Search results for: nano topology
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1431

Search results for: nano topology

531 Characterization of Biodegradable Polycaprolactone Containing Titanium Dioxide Micro and Nanoparticles

Authors: Emi Govorčin Bajsića, Vesna Ocelić Bulatović, Miroslav Slouf, Ana Šitum

Abstract:

Composites based on a biodegradable polycaprolactone (PCL) containing 0.5, 1.0 and 2.0 wt % of titanium dioxide (TiO2) micro and nanoparticles were prepared by melt mixing and the effect of filler type and contents on the thermal properties, dynamic-mechanical behaviour and morphology were investigated. Measurements of storage modulus and loss modulus by dynamic mechanical analysis (DMA) showed better results for microfilled PCL/TiO2 composites than nanofilled composites, with the same filler content. DSC analysis showed that the Tg and Tc of micro and nanocomposites were slightly lower than those of neat PCL. The crystallinity of the PCL increased with the addition of TiO2 micro and nanoparticles; however, the c for the PCL was unchanged with micro TiO2 content. The thermal stability of PCL/TiO2 composites were characterized using thermogravimetric analysis (TGA). The initial weight loss (5 wt %) occurs at slightly higher temperature with micro and nano TiO2 addition and with increasing TiO2 content.

Keywords: polycaprolactone, titanium dioxide, thermal properties, morphology

Procedia PDF Downloads 340
530 Green Synthesis of Zinc Oxide Nano Particles Using Tomato (Lycopersicon esculentum) Extract and Its Application for Solar Cell

Authors: Prasanta Sutradhar, Mitali Saha

Abstract:

With an increasing awareness of green and clean energy, zinc oxide based solar cells were found to be suitable candidates for cost-effective and environmentally friendly energy conversion devices. In this work, we have reported the green synthesis of zinc oxide nanoparticles (ZnO) by thermal method and under microwave irradiation using the aqueous extract of tomatoes as non-toxic and ecofriendly reducing material. The synthesized ZnO nanoparticles were characterised by UV-Visible spectroscopy (UV-Vis), infra-red spectroscopy (IR), particle size analyser (DLS), scanning electron microscopy (SEM), atomic force microscopy (AFM), and X- ray diffraction study (XRD). A series of ZnO nanocomposites with titanium dioxide nanoparticles (TiO2) and graphene oxide (GO) were prepared for photovoltaic application. Structural and morphological studies of these nanocomposites were carried out using UV-vis, SEM, XRD, and AFM. The current-voltage measurements of the nanocomposites demonstrated enhanced power conversion efficiency of 6.18% in case of ZnO/GO/TiO2 nanocomposite.

Keywords: ZnO, green synthesis, microwave, nanocomposites, I-V characteristics

Procedia PDF Downloads 381
529 Synthesis, Characterization, and Physico–Chemical Properties of Nano Zinc Oxide and PVA Composites

Authors: S. H. Rashmi, G. M. Madhu, A. A. Kittur, R. Suresh

Abstract:

Polymer nanocomposites represent a new class of materials in which nanomaterials act as the reinforcing material in composites, wherein small additions of nanomaterials lead to large enhancements in thermal, optical, and mechanical properties. A boost in these properties is due to the large interfacial area per unit volume or weight of the nanoparticles and the interactions between the particle and the polymer. Micro-sized particles used as reinforcing agents scatter light, thus, reducing light transmittance and optical clarity. Efficient nanoparticle dispersion combined with good polymer–particle interfacial adhesion eliminates scattering and allows the exciting possibility of developing strong yet transparent films, coatings and membranes. This paper aims at synthesizing zinc oxide nanoparticles which are reinforced in poly vinyl alcohol (PVA) polymer. The mechanical properties showed that the tensile strength of the PVA nanocomposites increases with the increase in the amount of nanoparticles.

Keywords: glutaraldehyde, polymer nanocomposites, poly vinyl alcohol, zinc oxide

Procedia PDF Downloads 277
528 Prediction of Unsteady Heat Transfer over Square Cylinder in the Presence of Nanofluid by Using ANN

Authors: Ajoy Kumar Das, Prasenjit Dey

Abstract:

Heat transfer due to forced convection of copper water based nanofluid has been predicted by Artificial Neural network (ANN). The present nanofluid is formed by mixing copper nano particles in water and the volume fractions are considered here are 0% to 15% and the Reynolds number are kept constant at 100. The back propagation algorithm is used to train the network. The present ANN is trained by the input and output data which has been obtained from the numerical simulation, performed in finite volume based Computational Fluid Dynamics (CFD) commercial software Ansys Fluent. The numerical simulation based results are compared with the back propagation based ANN results. It is found that the forced convection heat transfer of water based nanofluid can be predicted correctly by ANN. It is also observed that the back propagation ANN can predict the heat transfer characteristics of nanofluid very quickly compared to standard CFD method.

