Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1756

Search results for: parameter

1756 Efficient Tuning Parameter Selection by Cross-Validated Score in High Dimensional Models

Authors: Yoonsuh Jung


As DNA microarray data contain relatively small sample size compared to the number of genes, high dimensional models are often employed. In high dimensional models, the selection of tuning parameter (or, penalty parameter) is often one of the crucial parts of the modeling. Cross-validation is one of the most common methods for the tuning parameter selection, which selects a parameter value with the smallest cross-validated score. However, selecting a single value as an "optimal" value for the parameter can be very unstable due to the sampling variation since the sample sizes of microarray data are often small. Our approach is to choose multiple candidates of tuning parameter first, then average the candidates with different weights depending on their performance. The additional step of estimating the weights and averaging the candidates rarely increase the computational cost, while it can considerably improve the traditional cross-validation. We show that the selected value from the suggested methods often lead to stable parameter selection as well as improved detection of significant genetic variables compared to the tradition cross-validation via real data and simulated data sets.

Keywords: cross validation, parameter averaging, parameter selection, regularization parameter search

Procedia PDF Downloads 336
1755 Parameter Selection for Computationally Efficient Use of the Bfvrns Fully Homomorphic Encryption Scheme

Authors: Cavidan Yakupoglu, Kurt Rohloff


In this study, we aim to provide a novel parameter selection model for the BFVrns scheme, which is one of the prominent FHE schemes. Parameter selection in lattice-based FHE schemes is a practical challenges for experts or non-experts. Towards a solution to this problem, we introduce a hybrid principles-based approach that combines theoretical with experimental analyses. To begin, we use regression analysis to examine the parameters on the performance and security. The fact that the FHE parameters induce different behaviors on performance, security and Ciphertext Expansion Factor (CEF) that makes the process of parameter selection more challenging. To address this issue, We use a multi-objective optimization algorithm to select the optimum parameter set for performance, CEF and security at the same time. As a result of this optimization, we get an improved parameter set for better performance at a given security level by ensuring correctness and security against lattice attacks by providing at least 128-bit security. Our result enables average ~ 5x smaller CEF and mostly better performance in comparison to the parameter sets given in [1]. This approach can be considered a semiautomated parameter selection. These studies are conducted using the PALISADE homomorphic encryption library, which is a well-known HE library. The abstract goes here.

Keywords: lattice cryptography, fully homomorphic encryption, parameter selection, LWE, RLWE

Procedia PDF Downloads 17
1754 Application of a New Efficient Normal Parameter Reduction Algorithm of Soft Sets in Online Shopping

Authors: Xiuqin Ma, Hongwu Qin


A new efficient normal parameter reduction algorithm of soft set in decision making was proposed. However, up to the present, few documents have focused on real-life applications of this algorithm. Accordingly, we apply a New Efficient Normal Parameter Reduction algorithm into real-life datasets of online shopping, such as Blackberry Mobile Phone Dataset. Experimental results show that this algorithm is not only suitable but feasible for dealing with the online shopping.

Keywords: soft sets, parameter reduction, normal parameter reduction, online shopping

Procedia PDF Downloads 436
1753 Bleeding-Heart Altruists and Calculating Utilitarians: Applying Process Dissociation to Self-sacrificial Dilemmas

Authors: David Simpson, Kyle Nash


There is considerable evidence linking slow, deliberative reasoning (system 2) with utilitarian judgments in dilemmas involving the sacrificing of another person for the greater good (other-sacrificial dilemmas). Joshua Greene has argued, based on this kind of evidence, that system 2 drives utilitarian judgments. However, the evidence on whether system 2 is associated with utilitarian judgments in self-sacrificial dilemmas is more mixed. We employed process dissociation to measure a self-sacrificial utilitarian (SU) parameter and an other-sacrificial (OU) utilitarian parameter. It was initially predicted that contra Greene, the cognitive reflection test (CRT) would only be positively correlated with the OU parameter and not the SU parameter. However, Greene’s hypothesis was corroborated: the CRT positively correlated with both the OU parameter and the SU parameter. By contrast, the CRT did not correlate with the other two moral parameters we extracted (altruism and deontology).

