Search results for: graphite oxide
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1592

Search results for: graphite oxide

632 Synthesis and Characterization of Doped Li₄Ti₅O₁₂/TiO2 as Potential Anode Materials for Li-Ion Batteries

Authors: S. Merazga, F. Boudeffar, A. Bouaoua, A. Cheriet, M. Berouaken, M. Mebarki, K. Ayouz, N. Gabouze

Abstract:

Several anode materials as transition metal oxides (Fe3O4, SnO2 a, SnO2, LiCoO2, and Li₄Ti₅O₁₂) has been used. Although titanium oxide has attracted great attention as a; superior electrode for Li-ion batteries due tohis excellent characteristic such as: high capacity, low cost and non-toxicity. In this work, the Synthesis and Characterization of Si Doped Li₄Ti₅O₁₂ with hydrothermal Method was electrochemically evaluated. The SEM images shows that the morphology of LTO powders sizes in the range 70nm.The electrochemical properties of synthesizer nanopowders are investigated for use as an anode active material for lithium-ion batteries by galvanostatic techniques in Li-half cells, obtaining reversible discharge capacity of 173.8 mAh/g at 0.1C even upon 100 cycles.Though the doped powders exhibit an upgrade in The electrical conductivity , This is suitable for use as a high-power cathode material for lithium-ion batteries.

Keywords: LTO, li-ion, battteries, anode

Procedia PDF Downloads 77
631 Electrical Degradation of GaN-based p-channel HFETs Under Dynamic Electrical Stress

Authors: Xuerui Niu, Bolin Wang, Xinchuang Zhang, Xiaohua Ma, Bin Hou, Ling Yang

Abstract:

The application of discrete GaN-based power switches requires the collaboration of silicon-based peripheral circuit structures. However, the packages and interconnection between the Si and GaN devices can introduce parasitic effects to the circuit, which has great impacts on GaN power transistors. GaN-based monolithic power integration technology is an emerging solution which can improve the stability of circuits and allow the GaN-based devices to achieve more functions. Complementary logic circuits consisting of GaN-based E-mode p-channel heterostructure field-effect transistors (p-HFETs) and E-mode n-channel HEMTs can be served as the gate drivers. E-mode p-HFETs with recessed gate have attracted increasing interest because of the low leakage current and large gate swing. However, they suffer from a poor interface between the gate dielectric and polarized nitride layers. The reliability of p-HFETs is analyzed and discussed in this work. In circuit applications, the inverter is always operated with dynamic gate voltage (VGS) rather than a constant VGS. Therefore, dynamic electrical stress has been simulated to resemble the operation conditions for E-mode p-HFETs. The dynamic electrical stress condition is as follows. VGS is a square waveform switching from -5 V to 0 V, VDS is fixed, and the source grounded. The frequency of the square waveform is 100kHz with the rising/falling time of 100 ns and duty ratio of 50%. The effective stress time is 1000s. A number of stress tests are carried out. The stress was briefly interrupted to measure the linear IDS-VGS, saturation IDS-VGS, As VGS switches from -5 V to 0 V and VDS = 0 V, devices are under negative-bias-instability (NBI) condition. Holes are trapped at the interface of oxide layer and GaN channel layer, which results in the reduction of VTH. The negative shift of VTH is serious at the first 10s and then changes slightly with the following stress time. However, different phenomenon is observed when VDS reduces to -5V. VTH shifts negatively during stress condition, and the variation in VTH increases with time, which is different from that when VDS is 0V. Two mechanisms exists in this condition. On the one hand, the electric field in the gate region is influenced by the drain voltage, so that the trapping behavior of holes in the gate region changes. The impact of the gate voltage is weakened. On the other hand, large drain voltage can induce the hot holes generation and lead to serious hot carrier stress (HCS) degradation with time. The poor-quality interface between the oxide layer and GaN channel layer at the gate region makes a major contribution to the high-density interface traps, which will greatly influence the reliability of devices. These results emphasize that the improved etching and pretreatment processes needs to be developed so that high-performance GaN complementary logics with enhanced stability can be achieved.

Keywords: GaN-based E-mode p-HFETs, dynamic electric stress, threshold voltage, monolithic power integration technology

Procedia PDF Downloads 93
630 Microwave Assisted Growth of Varied Phases and Morphologies of Vanadium Oxides Nanostructures: Structural and Optoelectronic Properties

Authors: Issam Derkaoui, Mohammed Khenfouch, Bakang M. Mothudi, Malik Maaza, Izeddine Zorkani, Anouar Jorio

Abstract:

Transition metal oxides nanoparticles with different morphologies have attracted a lot of attention recently owning to their distinctive geometries, and demonstrated promising electrical properties for various applications. In this paper, we discuss the time and annealing effects on the structural and electrical properties of vanadium oxides nanoparticles (VO-NPs) prepared by microwave method. In this sense, transmission electron microscopy (TEM), X-ray diffraction (XRD), Raman Spectroscopy, Ultraviolet-visible absorbance spectra (Uv-Vis) and electrical conductivity were investigated. Hence, the annealing state and the time are two crucial parameters for the improvement of the optoelectronic properties. The use of these nanostructures is promising way for the development of technological applications especially for energy storage devices.

Keywords: Vanadium oxide, Microwave, Electrical conductivity, Optoelectronic properties

Procedia PDF Downloads 195
629 Protective Effect of Hesperidin against Cyclophosphamide Hepatotoxicity in Rats

Authors: Amr A. Fouad, Waleed H. Albuali, Iyad Jresat

Abstract:

The protective effect of hesperidin was investigated in rats exposed to liver injury induced by a single intraperitoneal injection of cyclophosphamide (CYP) at a dose of 150 mg kg-1. Hesperidin treatment (100 mg kg-1/day, orally) was applied for seven days, starting five days before CYP administration. Hesperidin significantly decreased the CYP-induced elevations of serum alanine aminotransferase, and hepatic malondialdehyde and myeloperoxidase activity, significantly prevented the depletion of hepatic glutathione peroxidase activity resulted from CYP administration. Also, hesperidin ameliorated the CYP-induced liver tissue injury observed by histopathological examination. In addition, hesperidin decreased the CYP-induced expression of inducible nitric oxide synthase, tumor necrosis factor-α, cyclooxygenase-2, Fas ligand, and caspase-9 in liver tissue. It was concluded that hesperidin may represent a potential candidate to protect against CYP-induced hepatotoxicity.