Keywords: forced convection, square cylinder, nanofluid, neural network

Procedia PDF Downloads 305
527 Zero Valent Iron Algal Biocomposite for the Removal of Crystal Violet from Aqueous Solution: Box-Behnken Optimization and Fixed Bed Column Studies

Authors: M. Jerold, V. Sivasubramanian

Abstract:

In this study, nano zero valent iron Sargassum swartzii (nZVI-SS) biocomposite a marine algal based biosorbent was used for the removal of simulated crystal violet (CV) in batch and continuous fixed bed operation. The Box-Behnen design (BBD) experimental results revealed the biosoprtion was maximum at pH 7.5, biosorbent dosage 0.1 g/L and initial CV concentration of 100 mg/L. The effect of various column parameters like bed depth (3, 6 and 9 cm), flow rate (5, 10 and 15 mL/min) and influent CV concentration (5, 10 and 15 mg/L) were investigated. The exhaustion time increased with increase of bed depth, influent CV concentration and decrease of flow rate. Adam-Bohart, Thomas and Yoon-Nelson models were used to predict the breakthrough curve and to evaluate the model parameters. Out of these models, Thomas and Yoon-Nelson models well described the experimental data. Therefore, the result implies that nZVI-SS biocomposite is a cheap and most promising biosorbent for the removal of CV from wastewater.

Keywords: algae, biosorption, zero-valent, dye, wastewater

Procedia PDF Downloads 166
526 Computational Material Modeling for Mechanical Properties Prediction of Nanoscale Carbon Based Cementitious Materials

Authors: Maryam Kiani, Abdul Basit Kiani

Abstract:

At larger scales, the performance of cementitious materials is impacted by processes occurring at the nanometer scale. These materials boast intricate hierarchical structures with random features that span from the nanometer to millimeter scale. It is fascinating to observe how the nanoscale processes influence the overall behavior and characteristics of these materials. By delving into and manipulating these processes, scientists and engineers can unlock the potential to create more durable and sustainable infrastructure and construction materials. It's like unraveling a hidden tapestry of secrets that hold the key to building stronger and more resilient structures. The present work employs simulations as the computational modeling methodology to predict mechanical properties for carbon/silica based cementitious materials at the molecular/nano scale level. Studies focused on understanding the effect of higher mechanical properties of cementitious materials with carbon silica nanoparticles via Material Studio materials modeling.

Keywords: nanomaterials, SiO₂, carbon black, mechanical properties

Procedia PDF Downloads 110
525 Inhibitory Mechanism of Ag and Fe Colloidal Nanoparticles on P. aeruginosa and E.coli Growth

Authors: Fatemeh Moradian, Razieh Ghorbani, Poria Biparva

Abstract:

Growing resistance of microorganisms to potent antibiotics has renewed a great interest towards investigating bactericidal properties of nanoparticles and their Nano composites as an alternative. The use of metal nanoparticles to combat bacterial infections is one of the most wide spread applications of nanotechnology in the field of antibacterial. Nanomaterials have unique properties compared to their bulk counterparts. In this report, we demonstrate the antimicrobial activity of zerovalent Iron(ZVI) and Ag(silver) nanoparticles against Gram-negative bacteria E.coli(DH5α) and Pseudomonas aeruginosa. At first ZVI and Ag nanoparticles were synthesized by chemical reduction method and using scanning electron microscopy (SEM) the nanoparticle size determined. Different concentrations of Ag and ZVI nanoparticles were added to bacteria on nutrient agar medium. Minimum inhibitory concentration (MIC) of Ag and Fe nanoparticles for P. aeruginosa were 5µM and 1µg as well as for E.coli were 6µM. and 10 µg, respectively. Among the two nanoparticles, ZVI showed that the greatest antimicrobial activity against E.coli and Ag nanoparticle on P.aeruginosa. Results suggested that the bactericidal effect of metal nanoparticles has been attributed to their small size as well as high surface to volume ratio and NPs could be used as an effective antibacterial material.