Keywords: dual-process model, utilitarianism, altruism, reason, emotion, process dissociation

Procedia PDF Downloads 32
1752 Robust Stabilization of Rotational Motion of Underwater Robots against Parameter Uncertainties

Authors: Riku Hayashida, Tomoaki Hashimoto


This paper provides a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. Underwater robots are expected to be used for various work assignments. The large variety of applications of underwater robots motivates researchers to develop control systems and technologies for underwater robots. Several control methods have been proposed so far for the stabilization of nominal system model of underwater robots with no parameter uncertainty. Parameter uncertainties are considered to be obstacles in implementation of the such nominal control methods for underwater robots. The objective of this study is to establish a robust stabilization method for rotational motion of underwater robots against parameter uncertainties. The effectiveness of the proposed method is verified by numerical simulations.

Keywords: robust control, stabilization method, underwater robot, parameter uncertainty

Procedia PDF Downloads 72
1751 Method of Parameter Calibration for Error Term in Stochastic User Equilibrium Traffic Assignment Model

Authors: Xiang Zhang, David Rey, S. Travis Waller


Stochastic User Equilibrium (SUE) model is a widely used traffic assignment model in transportation planning, which is regarded more advanced than Deterministic User Equilibrium (DUE) model. However, a problem exists that the performance of the SUE model depends on its error term parameter. The objective of this paper is to propose a systematic method of determining the appropriate error term parameter value for the SUE model. First, the significance of the parameter is explored through a numerical example. Second, the parameter calibration method is developed based on the Logit-based route choice model. The calibration process is realized through multiple nonlinear regression, using sequential quadratic programming combined with least square method. Finally, case analysis is conducted to demonstrate the application of the calibration process and validate the better performance of the SUE model calibrated by the proposed method compared to the SUE models under other parameter values and the DUE model.

Keywords: parameter calibration, sequential quadratic programming, stochastic user equilibrium, traffic assignment, transportation planning

Procedia PDF Downloads 212
1750 Vibration of a Beam on an Elastic Foundation Using the Variational Iteration Method

Authors: Desmond Adair, Kairat Ismailov, Martin Jaeger


Modelling of Timoshenko beams on elastic foundations has been widely used in the analysis of buildings, geotechnical problems, and, railway and aerospace structures. For the elastic foundation, the most widely used models are one-parameter mechanical models or two-parameter models to include continuity and cohesion of typical foundations, with the two-parameter usually considered the better of the two. Knowledge of free vibration characteristics of beams on an elastic foundation is considered necessary for optimal design solutions in many engineering applications, and in this work, the efficient and accurate variational iteration method is developed and used to calculate natural frequencies of a Timoshenko beam on a two-parameter foundation. The variational iteration method is a technique capable of dealing with some linear and non-linear problems in an easy and efficient way. The calculations are compared with those using a finite-element method and other analytical solutions, and it is shown that the results are accurate and are obtained efficiently. It is found that the effect of the presence of the two-parameter foundation is to increase the beam’s natural frequencies and this is thought to be because of the shear-layer stiffness, which has an effect on the elastic stiffness. By setting the two-parameter model’s stiffness parameter to zero, it is possible to obtain a one-parameter foundation model, and so, comparison between the two foundation models is also made.

Keywords: Timoshenko beam, variational iteration method, two-parameter elastic foundation model

Procedia PDF Downloads 112
1749 The Hansen Solubility Parameters of Some Lignosulfonates

Authors: Bernt O. Myrvold


Lignosulfonates (LS) find widespread use as dispersants, binders, anti-oxidants, and fillers. In most of these applications LS is used in formulation together with a number of other components. To better understand the interactions between LS and water and possibly other components in a formulation, the Hansen solubility parameters have been determined for some LS. The Hansen solubility parameter splits the total solubility parameter into three components, the dispersive, polar and hydrogen bonding part. The Hansen solubility parameter was determined by comparing the solubility in a number of solvents and solvent mixtures. We have found clear differences in the solubility parameters, with softwood LS being closer to water than hardwood LS.