Keywords: hesperidin, cyclophosphamide, liver, rats

Procedia PDF Downloads 319
628 Structure and Morphology of Electrodeposited Nickel Nanowires at an Electrode Distance of 20mm

Authors: Mahendran Samykano, Ram Mohan, Shyam Aravamudhan

Abstract:

The objective of this work is to study the effect of two key factors-external magnetic field and applied current density during the template-based electrodeposition of nickel nanowires using an electrode distance of 20 mm. Morphology, length, crystallite size, and crystallographic characterization of the grown nickel nanowires at an electrode distance of 20mm are presented. For this electrode distance of 20 mm, these two key electrodeposition factors when coupled was found to reduce crystallite size with a higher growth length and preferred orientation of Ni crystals. These observed changes can be inferred to be due to coupled interaction forces induced by the intensity of applied electric field (current density) and external magnetic field known as magnetohydrodynamic (MHD) effect during the electrodeposition process.

Keywords: anodic alumina oxide, electrodeposition, nanowires, nickel

Procedia PDF Downloads 279
627 Synergistic Effect between Titanium Oxide and Silver Nanoparticles in Polymeric Binary Systems

Authors: Raquel C. A. G. Mota, Livia R. Menezes, Emerson O. da Silva

Abstract:

Both silver nanoparticles and titanium dioxide have been extensively used in tissue engineering since they’ve been approved by the Food and Drug Administration (FDA), and present a bactericide effect when added to a polymeric matrix. In this work, the focus is on fabricating binary systems with both nanoparticles so that the synergistic effect can be investigated. The systems were tested by Nuclear Magnetic Resonance (NMR), Thermogravimetric Analysis (TGA), Fourier-Transformed Infrared (FTIR), and Differential Scanning Calorimetry (DSC), and X-ray Diffraction (XRD), and had both their bioactivity and bactericide effect tested. The binary systems presented different properties than the individual systems, enhancing both the thermal and biological properties as was to be expected. The crystallinity was also affected, as indicated by the finding of the DSC and XDR techniques, and the NMR showed a good dispersion of both nanoparticles in the polymer matrix. These findings indicate the potential of combining TiO₂ and silver nanoparticles in biomedicine.

Keywords: metallic nanoparticles, nanotechnology, polymer nanocomposites, polymer science

Procedia PDF Downloads 134
626 The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell

Authors: A. O. Boyo, A. T. Akinwunmi

Abstract:

The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye.

Keywords: zinc oxide, dye-sensitized solar cell, terminalia catappa L., TiO2

Procedia PDF Downloads 404
625 A System Dynamics Approach for Assessing Policy Impacts on Closed-Loop Supply Chain Efficiency: A Case Study on Electric Vehicle Batteries

Authors: Guannan Ren, Thomas Mazzuchi, Shahram Sarkani

Abstract:

Electric vehicle battery recycling has emerged as a critical process in the transition toward sustainable transportation. As the demand for electric vehicles continues to rise, so does the need to address the end-of-life management of their batteries. Electric vehicle battery recycling benefits resource recovery and supply chain stability by reclaiming valuable metals like lithium, cobalt, nickel, and graphite. The reclaimed materials can then be reintroduced into the battery manufacturing process, reducing the reliance on raw material extraction and the environmental impacts of waste. Current battery recycling rates are insufficient to meet the growing demands for raw materials. While significant progress has been made in electric vehicle battery recycling, many areas can still improve. Standardization of battery designs, increased collection and recycling infrastructures, and improved efficiency in recycling processes are essential for scaling up recycling efforts and maximizing material recovery. This work delves into key factors, such as regulatory frameworks, economic incentives, and technological processes, that influence the cost-effectiveness and efficiency of battery recycling systems. A system dynamics model that considers variables such as battery production rates, demand and price fluctuations, recycling infrastructure capacity, and the effectiveness of recycling processes is created to study how these variables are interconnected, forming feedback loops that affect the overall supply chain efficiency. Such a model can also help simulate the effects of stricter regulations on battery disposal, incentives for recycling, or investments in research and development for battery designs and advanced recycling technologies. By using the developed model, policymakers, industry stakeholders, and researchers may gain insights into the effects of applying different policies or process updates on electric vehicle battery recycling rates.

Keywords: environmental engineering, modeling and simulation, circular economy, sustainability, transportation science, policy

Procedia PDF Downloads 92
624 Mechanical and Tribological Performances of (Nb: H-D: a-C) Thin Films for Biomedical Applications

Authors: Sara Khamseh, Kambiz Javanruee, Hamid Khorsand

Abstract:

Plenty of metallic materials are used for biomedical applications like hip joints and screws. Besides, it is reported that metal platforms such as stainless steel show significant deterioration because of wear and friction. The surface of metal substrates has been coated with a variety of multicomponent coatings to prevail these problems. The carbon-based multicomponent coatings such as metal-added amorphous carbon and diamond coatings are crucially important because of their remarkable tribological performance and chemical stability. In the current study, H-D contained Nb: (a-C) multicomponent coatings (H-D: hexagonal diamond, a-C: amorphous carbon) coated on A 304 steel substrates using an unbalanced magnetron (UBM) sputtering system. The effects of Nb and H-D content and ID/IG ratio on microstructure, mechanical and tribological characteristics of (Nb: H-D: a-C) composite coatings were investigated. The results of Raman spectroscopy represented that a-C phase with a Graphite-like structure (GLC with high value of sp2 carbon bonding) is formed, and its domain size increased with increasing Nb content of the coatings. Moreover, the Nb played a catalyst for the formation of the H-D phase. The nanoindentation hardness value of the coatings ranged between ~17 to ~35 GPa and (Nb: H-D: a-C) composite coatings with more H-D content represented higher hardness and plasticity index. It seems that the existence of extra-hard H-D particles straightly increased hardness. The tribological performance of the coatings was evaluated using the pin-on-disc method under the wet environment of SBF (Simulated Body Fluid). The COF value of the (Nb: H-D: a-C) coatings decreased with an increasing ID/IG ratio. The lower coefficient of friction is a result of the lamelliform array of graphitic domains. Also, the wear rate of the coatings decreased with increasing H-D content of the coatings. Based on the literature, a-C coatings with high hardness and H3/E2 ratio represent lower wear rates and better tribological performance. According to the nanoindentation analysis, hardness and H3/E2 ratio of (Nb: H-D: a-C) multicomponent coatings increased with increasing H-D content, which in turn decreased the wear rate of the coatings. The mechanical and tribological potency of (Nb: H-D: a-C) composite coatings on A 304 steel substrates paved the way for the development of innovative advanced coatings to ameliorate the performance of A 304 steel for biomedical applications.

Keywords: COF, mechanical properties, (Nb: H-D: a-C) coatings, wear rate

Procedia PDF Downloads 103
623 Effects of Arcing in Air on the Microstructure, Morphology and Photoelectric Work Function of Ag-Ni (60/40) Contact Materials

Authors: Mohamed Akbi, Aissa Bouchou

Abstract:

The present work aims to throw light on the effects of arcing in air on the surface state of contact pastilles made of silver-nickel Ag-Ni (60/40). Also, the photoelectric emission from these electrical contacts has been investigated in the spectral range of 196-256 nm. In order to study the effects of arcing on the EWF, the metallic samples were subjected to electrical arcs in air, at atmospheric pressure and room temperature, after that, they have been introduced into the vacuum chamber of an experimental UHV set-up for EWF measurements. Both Fowler method of isothermal curves and linearized Fowler plots were used for the measurement of the EWF by the photoelectric effect. It has been found that the EWF varies with the number of applied arcs. Thus, after 500 arcs in air, the observed EWF increasing is probably due to progressive inclusion of oxide on alloy surface. Microscopic examination is necessary to get better understandings on EWF of silver alloys, for both virgin and arced electrical contacts.

Keywords: Ag-Ni contact materials, arcing effects, electron work function, Fowler methods, photoemission

Procedia PDF Downloads 385
622 Post Growth Annealing Effect on Deep Level Emission and Raman Spectra of Hydrothermally Grown ZnO Nanorods Assisted by KMnO4

Authors: Ashish Kumar, Tejendra Dixit, I. A. Palani, Vipul Singh

Abstract:

Zinc oxide, with its interesting properties such as large band gap (3.37eV), high exciton binding energy (60 meV) and intense UV absorption has been studied in literature for various applications viz. optoelectronics, biosensors, UV-photodetectors etc. The performance of ZnO devices is highly influenced by morphologies, size, crystallinity of the ZnO active layer and processing conditions. Recently, our group has shown the influence of the in situ addition of KMnO4 in the precursor solution during the hydrothermal growth of ZnO nanorods (NRs) on their near band edge (NBE) emission. In this paper, we have investigated the effect of post-growth annealing on the variations in NBE and deep level (DL) emissions of as grown ZnO nanorods. These observed results have been explained on the basis of X-ray Diffraction (XRD) and Raman spectroscopic analysis, which clearly show that improved crystalinity and quantum confinement in ZnO nanorods.

Keywords: ZnO, nanorods, hydrothermal, KMnO4

Procedia PDF Downloads 401
621 Influence of Graphene Content on Corrosion Behavior of Electrodeposited Zinc–Graphene Composite Coatings

Authors: Bin Yang, Xiaofang Chen, Guangxin Wang

Abstract:

Zinc coating as a sacrificial protection plays an important role in the traditional steel anticorrosion field. Adding second-phase reinforcement particles into zinc matrix is an interesting approach to further enhance its corrosion performance. In this paper, pure Zn and Zn–graphene composite coatings of different graphene contents were prepared by direct current electrodeposition on 304 stainless steel substrate. The coatings were characterized by XRD, SEM/EDS, and Raman spectroscopy. Tafel polarization and electrochemical impedance spectroscopic methods were used to study their corrosion behavior. Result obtained have shown that the concentration of grapheme oxide (GO) in zinc sulfate bath has an important effect on textured structure and surface morphology of Zn–graphene composite coatings. The coating prepared with 1.0g/L GO has shown the best corrosion resistance compared to other coatings prepared in this study.

Keywords: Zn-graphene coatings, electrodeposition, microstructure, corrosion behavior

Procedia PDF Downloads 259
620 Enhancing the Piezoelectric, Thermal, and Structural Properties of the PVDF-HFP/PZT/GO Composite for Improved Mechanical Energy Harvesting

Authors: Salesabil Labihi, Adil Eddiai, Mounir El Achaby, Mounir Meddad, Omar Cherkaoui, M’hammed Mazroui

Abstract:

Piezoelectric materials provide a promising renewable energy source by converting mechanical energy into electrical energy through pressure and vibration. This study focuses on improving the conversion performance of poly (vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) by incorporating graphene oxide (GO) and lead zirconate titanate (PZT). The dispersion of PZT and GO within the PVDF-HFP matrix was found to be homogeneous, resulting in high piezoelectric performance with an increase in the β-phase content. The thermal stability of the PVDF-HFP polymer also improved with the addition of PZT/GO. However, as the percentage of PZT/GO increased, the young's modulus of the composite decreased significantly. The developed composite demonstrated promising performance as a potential candidate for energy harvesting applications.