Keywords: bactericidal properties, MIC, nanoparticle, SEM

Procedia PDF Downloads 573
524 Investigation of Solar Concentrator Prototypes under Tunisian Conditions

Authors: Moncef Balghouthi, Mahmoud Ben Amara, Abdessalem Ben Hadj Ali, Amenallah Guizani

Abstract:

Concentrated solar power technology constitutes an interesting option to meet a part of future energy demand, especially when considering the high levels of solar radiation and clearness index that are available particularly in Tunisia. In this work, we present three experimental prototypes of solar concentrators installed in the research center of energy CRTEn in Tunisia. Two are medium temperature parabolic trough solar collector used to drive a cooling installation and for steam generation. The third is a parabolic dish concentrator used for hybrid generation of thermal and electric power. Optical and thermal evaluations were presented. Solutions and possibilities to construct locally the mirrors of the concentrator were discussed. In addition, the enhancement of the performances of the receivers by nano selective absorption coatings was studied. The improvement of heat transfer between the receiver and the heat transfer fluid was discussed for each application.

Keywords: solar concentrators, optical and thermal evaluations, cooling and process heat, hybrid thermal and electric generation

Procedia PDF Downloads 233
523 The Influence of Surface Roughness on the Flow Fields Generated by an Oscillating Cantilever

Authors: Ciaran Conway, Nick Jeffers, Jeff Punch

Abstract:

With the current trend of miniaturisation of electronic devices, piezoelectric fans have attracted increasing interest as an alternative means of forced convection over traditional rotary solutions. Whilst there exists an abundance of research on various piezo-actuated flapping fans in the literature, the geometries of these fans all consist of a smooth rectangular cross section with thicknesses typically of the order of 100 um. The focus of these studies is primarily on variables such as frequency, amplitude, and in some cases resonance mode. As a result, the induced flow dynamics are a direct consequence of the pressure differential at the fan tip as well as the pressure-driven ‘over the top’ vortices generated at the upper and lower edges of the fan. Rough surfaces such as golf ball dimples or vortex generators on an aircraft wing have proven to be beneficial by tripping the boundary layer and energising the adjacent air flow. This paper aims to examine the influence of surface roughness on the airflow generation of a flapping fan and determine whether the induced wake can be manipulated or enhanced by energising the airflow around the fan tip. Particle Image Velocimetry (PIV) is carried out on mechanically oscillated rigid fans with various surfaces consisting of pillars, perforations and cell-like grids derived from the wing topology of natural fliers. The results of this paper may be used to inform the design of piezoelectric fans and possibly aid in understanding the complex aerodynamics inherent in flapping wing flight.

Keywords: aerodynamics, oscillating cantilevers, PIV, vortices

Procedia PDF Downloads 196
522 Origamic Forms: A New Realm in Improving Acoustical Environment

Authors: Mostafa Refat Ismail, Hazem Eldaly

Abstract:

The adaptation of architecture design to building function is getting highly needed in contemporary designs, especially with the great progression in design methods and tools. This, in turn, requires great flexibility in design strategies, as well as a wider spectrum of space settings to achieve the required environment that special activities imply. Acoustics is an essential factor influencing cognitive acts and behavior as well as, on the extreme end, the physical well-being inside a space. The complexity of this constrain is fueled up by the extended geometric dimensions of multipurpose halls, making acoustic adequateness a great concern that could not easily be achieved for each purpose. To achieve a performance oriented acoustic environment, various parametric shaped false ceilings based on origami folded notion are simulated. These parametric origami shapes are able to fold and unfold forming an interactive structure that changes the mutual acoustic environment according to the geometric shapes' position and its changing exposed surface areas. The mobility of the facets in the origami surface can stretch up the range from a complete plain surface to an unfolded element where a considerable amount of absorption is added to the space. The behavior of the parametric origami shapes are being modeled employing a ray tracing computer simulation package for various shapes topology. The conclusion shows a great variation in the acoustical performance due to the variation in folding faces of the origami surfaces, which cause different reflections and consequently large variations in decay curves.