Keywords: Hansen solubility parameter, lignosulfonate (LS), solubility, solvent

Procedia PDF Downloads 479
1748 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora


The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems

Procedia PDF Downloads 137
1747 Optimization of a Cone Loudspeaker Parameter of Design Parameters by Analysis of a Narrow Acoustic Sound Pathway

Authors: Yue Hu, Xilu Zhao, Takao Yamaguchi, Manabu Sasajima, Yoshio Koike, Akira Hara


This study tried optimization of design parameter of a cone loudspeaker unit as an example of the high flexibility of the products design. We developed an acoustic analysis software program that considers the impact of damping caused by air viscosity. In sound reproduction, it is difficult to each design the parameter of the loudspeaker. To overcome the limitation of the design problem in practice, this paper proposes a new an acoustic analysis algorithm to optimize design the parameter of the loudspeaker. The material character of cone paper and the loudspeaker edge was the design parameter, and the vibration displacement of the cone paper was the objective function. The results of the analysis were compared with the predicted value. They had high accuracy to the predicted value. These results suggest that, though the parameter design is difficult by experience and intuition, it can be performed comparatively easily using the optimization design by the developed acoustic analysis software.

Keywords: air viscosity, loudspeaker, cone paper, edge, optimization

Procedia PDF Downloads 312
1746 Confidence Intervals for Quantiles in the Two-Parameter Exponential Distributions with Type II Censored Data

Authors: Ayman Baklizi


Based on type II censored data, we consider interval estimation of the quantiles of the two-parameter exponential distribution and the difference between the quantiles of two independent two-parameter exponential distributions. We derive asymptotic intervals, Bayesian, as well as intervals based on the generalized pivot variable. We also include some bootstrap intervals in our comparisons. The performance of these intervals is investigated in terms of their coverage probabilities and expected lengths.

Keywords: asymptotic intervals, Bayes intervals, bootstrap, generalized pivot variables, two-parameter exponential distribution, quantiles

Procedia PDF Downloads 332
1745 Stochastic Variation of the Hubble's Parameter Using Ornstein-Uhlenbeck Process

Authors: Mary Chriselda A


This paper deals with the fact that the Hubble's parameter is not constant and tends to vary stochastically with time. This premise has been proven by converting it to a stochastic differential equation using the Ornstein-Uhlenbeck process. The formulated stochastic differential equation is further solved analytically using the Euler and the Kolmogorov Forward equations, thereby obtaining the probability density function using the Fourier transformation, thereby proving that the Hubble's parameter varies stochastically. This is further corroborated by simulating the observations using Python and R-software for validation of the premise postulated. We can further draw conclusion that the randomness in forces affecting the white noise can eventually affect the Hubble’s Parameter leading to scale invariance and thereby causing stochastic fluctuations in the density and the rate of expansion of the Universe.

Keywords: Chapman Kolmogorov forward differential equations, fourier transformation, hubble's parameter, ornstein-uhlenbeck process , stochastic differential equations

Procedia PDF Downloads 66
1744 An Improved Parameter Identification Method for Three Phase Induction Motor

Authors: Liang Zhao, Chong-quan Zhong


In order to improve the control performance of vector inverter, an improved parameter identification solution for induction motor is proposed in this paper. Dc or AC voltage is applied to the induction motor using the SVPWM through the inverter. Then stator resistance, stator leakage inductance, rotor resistance, rotor leakage inductance and mutual inductance are obtained according to the signal response. The discrete Fourier transform (DFT) is used to deal with the noise and harmonic. The impact on parameter identification caused by delays in the inverter switch tube, tube voltage drop and dead-time is avoided by effective compensation measures. Finally, the parameter identification experiment is conducted based on the vector inverter which using TMS320F2808 DSP as the core processor and results show that the strategy is verified.

Keywords: vector inverter, parameter identification, SVPWM; DFT, dead-time compensation

Procedia PDF Downloads 375
1743 Effect of Velocity Slip on Two Phase Flow in an Eccentric Annular Region

Authors: Umadevi B., Dinesh P. A., Indira. R., Vinay C. V.


