobacteria increased and E. coli decreased only in Na and St groups. Conclusion: Iron fortification of fermented synbiotic tempeh extract can increase hemoglobin concentrations in anemic animal, increase Lactobacilli and decrease E. coli. It can be an alternative solution to conduct iron fortification without deteriorate the gut microbiota.

Keywords: tempeh, synbiotic, iron, haemoglobin, gut microbiota

Procedia PDF Downloads 428
3 Preparation of Tempeh Spores Powder

Authors: Jaruwan Chutrtong, Tanakwan Bussabun

Abstract:

Study production of tempeh inoculums powder by freeze-drying comparison with dry at 50°C and the sun bask for developing efficient tempeh inoculums for tempeh producing. Rhizopus oligosporus in PDA slant cultures was incubated at 30°C for 3-5 days until spores and mycelium. Preparation spores suspension with sterilized water and then count the number of started spores. Fill spores suspension in Rice flour and soy flour, mixed with water (in the ratio 10: 7), which is steamed and sterilized at 121°C 15min. Incubated at room temperature for 4 days, count number of spores. Then take the progressive infection and full spore dough to dry at 50°C, sun bask, and lyophilize. Grind to powder. Then pack in plastic bags, stored at 5°C. To investigate quality of inoculums which use different methods, tempeh was fermented every 4 weeks for 24 weeks of the experiment. The result found that rice flour is not suitable to use as raw material in the production of powdered spores. Fungi can growth rarely. Less number of spores and requires more time than soy flour. For drying method, lyophilization is the least possible time. Samples from this method are very hard and very dark and harder to grind than other methods. Drying at 50°C takes longer time than lyophilization but can also set time use for drying. Character of the dry samples is hard solid and brown color, but can be grinded easier. The sun drying takes the longest time, can’t determine the exact time. When the spore powder was used to fermented tempeh immediately, product has similar characters as which use spores that was fresh prepared. The tempeh has normal quality. When spore powder stored at low temperature, tempeh from storage spore in weeks 4, 8 and 12 is still normal. Time spending in production was close to the production of fresh spores. After storage spores for 16 and 20 weeks, tempeh is still normal but growth and sporulation were take longer time than usual (about 6 hours). At 24 week storage, fungal growth is not good, made tempeh looks inferior to normal color, also smell and texture.

Keywords: freez drying, preparation, spores powder, tempeh

Procedia PDF Downloads 176
2 Tofu Flour as a Protein Sources

Authors: Dicky Eka Putra, S. P. Nadia Chairunissa, Lidia Paramita, Roza Hartati, Ice Yolanda Puri

Abstract:

Background: Soy bean and the products such as tofu, tempeh and soy milk are famous in the community. Moreover, another product is tofu flour which is not familiar in Indonesia yet and it is well known as Okara. There are massive differences of energy, protein and carbohydrate between them which is know as good for protein sources as well. Unfortunately, it is seldom used as food variety. Basically, it can be benefit in order to create many products for example cakes, snacks and some desserts. Aim: the study was in order to promote the benefit of tofu flour as school feeding of elementary school and baby porridge and also to compare the nutrient. Method: Soy pulp was filtered and steamed approximately 30 minutes. Then, it was put at a plate under sunrise or barked on the oven for 10 hours at 800C. When it have dried and milling and tofu flour is ready to be used. Result: Tofu flour could be used as substitute of flour and rice flour when people want to cook some foods. In addition, some references said that soy bean is good for a specific remedy for the proper functioning of the heart, liver, kidneys, stomach, and bowels, constipation, as a stimulant for the lungs, for eradication of poison from the system, improving the complexion by cleaning the skin of impurities, and stimulating the growth and appearance of the hair. Discussion: Comparing between soy bean, tofu and tofu flour which has difference amount of nutrients. For example energy 382 kcal, 79 kcal and 393 kcal respectively and also protein 30.2 kcal, 7.8 kcal, and 17.4 kcal. In addition, carbohydrate of soy pulp was high than soy bean and tofu (30.1 kcal). Finally, local should replace flour, rice and gelatin rice flour with tofu flour.

Keywords: tofu flour, protein, soy bean, school feeding

Procedia PDF Downloads 344
1 Cytotoxic Activity of Acetone and Ethanol Overripe Tempe Extracts against MCF-7 Breast Cancer Cells and Their Antioxidant Property

Authors: Dian Muzdalifah, Anastasia F. Devi, Zatil A. Athaillah, Linar Z. Udin

Abstract:

Tempe is a functional food prepared from soybeans through Rhizopus spp fermentation. It is well known as functional food, originated from Indonesia. Most studies on tempe functionalities refer to ripe (48 h fermentation) tempe and only limited studies discuss overripe tempe while longer fermentation time possibly increased tempe health benefit. Hence, the present study was performed to investigate the cytotoxic activity againts MCF-7 breast cancer cells and antioxidant property of tempe prepared from 0–156 h of fermentation. Tempe samples were dried and extracted with acetone and ethanol, respectively. Their extracts were used for subsequent analysis. The cytotoxic activity was assessed on MCF 7 breast cancer cells using Alamar Blue method. The antioxidant activity was determined by DPPH free radical scavenging assay. The results indicated that acetone extracts of 108 h tempe had a potent cytotoxic activity against MCF-7 breast cancer cells (IC50 = 2.54 ± 0,30 μg/mL). Ethanol extracts of 108 h tempe also showed the potency, but at slightly higher IC50 (5.20 ± 1.01 μg/mL). Both acetone and ethanol extracts of 108 and 120 h tempe showed high antioxidant activity expressed as percent inhibition with no significant difference. However, acetone extracts of 120 h tempe (81.31 ± 3.70 %) had better ability to inhibit oxidation reaction than that of ethanol extracts (75.77 ± 6.00 %). It can be concluded that the cytotoxic activity of tempe from 0–156 h of fermentation is positively correlated to their corresponding antioxidant property. Longer fermentation time, up to 108 h, increased the ability of tempe to inhibit the growth of MCF-7 breast cancer cells and oxidative reaction. But extended fermentation time, up to 156 h, tends to decrease its ability. Further studies are encouraged to identify the active components contained in each extract.

Keywords: antioxidant property, cytotoxic activity, extracts, overripe tempeh

Procedia PDF Downloads 245