Keywords: energy harvesting, mechanical conversion, piezoelectric composite, solvent casting method

Procedia PDF Downloads 82
619 Experimental Investigation of Nano-Enhanced-PCM-Based Heat Sinks for Passive Thermal Management of Small Satellites

Authors: Billy Moore, Izaiah Smith, Dominic Mckinney, Andrew Cisco, Mehdi Kabir

Abstract:

Phase-change materials (PCMs) are considered one of the most promising substances to be engaged passively in thermal management and storage systems for spacecraft, where it is critical to diminish the overall mass of the onboard thermal storage system while minimizing temperature fluctuations upon drastic changes in the environmental temperature within the orbit stage. This makes the development of effective thermal management systems more challenging since there is no atmosphere in outer space to take advantage of natural and forced convective heat transfer. PCM can store or release a tremendous amount of thermal energy within a small volume in the form of latent heat of fusion in the phase-change processes of melting and solidification from solid to liquid or, conversely, during which temperature remains almost constant. However, the existing PCMs pose very low thermal conductivity, leading to an undesirable increase in total thermal resistance and, consequently, a slow thermal response time. This often turns into a system bottleneck from the thermal performance perspective. To address the above-mentioned drawback, the present study aims to design and develop various heat sinks featured by nano-structured graphitic foams (i.e., carbon foam), expanded graphite (EG), and open-cell copper foam (OCCF) infiltrated with a conventional paraffin wax PCM with a melting temperature of around 35 °C. This study focuses on the use of passive thermal management techniques to develop efficient heat sinks to maintain the electronics circuits’ and battery module’s temperature within the thermal safety limit for small spacecraft and satellites such as the Pumpkin and OPTIMUS battery modules designed for CubeSats with a cross-sectional area of approximately 4˝×4˝. Thermal response times for various heat sinks are assessed in a vacuum chamber to simulate space conditions.

Keywords: heat sink, porous foams, phase-change material (PCM), spacecraft thermal management

Procedia PDF Downloads 14
618 Preparation and Characterization of BaMnO₃ Application to the Photocatalytic Oxidation of Paracetamol under Solar Light

Authors: Dahmane Mohamed, Tab Asma, Trari Mohamed

Abstract:

BaMnO₃ nanoparticles were synthesized by a nitrate route. Its structure and physical properties were characterized by means of X-ray powder diffraction, radio crystallographic analysis, ultraviolet-visible absorption spectroscopy in diffuse reflectance mode, infrared spectroscopy, and electrochemical measurements. The optical study showed that barium manganese oxide presents a direct transition with band energy 2.13 eV. The electrochemical study allowed us to identify the redox peaks and the corrosion parameters. Capacitance measurement clearly showed n-type conductivity. The photodegradation of paracetamol by BaMnO₃ was followed by UV-visible spectrophotometry; the results were then confirmed by HPLC. BaMnO₃ has shown its photocatalytic efficiency in the photodegradation of 10 mg/L paracetamol under solar irradiation, with a yield of ≈ 88%. The kinetic study has shown that paracetamol degrades with first-order kinetics.

Keywords: BaMnO₃, photodegradation, paracetamol, electrochemical measurements, solar light

Procedia PDF Downloads 103
617 Study on the Suppression of Hydrogen Generation by Aluminum-Containing Waste Incineration Ash and Water

Authors: Hideyuki Onodera, Ryoji Imai, Masahiro Sakai

Abstract:

Explosions have occurred in incineration plants in conveyors, ash pits, and other locations. The cause of such explosions is thought to be the reaction of metallic aluminum contained in the ash with water used to cool the ash and prevent scattering, resulting in the generation of hydrogen. Given this background, conveyors and other equipment have been damaged by explosions, which has hindered the stable operation of incineration plants. In addition, workers may be injured by equipment explosions, creating an unsafe situation. To remedy these problems, it is necessary to devise a way to prevent hydrogen explosions from occurring. To overcome this problem, we conducted a hydrogen generation reaction experiment using simulated incinerator ash powder containing aluminum, calcium oxide, and water and confirmed that conditions exist to stop the hydrogen generation reaction. The results of this research may contribute to the suppression of hydrogen explosions at incineration plants.

Keywords: waste incinerated ash, aluminum, water, hydrogen, suppression of hydrogen generation, incineration plant

Procedia PDF Downloads 29
616 Design of Speedy, Scanty Adder for Lossy Application Using QCA

Authors: T. Angeline Priyanka, R. Ganesan

Abstract:

Recent trends in microelectronics technology have gradually changed the strategies used in very large scale integration (VLSI) circuits. Complementary Metal Oxide Semiconductor (CMOS) technology has been the industry standard for implementing VLSI device for the past two decades, but due to scale-down issues of ultra-low dimension achievement is not achieved so far. Hence it paved a way for Quantum Cellular Automata (QCA). It is only one of the many alternative technologies proposed as a replacement solution to the fundamental limit problem that CMOS technology will impose in the years to come. In this brief, presented a new adder that possesses high speed of operation occupying less area is proposed. This adder is designed especially for error tolerant application. Hence in the proposed adder, the overall area (cell count) and simulation time are reduced by 88 and 73 percent respectively. Various results of the proposed adder are shown and described.