A mathematical model is developed to study the simultaneous effects of particle drag and slip parameter on the velocity as well as rate of flow in an annular cross sectional region bounded by two eccentric cylinders. In physiological flows this phenomena can be observed in an eccentric catheterized artery with inner cylinder wall is impermeable and outer cylinder wall is permeable. Blood is a heterogeneous fluid having liquid phase consisting of plasma in which a solid phase of suspended cells and proteins. Arterial wall gets damaged due to aging and lipid molecules get deposited between damaged tissue cells. Blood flow increases towards the damaged tissues in the artery. In this investigation blood is modeled as two phase fluid as one is a fluid phase and the other is particulate phase. The velocity of the fluid phase and rate of flow are obtained by transforming eccentric annulus to concentric annulus with the conformal mapping. The formulated governing equations are analytically solved for the velocity and rate of flow. The numerical investigations are carried out by varying eccentricity parameter, slip parameter and drag parameter. Enhancement of slip parameter signifies loss of fluid then the velocity and rate of flow will be decreased. As particulate drag parameter increases then the velocity as well as rate flow decreases. Eccentricity facilitates transport of more fluid then the velocity and rate of flow increases.

Keywords: catheter, slip parameter, drag parameter, eccentricity

Procedia PDF Downloads 433
1742 Application of the Discrete Rationalized Haar Transform to Distributed Parameter System

Authors: Joon-Hoon Park


In this paper the rationalized Haar transform is applied for distributed parameter system identification and estimation. A distributed parameter system is a dynamical and mathematical model described by a partial differential equation. And system identification concerns the problem of determining mathematical models from observed data. The Haar function has some disadvantages of calculation because it contains irrational numbers, for these reasons the rationalized Haar function that has only rational numbers. The algorithm adopted in this paper is based on the transform and operational matrix of the rationalized Haar function. This approach provides more convenient and efficient computational results.

Keywords: distributed parameter system, rationalized Haar transform, operational matrix, system identification

Procedia PDF Downloads 427
1741 Calculating Shear Strength Parameter from Simple Shear Apparatus

Authors: G. Nitesh


The shear strength of soils is a crucial parameter instability analysis. Therefore, it is important to determine reliable values for the accuracy of stability analysis. Direct shear tests are mostly performed to determine the shear strength of cohesionless soils. The major limitation of the direct shear test is that the failure takes place through the pre-defined failure plane but the failure is not along pre-defined plane and is along the weakest plane in actual shearing mechanism that goes on in the field. This leads to overestimating the strength parameter; hence, a new apparatus called simple shear is developed and used in this study to determine the shear strength parameter that simulates the field conditions.

Keywords: direct shear, simple shear, angle of shear resistance, cohesionless soils

Procedia PDF Downloads 332
1740 Effect of Birks Constant and Defocusing Parameter on Triple-to-Double Coincidence Ratio Parameter in Monte Carlo Simulation-GEANT4

Authors: Farmesk Abubaker, Francesco Tortorici, Marco Capogni, Concetta Sutera, Vincenzo Bellini


This project concerns with the detection efficiency of the portable triple-to-double coincidence ratio (TDCR) at the National Institute of Metrology of Ionizing Radiation (INMRI-ENEA) which allows direct activity measurement and radionuclide standardization for pure-beta emitter or pure electron capture radionuclides. The dependency of the simulated detection efficiency of the TDCR, by using Monte Carlo simulation Geant4 code, on the Birks factor (kB) and defocusing parameter has been examined especially for low energy beta-emitter radionuclides such as 3H and 14C, for which this dependency is relevant. The results achieved in this analysis can be used for selecting the best kB factor and the defocusing parameter for computing theoretical TDCR parameter value. The theoretical results were compared with the available ones, measured by the ENEA TDCR portable detector, for some pure-beta emitter radionuclides. This analysis allowed to improve the knowledge of the characteristics of the ENEA TDCR detector that can be used as a traveling instrument for in-situ measurements with particular benefits in many applications in the field of nuclear medicine and in the nuclear energy industry.

Keywords: Birks constant, defocusing parameter, GEANT4 code, TDCR parameter

Procedia PDF Downloads 65
1739 Efficient Signal Detection Using QRD-M Based on Channel Condition in MIMO-OFDM System

Authors: Jae-Jeong Kim, Ki-Ro Kim, Hyoung-Kyu Song


In this paper, we propose an efficient signal detector that switches M parameter of QRD-M detection scheme is proposed for MIMO-OFDM system. The proposed detection scheme calculates the threshold by 1-norm condition number and then switches M parameter of QRD-M detection scheme according to channel information. If channel condition is bad, the parameter M is set to high value to increase the accuracy of detection. If channel condition is good, the parameter M is set to low value to reduce complexity of detection. Therefore, the proposed detection scheme has better trade off between BER performance and complexity than the conventional detection scheme. The simulation result shows that the complexity of proposed detection scheme is lower than QRD-M detection scheme with similar BER performance.

Keywords: MIMO-OFDM, QRD-M, channel condition, BER

Procedia PDF Downloads 259
1738 MHD Stagnation Point Flow towards a Shrinking Sheet with Suction in an Upper-Convected Maxwell (UCM) Fluid

Authors: K. Jafar, R. Nazar, A. Ishak, I. Pop


The present analysis considers the steady stagnation point flow and heat transfer towards a permeable sheet in an upper-convected Maxwell (UCM) electrically conducting fluid, with a constant magnetic field applied in the transverse direction to flow, and a local heat generation within the boundary layer with a heat generation rate proportional to (T-T_inf)^p. Using a similarity transformation, the governing system of partial differential equations is first transformed into a system of ordinary differential equations, which is then solved numerically using a finite-difference scheme known as the Keller-box method. Numerical results are obtained for the flow and thermal fields for various values of the shrinking/stretching parameter lambda, the magnetic parameter M, the elastic parameter K, the Prandtl number Pr, the suction parameter s, the heat generation parameter Q, and the exponent p. The results indicate the existence of dual solutions for the shrinking sheet up to a critical value lambda_c whose value depends on the value of M, K, and s. In the presence of internal heat absorbtion (Q<0), the surface heat transfer rate decreases with increasing p but increases with parameter Q and s, when the sheet is either stretched or shrunk.

Keywords: magnetohydrodynamic (MHD), boundary layer flow, UCM fluid, stagnation point, shrinking sheet

Procedia PDF Downloads 260
1737 A New Conjugate Gradient Method with Guaranteed Descent

Authors: B. Sellami, M. Belloufi


Conjugate gradient methods are an important class of methods for unconstrained optimization, especially for large-scale problems. Recently, they have been much studied. In this paper, we propose a new two-parameter family of conjugate gradient methods for unconstrained optimization. The two-parameter family of methods not only includes the already existing three practical nonlinear conjugate gradient methods, but also has other family of conjugate gradient methods as subfamily. The two-parameter family of methods with the Wolfe line search is shown to ensure the descent property of each search direction. Some general convergence results are also established for the two-parameter family of methods. The numerical results show that this method is efficient for the given test problems. In addition, the methods related to this family are uniformly discussed.

Keywords: unconstrained optimization, conjugate gradient method, line search, global convergence

Procedia PDF Downloads 357
1736 Parameter Estimation of Induction Motors by PSO Algorithm

Authors: A. Mohammadi, S. Asghari, M. Aien, M. Rashidinejad


After emergent of alternative current networks and their popularity, asynchronous motors became more widespread than other kinds of industrial motors. In order to control and run these motors efficiently, an accurate estimation of motor parameters is needed. There are different methods to obtain these parameters such as rotor locked test, no load test, DC test, analytical methods, and so on. The most common drawback of these methods is their inaccuracy in estimation of some motor parameters. In order to remove this concern, a novel method for parameter estimation of induction motors using particle swarm optimization (PSO) algorithm is proposed. In the proposed method, transient state of motor is used for parameter estimation. Comparison of the simulation results purtuined to the PSO algorithm with other available methods justifies the effectiveness of the proposed method.

Keywords: induction motor, motor parameter estimation, PSO algorithm, analytical method

Procedia PDF Downloads 524
1735 Parameter Estimation via Metamodeling

Authors: Sergio Haram Sarmiento, Arcady Ponosov


Based on appropriate multivariate statistical methodology, we suggest a generic framework for efficient parameter estimation for ordinary differential equations and the corresponding nonlinear models. In this framework classical linear regression strategies is refined into a nonlinear regression by a locally linear modelling technique (known as metamodelling). The approach identifies those latent variables of the given model that accumulate most information about it among all approximations of the same dimension. The method is applied to several benchmark problems, in particular, to the so-called ”power-law systems”, being non-linear differential equations typically used in Biochemical System Theory.