Keywords: quantum cellular automata, carry look ahead adder, ripple carry adder, lossy application, majority gate, crossover

Procedia PDF Downloads 556
615 The Different Roles between Sodium and Potassium Ions in Ion Exchange of WO3/SiO2 Catalysts

Authors: Kritsada Pipitthapan

Abstract:

WO3/SiO2 catalysts were modified by an ion exchange method with sodium hydroxide or potassium hydroxide solution. The performance of the modified catalysts was tested in the metathesis of ethylene and trans-2-butene to propylene. During ion exchange, sodium and potassium ions played different roles. Sodium modified catalysts revealed constant trans-2-butene conversion and propylene selectivity when the concentrations of sodium in the solution were varied. In contrast, potassium modified catalysts showed reduction of the conversion and increase of the selectivity. From these results, potassium hydroxide may affect the transformation of tungsten oxide active species, resulting in the decrease in conversion whereas sodium hydroxide did not. Moreover, the modification of catalysts by this method improved the catalyst stability by lowering the amount of coke deposited on the catalyst surface.

Keywords: acid sites, alkali metal, isomerization, metathesis

Procedia PDF Downloads 251
614 Flowsheet Development, Simulation and Optimization of Carbon-Di-Oxide Removal System at Natural Gas Reserves by Aspen–Hysys Process Simulator

Authors: Mohammad Ruhul Amin, Nusrat Jahan

Abstract:

Natural gas is a cleaner fuel compared to the others. But it needs some treatment before it is in a state to be used. So natural gas purification is an integral part of any process where natural gas is used as raw material or fuel. There are several impurities in natural gas that have to be removed before use. CO2 is one of the major contaminants. In this project we have removed CO2 by amine process by using MEA solution. We have built up the whole amine process for removing CO2 in Aspen Hysys and simulated the process. At the end of simulation we have got very satisfactory results by using MEA solution for the removal of CO2. Simulation result shows that amine absorption process enables to reduce CO2 content from NG by 58%. HYSYS optimizer allowed us to get a perfect optimized plant. After optimization the profit of existing plant is increased by 2.34 %.Simulation and optimization by Aspen-HYSYS simulator makes available us to enormous information which will help us to further research in future.

Keywords: Aspen–Hysys, CO2 removal, flowsheet development, MEA solution, natural gas optimization

Procedia PDF Downloads 498
613 Synthesis, Computational Studies, Antioxidant and Anti-Inflammatory Bio-Evaluation of 2,5-Disubstituted- 1,3,4-Oxadiazole Derivatives

Authors: Sibghat Mansoor Rana, Muhammad Islam, Hamid Saeed, Hummera Rafique, Muhammad Majid, Muhammad Tahir Aqeel, Fariha Imtiaz, Zaman Ashraf

Abstract:

The 1,3,4-oxadiazole derivatives Ox-6a-f have been synthesized by incorporating flur- biprofen moiety with the aim to explore the potential of target molecules to decrease the oxidative stress. The title compounds Ox-6a-f were prepared by simple reactions in which a flurbiprofen –COOH group was esterified with methanol in an acid-catalyzed medium, which was then reacted with hydrazine to afford the corresponding hydrazide. The acid hydrazide was then cyclized into 1,3,4-oxadiazole-2-thiol by reacting with CS2 in the presence of KOH. The title compounds Ox-6a-f were synthesized by the reaction of an –SH group with various alkyl/aryl chlorides, which involves an S-alkylation reaction. The structures of the synthesized Ox-6a-f derivatives were ascer- tained by spectroscopic data. The in silico molecular docking was performed against target proteins cyclooxygenase-2 COX-2 (PDBID 5KIR) and cyclooxygenase-1 COX-1 (PDBID 6Y3C) to determine the binding affinity of the synthesized compounds with these structures. It has been inferred that most of the synthesized compounds bind well with an active binding site of 5KIR compared to 6Y3C, and especially compound Ox-6f showed excellent binding affinity (7.70 kcal/mol) among all synthesized compounds Ox-6a-f. The molecular dynamic (MD) simulation has also been performed to check the stability of docking complexes of ligands with COX-2 by determining their root mean square deviation and root mean square fluctuation. Little fluctuation was observed in case of Ox-6f, which forms the most stable complex with COX-2. The comprehensive antioxidant potential of the synthesized compounds has been evaluated by determining their free radical scavenging activity, including DPPH, OH, nitric oxide (NO), and iron chelation assay. The derivative Ox-6f showed promising results with 80.23% radical scavenging potential at a dose of 100 μg/mL while ascorbic acid exhibited 87.72% inhibition at the same dose. The anti-inflammatory activity of the final products has also been performed, and inflammatory markers were assayed, such as a thiobarbituric acid-reducing substance, nitric oxide, interleukin-6 (IL-6), and COX-2. The derivatives Ox-6d and Ox-6f displayed higher anti-inflammatory activity, exhibiting 70.56% and 74.16% activity, respectively. The results were compared with standard ibuprofen, which showed 84.31% activity at the same dose, 200 μg/mL. The anti-inflammatory potential has been performed by following the carrageen-induced hind paw edema model, and results showed that derivative Ox-6f exhibited 79.83% reduction in edema volume compared to standard ibuprofen, which reduced 84.31% edema volume. As dry lab and wet lab results confirm each other, it has been deduced that derivative Ox-6f may serve as the lead structure to design potent compounds to address oxidative stress.

Keywords: synthetic chemistry, pharmaceutical chemistry, oxadiazole derivatives, anti-inflammatory, anti-cancer compounds

Procedia PDF Downloads 15
612 An Improved Approach for Hybrid Rocket Injection System Design

Authors: M. Invigorito, G. Elia, M. Panelli

Abstract:

Hybrid propulsion combines beneficial properties of both solid and liquid rockets, such as multiple restarts, throttability as well as simplicity and reduced costs. A nitrous oxide (N2O)/paraffin-based hybrid rocket engine demonstrator is currently under development at the Italian Aerospace Research Center (CIRA) within the national research program HYPROB, funded by the Italian Ministry of Research. Nitrous oxide belongs to the class of self-pressurizing propellants that exhibit a high vapor pressure at standard ambient temperature. This peculiar feature makes those fluids very attractive for space rocket applications because it avoids the use of complex pressurization systems, leading to great benefits in terms of weight savings and reliability. To avoid feed-system-coupled instabilities, the phase change is required to occur through the injectors. In this regard, the oxidizer is stored in liquid condition while target chamber pressures are designed to lie below vapor pressure. The consequent cavitation and flash vaporization constitute a remarkably complex phenomenology that arises great modelling challenges. Thus, it is clear that the design of the injection system is fundamental for the full exploitation of hybrid rocket engine throttability. The Analytical Hierarchy Process has been used to select the injection architecture as best compromise among different design criteria such as functionality, technology innovation and cost. The impossibility to use engineering simplified relations for the dimensioning of the injectors led to the needs of applying a numerical approach based on OpenFOAM®. The numerical tool has been validated with selected experimental data from literature. Quantitative, as well as qualitative comparisons are performed in terms of mass flow rate and pressure drop across the injector for several operating conditions. The results show satisfactory agreement with the experimental data. Modeling assumptions, together with their impact on numerical predictions are discussed in the paper. Once assessed the reliability of the numerical tool, the injection plate has been designed and sized to guarantee the required amount of oxidizer in the combustion chamber and therefore to assure high combustion efficiency. To this purpose, the plate has been designed with multiple injectors whose number and diameter have been selected in order to reach the requested mass flow rate for the two operating conditions of maximum and minimum thrust. The overall design has been finally verified through three-dimensional computations in cavitating non-reacting conditions and it has been verified that the proposed design solution is able to guarantee the requested values of mass flow rates.

Keywords: hybrid rocket, injection system design, OpenFOAM®, cavitation

Procedia PDF Downloads 216
611 Co₂Fe LDH on Aromatic Acid Functionalized N Doped Graphene: Hybrid Electrocatalyst for Oxygen Evolution Reaction

Authors: Biswaranjan D. Mohapatra, Ipsha Hota, Swarna P. Mantry, Nibedita Behera, Kumar S. K. Varadwaj

Abstract:

Designing highly active and low-cost oxygen evolution (2H₂O → 4H⁺ + 4e⁻ + O₂) electrocatalyst is one of the most active areas of advanced energy research. Some precious metal-based electrocatalysts, such as IrO₂ and RuO₂, have shown excellent performance for oxygen evolution reaction (OER); however, they suffer from high-cost and low abundance which limits their applications. Recently, layered double hydroxides (LDHs), composed of layers of divalent and trivalent transition metal cations coordinated to hydroxide anions, have gathered attention as an alternative OER catalyst. However, LDHs are insulators and coupled with carbon materials for the electrocatalytic applications. Graphene covalently doped with nitrogen has been demonstrated to be an excellent electrocatalyst for energy conversion technologies such as; oxygen reduction reaction (ORR), oxygen evolution reaction (OER) & hydrogen evolution reaction (HER). However, they operate at high overpotentials, significantly above the thermodynamic standard potentials. Recently, we reported remarkably enhanced catalytic activity of benzoate or 1-pyrenebutyrate functionalized N-doped graphene towards the ORR in alkaline medium. The molecular and heteroatom co-doping on graphene is expected to tune the electronic structure of graphene. Therefore, an innovative catalyst architecture, in which LDHs are anchored on aromatic acid functionalized ‘N’ doped graphene may presumably boost the OER activity to a new benchmark. Herein, we report fabrication of Co₂Fe-LDH on aromatic acid (AA) functionalized ‘N’ doped reduced graphene oxide (NG) and studied their OER activities in alkaline medium. In the first step, a novel polyol method is applied for synthesis of AA functionalized NG, which is well dispersed in aqueous medium. In the second step, Co₂Fe LDH were grown on AA functionalized NG by co-precipitation method. The hybrid samples are abbreviated as Co₂Fe LDH/AA-NG, where AA is either Benzoic acid or 1, 3-Benzene dicarboxylic acid (BDA) or 1, 3, 5 Benzene tricarboxylic acid (BTA). The crystal structure and morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM). These studies confirmed the growth of layered single phase LDH. The electrocatalytic OER activity of these hybrid materials was investigated by rotating disc electrode (RDE) technique on a glassy carbon electrode. The linear sweep voltammetry (LSV) on these catalyst samples were taken at 1600rpm. We observed significant OER performance enhancement in terms of onset potential and current density on Co₂Fe LDH/BTA-NG hybrid, indicating the synergic effect. This exploration of molecular functionalization effect in doped graphene and LDH system may provide an excellent platform for innovative design of OER catalysts.

Keywords: π-π functionalization, layered double hydroxide, oxygen evolution reaction, reduced graphene oxide

Procedia PDF Downloads 207
610 Bioactive Rare Acetogenins from the Red Alga Laurencia obtusa

Authors: Mohamed A. Ghandourah, Walied M. Alarif, Nahed O. Bawakid

Abstract:

Halogenated cyclic enynes and terpenoids are commonly identified among secondary metabolites of the genus Laurencia. Laurencian acetogenins are entirly C15 non-terpenoid haloethers with different carbocyclic nuclei; a specimen of the Red Sea red alga L. obtusa was investigated for its acetogenin content. The dichloromethane extract of the air-dried red algal material was fractionated on aluminum oxide column preparative thin-layer chromatography. Three new rare C12 acetogenin derivatives (1-3) were isolated from the organic extract obtained from Laurencia obtusa, collected from the territorial Red Sea water of Saudi Arabia. The structures of the isolated metabolites were established by means of spectroscopical data analyses. Examining the isolated compounds in activated human peripheral blood mononuclear cells (PBMC) revealed potent Anti-inflammatory activity as evidenced by inhibition of NFκB and release of other inflammatory mediators like TNF-α, IL-1β and IL-6.