Keywords: principal component analysis, generalized law of mass action, parameter estimation, metamodels

Procedia PDF Downloads 418
1734 New Estimation in Autoregressive Models with Exponential White Noise by Using Reversible Jump MCMC Algorithm

Authors: Suparman Suparman


A white noise in autoregressive (AR) model is often assumed to be normally distributed. In application, the white noise usually do not follows a normal distribution. This paper aims to estimate a parameter of AR model that has a exponential white noise. A Bayesian method is adopted. A prior distribution of the parameter of AR model is selected and then this prior distribution is combined with a likelihood function of data to get a posterior distribution. Based on this posterior distribution, a Bayesian estimator for the parameter of AR model is estimated. Because the order of AR model is considered a parameter, this Bayesian estimator cannot be explicitly calculated. To resolve this problem, a method of reversible jump Markov Chain Monte Carlo (MCMC) is adopted. A result is a estimation of the parameter AR model can be simultaneously calculated.

Keywords: autoregressive (AR) model, exponential white Noise, bayesian, reversible jump Markov Chain Monte Carlo (MCMC)

Procedia PDF Downloads 271
1733 Parameter Estimation in Dynamical Systems Based on Latent Variables

Authors: Arcady Ponosov


A novel mathematical approach is suggested, which facilitates a compressed representation and efficient validation of parameter-rich ordinary differential equation models describing the dynamics of complex, especially biology-related, systems and which is based on identification of the system's latent variables. In particular, an efficient parameter estimation method for the compressed non-linear dynamical systems is developed. The method is applied to the so-called 'power-law systems' being non-linear differential equations typically used in Biochemical System Theory.

Keywords: generalized law of mass action, metamodels, principal components, synergetic systems

Procedia PDF Downloads 270
1732 Parameter Interactions in the Cumulative Prospect Theory: Fitting the Binary Choice Experiment Data

Authors: Elzbieta Babula, Juhyun Park


Tversky and Kahneman’s cumulative prospect theory assumes symmetric probability cumulation with regard to the reference point within decision weights. Theoretically, this model should be invariant under the change of the direction of probability cumulation. In the present study, this phenomenon is being investigated by creating a reference model that allows verifying the parameter interactions in the cumulative prospect theory specifications. The simultaneous parametric fitting of utility and weighting functions is applied to binary choice data from the experiment. The results show that the flexibility of the probability weighting function is a crucial characteristic allowing to prevent parameter interactions while estimating cumulative prospect theory.

Keywords: binary choice experiment, cumulative prospect theory, decision weights, parameter interactions

Procedia PDF Downloads 121
1731 The Effect of Parameter Controls for Manure Composting in Waste Recycling Process

Authors: Junyoung Kim, Shangwha Cha, Soomee Kang, Jake S. Byun


This study shows the effect of parameter controls for livestock manure composting in waste recycling process for the development of a new design of a microorganism-oriented- composting system. Based on the preliminary studies, only the temperature control by changing mechanical mixing can reduce microorganisms’ biodegradability from 3 to 6 months to 15 days, saving the consumption of energy and manual labor. The final degree of fermentation in just 5 days of composting increased to ‘3’ comparing the compost standard level ‘4’ in Korea, others standards were all satisfied. This result shows that the controlling the optimum microorganism parameter using an ICT device connected to mixing condition can increase the effectiveness of fermentation system and reduce odor to nearly zero, and lead to upgrade the composting method than the conventional

Keywords: manure composting, odor removal, parameter control, waste recycling

Procedia PDF Downloads 231
1730 Effect of Radiation on MHD Mixed Convection Stagnation Point Flow towards a Vertical Plate in a Porous Medium with Convective Boundary Condition

Authors: H. Niranjan, S. Sivasankaran, Zailan Siri


This study investigates mixed convection heat transfer about a thin vertical plate in the presence of magnetohydrodynamic (MHD) and heat transfer effects in the porous medium. The fluid is assumed to be steady, laminar, incompressible and in two-dimensional flow. The nonlinear coupled parabolic partial differential equations governing the flow are transformed into the non-similar boundary layer equations, which are then solved numerically using the shooting method. The effects of the conjugate heat transfer parameter, the porous medium parameter, the permeability parameter, the mixed convection parameter, the magnetic parameter, and the thermal radiation on the velocity and temperature profiles as well as on the local skin friction and local heat transfer are presented and analyzed. The validity of the methodology and analysis is checked by comparing the results obtained for some specific cases with those available in the literature. The various parameters on local skin friction, heat and mass transfer rates are presented in tabular form.