Keywords: Red Sea, red algae, fatty acids, spectroscopy, anti-inflammatory

Procedia PDF Downloads 149
609 Development of Single Layer of WO3 on Large Spatial Resolution by Atomic Layer Deposition Technique

Authors: S. Zhuiykov, Zh. Hai, H. Xu, C. Xue

Abstract:

Unique and distinctive properties could be obtained on such two-dimensional (2D) semiconductor as tungsten trioxide (WO3) when the reduction from multi-layer to one fundamental layer thickness takes place. This transition without damaging single-layer on a large spatial resolution remained elusive until the atomic layer deposition (ALD) technique was utilized. Here we report the ALD-enabled atomic-layer-precision development of a single layer WO3 with thickness of 0.77±0.07 nm on a large spatial resolution by using (tBuN)2W(NMe2)2 as tungsten precursor and H2O as oxygen precursor, without affecting the underlying SiO2/Si substrate. Versatility of ALD is in tuning recipe in order to achieve the complete WO3 with desired number of WO3 layers including monolayer. Governed by self-limiting surface reactions, the ALD-enabled approach is versatile, scalable and applicable for a broader range of 2D semiconductors and various device applications.

Keywords: Atomic Layer Deposition (ALD), tungsten oxide, WO₃, two-dimensional semiconductors, single fundamental layer

Procedia PDF Downloads 242
608 Theoretical Evaluation of Oxirane and Aziridine Opening Regioselectivity, Solvent Effect, and Strength of Nucleophilic and Nucleofugal Groups for the Preparation of Benzimidazole-Fused 1,4-Benzoxazepine

Authors: M. Abdoul-Hakim, a. Zeroual, H. Garmes

Abstract:

In a route for the preparation of 1,4-benzoxazepine fused to benzimidazole, the use of 2-(2-methoxyphenyl)-benzimidazole or styrene-derived N-tosylaziridine does not give the desired products. On this basis, we theoretically studied this reaction using DFT at the B3LYP/6-31+G(d) level. The analysis of the results shows a preferential nucleophilic attack of 2-(2-fluorophenyl)-benzimidazole on the terminal carbon atom of the Alkylepoxides and on the substituted carbon of N-tosylaziridine. Taking into account the solvent effect (DMF) makes the reactions spontaneous for the opening of epoxides and N-tosylaziridine and disfavors the intramolecularnucleophilic aromatic substitution reaction step of the products of the attack of 2-(2-methoxyphenyl)benzimidazole on an epoxide and those of the opening of N-tosylaziridine, which is consistent with the experiment.

Keywords: alkylepoxides, 4-benzoxazepine fused to benzimidazole imine, benzonitrile N-oxide, DFT, intramolecular nucleophilic aromatic substitution, N-tosyl aziridine

Procedia PDF Downloads 142
607 Evaluation of Occupational Exposure to Chromium for Welders of Stainless Steel

Authors: L. Musak, J. Valachova, T. Vasicko, O. Osina

Abstract:

Stainless steel is resistant to electrochemical corrosion by passivation. Welders are greatly exposed to welding fumes of toxic metals, which added to this steel. The content of chromium (Cr) is above 11.5%, Ni and Mo from 2 to 6.5%. The aim of the study was the evaluation of occupational exposure to Cr, chromosome analysis and valuation of individual susceptibility polymorphism of gene CCND1 c.870 G>A. The exposed group was consisted from 117 welders of stainless steels. The average age was 38.43 years and average exposure time 7.14 years. Smokers represented 40.17%. The control group consisted of 123 non-exposed workers with an average age of 39.74 years and time employment 16.67 years. Smokers accounted for 22.76%. Analysis of Cr in blood and urine was performed by atomic absorption spectrophotometry (AAS Varian SpectraAA 30P) with electrothermal decomposition of the sample in the graphite furnace. For the evaluation of chromosomal aberrations (CA) cytogenetic analysis of peripheral blood lymphocytes was used. Gene polymorphism was determined by PCR-RFLP reaction using appropriate primers and restriction enzymes. For statistic analysis the Mann-Whitney U-test was used. The mean Cr level in blood of exposed group was 0.095 µmol/l (0.019 min - max 0.504). No value exceeds the average normal value. The mean value Cr in urine was 7.9 µmol/mol creatinine (min 0.026 to max 19.26). The total number of CA was 1.86% in compared to 1.70% controls. (CTA-type 0.90% vs. 0.80% and CSA-type 0.96% vs. 0.90%). In the number of total CA statistical difference was observed between smokers and non-smokers of exposed group (S-1.57% vs. NS-2.04%, P<0.05). In CCND1 gene polymorphisms was observed the increasing of the total CA with wild-type allele (WT) via heterozygous to the VAR genotype (1.44% <1.82% <2.13%). A statistically higher incidence of CTA-type aberrations in variant genotypes between exposed and control groups was observed (1.22% vs. 0.59%, P <0.05). The work place is usually higher source of exposure to harmful factors. Workers need consistent and frequent health control. In assessing the risk of adverse effects of metals it is important to consider their persistence, behavior and bioavailability. Prolonged exposure to carcinogens may not manifest symptoms of poisoning, but delayed effects may occur, which resulted in a higher incidence of malignant tumors.

Keywords: CCND1, genotoxicity, polymorphism, stainless steel, welders

Procedia PDF Downloads 352
606 Flexible Poly(vinylidene fluoride-co-hexafluoropropylene) Nanocomposites Filled with Ternary Nanofillers for Energy Harvesting

Authors: D. Ponnamma, E. Alper, P. Sharma, M. A. AlMaadeed

Abstract:

Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a tri phasic filler combination of one-dimensional titanium dioxide nanotubes, two-dimensional reduced graphene oxide, and three-dimensional strontium titanate, introduced into a semi crystalline polymer, Poly(vinylidene fluoride-co-hexafluoropropylene). Simple mixing method is adopted for the composite fabrication after ensuring a high interaction among the various fillers. The films prepared were mainly tested for the piezoelectric responses and the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose an integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.

Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposites

Procedia PDF Downloads 273
605 A Novel Nanocomposite Membrane Designed for the Treatment of Oil/Gas Produced Water

Authors: Zhaoyang Liu, Detao Qin, Darren Delai Sun

Abstract:

The onshore production of oil and gas (for example, shale gas) generates large quantities of wastewater, referred to be ‘produced water’, which contains high contents of oils and salts. The direct discharge of produced water, if not appropriately treated, can be toxic to the environment and human health. Membrane filtration has been deemed as an environmental-friendly and cost-effective technology for treating oily wastewater. However, conventional polymeric membranes have their drawbacks of either low salt rejection rate or high membrane fouling tendency when treating oily wastewater. Recent years, forward osmosis (FO) membrane filtration has emerged as a promising technology with its unique advantages of low operation pressure and less membrane fouling tendency. However, until now there is still no report about FO membranes specially designed and fabricated for treating the oily and salty produced water. In this study, a novel nanocomposite FO membrane was developed specially for treating oil- and salt-polluted produced water. By leveraging the recent advance of nanomaterials and nanotechnology, this nanocomposite FO membrane was designed to be made of double layers: an underwater oleophobic selective layer on top of a nanomaterial infused polymeric support layer. Wherein, graphene oxide (GO) nanosheets were selected to add into the polymeric support layer because adding GO nanosheets can optimize the pore structures of the support layer, thus potentially leading to high water flux for FO membranes. In addition, polyvinyl alcohol (PVA) hydrogel was selected as the selective layer because hydrated and chemically-crosslinked PVA hydrogel is capable of simultaneously rejecting oil and salt. After nanocomposite FO membranes were fabricated, the membrane structures were systematically characterized with the instruments of TEM, FESEM, XRD, ATR-FTIR, surface zeta-potential and Contact angles (CA). The membrane performances for treating produced waters were tested with the instruments of TOC, COD and Ion chromatography. The working mechanism of this new membrane was also analyzed. Very promising experimental results have been obtained. The incorporation of GO nanosheets can reduce internal concentration polarization (ICP) effect in the polymeric support layer. The structural parameter (S value) of the new FO membrane is reduced by 23% from 265 ± 31 μm to 205 ± 23 μm. The membrane tortuosity (τ value) is decreased by 20% from 2.55 ± 0.19 to 2.02 ± 0.13 μm, which contributes to the decrease of S value. Moreover, the highly-hydrophilic and chemically-cross-linked hydrogel selective layer present high antifouling property under saline oil/water emulsions. Compared with commercial FO membrane, this new FO membrane possesses three times higher water flux, higher removal efficiencies for oil (>99.9%) and salts (>99.7% for multivalent ions), and significantly lower membrane fouling tendency (<10%). To our knowledge, this is the first report of a nanocomposite FO membrane with the combined merits of high salt rejection, high oil repellency and high water flux for treating onshore oil/gas produced waters. Due to its outstanding performance and ease of fabrication, this novel nanocomposite FO membrane possesses great application potential in wastewater treatment industry.

Keywords: nanocomposite, membrane, polymer, graphene oxide

Procedia PDF Downloads 249
604 Electrocoagulation of Ni(OH)2/NiOOH for the Removal of Boron Using Nickel Foam as Sacrificial Anode

Authors: Yu-Jen Shih, Yao-Hui Hunag

Abstract:

Electrocoagulation (EC) using metallic nickel foam as anode and cathode for the removal of boron from solution was studied. The electrolytic parameters included pH, current density, and initial boron concentration for optimizing the EC process. Experimental results showed that removal efficiency was increased by elevating pH from 4.0 to 8.0, and then decreased at higher pH. The electrolytic efficacy was not affected by current density. In respect of energy consumption, 1.25 mA/cm2 of current density was acceptable for an effective EC of boron, while increasing boric acid from 10 to 100 ppm-B did not impair removal efficiency too much. Cyclic voltammetry indicated that the oxide film, Ni(OH)2 and NiOOH, at specific overpotentials would result in less weight loss of anode than that predicted by the Faraday’s law. The optimal conditions under which 99.2% of boron was removed and less than 1 ppm-B remained in the electrolyte would be pH 8, four pairs of electrodes, and 1.25 mA/cm2 in 120 min as treating wastewaters containing 10 ppm-B. XRD and SEM characterization suggested that the granular crystallites of hydroxide precipitates was composed of theophrastite.

Keywords: borohydrides, hydrogen generation, NiOOH, electrocoagulation, cyclic voltammetry, boron removal

Procedia PDF Downloads 260
603 Hot Corrosion Behavior of Calcium Zirconate Modified YSZ Coatings

Authors: Naveed Ejaz, Liaqat Ali, Amer Nusair

Abstract:

Thermal barrier coatings (TBCs) serve as thermal barriers against the high temperature of the hot regions of the aircraft turbine engines keeping the surface of the turbine blades, vanes and combustion chamber at comparatively lower temperature. The life of these coatings depends on many in-service environmental factors. Among these factors, the behavior of the bond coat as well as the top coat at high temperature aggravated by the corrosive environments having S, V, Na and Cl plays a key role. The incorporation of the 5-15% CaZrO3 in YSZ coatings was studied after hot corrosion in vanadium oxide environment. It was observed that the reactivity of the V gradually switched from Y to Ca making CaV2O4 instead of YVO4; the percentage of CaV2O4 increased with the increase of CaZrO3 in YSZ. It eventually prevented leaching out of the Y from YSZ leaving the YSZ without any harmful phase change. The thermal insulation was found to be improved in case of CaZrO3 incorporated YSZ coatings as compared to only YSZ coating.

Keywords: hot corrosion, thermal barrier coatings, yttria stabilized zirconia, calcium zirconate

Procedia PDF Downloads 404