Keywords: MHD, porous medium, soret/dufour, stagnation-point

Procedia PDF Downloads 244
1729 An Estimating Parameter of the Mean in Normal Distribution by Maximum Likelihood, Bayes, and Markov Chain Monte Carlo Methods

Authors: Autcha Araveeporn


This paper is to compare the parameter estimation of the mean in normal distribution by Maximum Likelihood (ML), Bayes, and Markov Chain Monte Carlo (MCMC) methods. The ML estimator is estimated by the average of data, the Bayes method is considered from the prior distribution to estimate Bayes estimator, and MCMC estimator is approximated by Gibbs sampling from posterior distribution. These methods are also to estimate a parameter then the hypothesis testing is used to check a robustness of the estimators. Data are simulated from normal distribution with the true parameter of mean 2, and variance 4, 9, and 16 when the sample sizes is set as 10, 20, 30, and 50. From the results, it can be seen that the estimation of MLE, and MCMC are perceivably different from the true parameter when the sample size is 10 and 20 with variance 16. Furthermore, the Bayes estimator is estimated from the prior distribution when mean is 1, and variance is 12 which showed the significant difference in mean with variance 9 at the sample size 10 and 20.

Keywords: Bayes method, Markov chain Monte Carlo method, maximum likelihood method, normal distribution

Procedia PDF Downloads 278
1728 Molecular Dynamics Simulation of Free Vibration of Graphene Sheets

Authors: Seyyed Feisal Asbaghian Namin, Reza Pilafkan, Mahmood Kaffash Irzarahimi


TThis paper considers vibration of single-layered graphene sheets using molecular dynamics (MD) and nonlocal elasticity theory. Based on the MD simulations, Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS), an open source software, is used to obtain fundamental frequencies. On the other hand, governing equations are derived using nonlocal elasticity and first order shear deformation theory (FSDT) and solved using generalized differential quadrature method (GDQ). The small-scale effect is applied in governing equations of motion by nonlocal parameter. The effect of different side lengths, boundary conditions and nonlocal parameter are inspected for aforementioned methods. Results are obtained from MD simulations is compared with those of the nonlocal elasticity theory to calculate appropriate values for the nonlocal parameter. The nonlocal parameter value is suggested for graphene sheets with various boundary conditions. Furthermore, it is shown that the nonlocal elasticity approach using classical plate theory (CLPT) assumptions overestimates the natural frequencies.

Keywords: graphene sheets, molecular dynamics simulations, fundamental frequencies, nonlocal elasticity theory, nonlocal parameter

Procedia PDF Downloads 238
1727 Estimation of Stress-Strength Parameter for Burr Type XII Distribution Based on Progressive Type-II Censoring

Authors: A. M. Abd-Elfattah, M. H. Abu-Moussa


In this paper, the estimation of stress-strength parameter R = P(Y < X) is considered when X; Y the strength and stress respectively are two independent random variables of Burr Type XII distribution. The samples taken for X and Y are progressively censoring of type II. The maximum likelihood estimator (MLE) of R is obtained when the common parameter is unknown. But when the common parameter is known the MLE, uniformly minimum variance unbiased estimator (UMVUE) and the Bayes estimator of R = P(Y < X) are obtained. The exact con dence interval of R based on MLE is obtained. The performance of the proposed estimators is compared using the computer simulation.

Keywords: Burr Type XII distribution, progressive type-II censoring, stress-strength model, unbiased estimator, maximum-likelihood estimator, uniformly minimum variance unbiased estimator, confidence intervals, Bayes estimator

Procedia PDF Downloads 368