Keywords: parametric, origami, acoustics, architecture

Procedia PDF Downloads 263
521 Preparation of Gramine Nanosuspension and Protective Effect of Gramine on Human Oral Cell Lines by Induction of Apoptosis

Authors: K. Suresh, R. Arunkumar

Abstract:

The objective of this study is to investigate the preparation of gramine nano suspension and protective effect of Gramine on the apoptosis of laryngeal cancer cells cell line (HEp-2 and KB). The growth inhibition rate of Hep-2 and KB cells in vitro were measured by MTT assay and apoptosis by, levels of reactive oxygen species, mitochondrial membrane potential, morphological changes and flowcytometry. Based on the results, we determined the effective doses of gramine as 127.23µm/ml for 24 hr and 119.81 µm/ml for 48hr in hep-2 cell line and 147.58 µm ml for 24 hr and 123.74µm µm/ml for 48hr in KB cell line. cytotoxicity effects of gramine were confirmed by treatment of HEp-2 cell and KB cell with IC50 concentration of gramine resulted in sequences of events marked by the enhance the apoptosis accompanied by loss of cell viability, modulation of reactive oxygen species and cell cycle arrest through the induction of G0/G1 phase arrest on HEp-2 cells. Our study suggests that the nanosuspension of gramine possesses the more cytotoxic effect of cancer cells and a novel candidate for cancer chemoprevention.

Keywords: apoptosis, HEp-2 cell line, KB cell line mitochondria, gramine, nanosuspension

Procedia PDF Downloads 431
520 Cr³⁺/SiO₄⁴⁻ Codoped Hydroxyapatite Nanorods: Fabrication and Microstructure Analysis

Authors: Ammar Z. Alshemary, Zafer Evis

Abstract:

In this study, nanorods of Cr³⁺/SiO₄⁴⁻ codoped hydroxyapatite (Cr³⁺/SiO₄⁴⁻-HA) were synthesized successfully and rapidly through microwave irradiation technique, using (Ca(NO₃)₂•4H₂O), ((NH₄)₂HPO₄), (SiC₈H₂₀O₄) and (Cr(NO₃)₃.9H₂O) as source materials for Ca²⁺, PO₄³⁻, SiO₄⁴⁻ and Cr³⁺ ions, respectively. The impact of dopants on the phase formation and microstructure of the powders were investigated by means of X-ray diffraction (XRD), Fourier transform infrared spectrum analysis (FT-IR) and Field emission electron microscopy (FESEM) techniques. XRD analysis showed that with an incorporation of Cr³⁺/SiO₄⁴⁻ ions into HA structure resulted in peak broadening and reduced peak height due to the amorphous nature and reduced crystallinity of the resulting HA powder. FTIR spectroscopy revealed the existence of the different vibrational modes matching to phosphates and hydroxyl groups. The FESEM analysis showed a change in the crystal shape from spherical to rod shaped particles upon Cr³⁺ doping into the crystal structure. Acknowledgments: This study was supported by Karabük University (Project no. KBÜBAP-17-YD-144). The authors would like to thank for support.

Keywords: nano-hydroxyapatite, microwave, dopants, characterization, microstructure

Procedia PDF Downloads 203
519 Green Synthesis and Photo Catalytic Activity of Monoclinic α-Bi2O3 Nanocrystals

Authors: R. Yuvakkumar, S. I. Hong

Abstract:

Visible light driven monoclinic α-Bi2O3 photocatalyst was synthesized employing green synthesis method using rambutan peel wastes. 10 ml rambutan extract was added to 50 ml of 0.1M Bi(NO3)3 under stirring at about 80°C for 2 hours. The centrifuged and dried product was calcinated in a muffle furnace at 450°C to get pure α-Bi2O3. The characterized product photocatalytic activity was evaluated employing methyl orange (MeO) as model pollutant with 10 mg l-1 concentration at pH 7. The obtained product optical absorption edges located at 484 nm clearly revealed the photocatalyst excitation by visible light irradiation. The obtained yellow color photocatalyst accord with its strong absorption spectrum revealed the visible light absorption due to the band gap transition. The band gap energy of α-Bi2O3 was estimated to be 2.81 eV indicating the absorption of α-Bi2O3 in visible light region. The photocatalytic results of MeO degradation revealed that green synthesized Bi2O3 can effectively degrade 92% MeO within 240 min under visible light (>400 nm), which is slightly increased to that of chemically synthesized Bi2O3 (90%).

Keywords: green synthesis, bismuth oxide, photocatalytic activity, nano

Procedia PDF Downloads 193
518 Dynamic Variation in Nano-Scale CMOS SRAM Cells Due to LF/RTS Noise and Threshold Voltage

Authors: M. Fadlallah, G. Ghibaudo, C. G. Theodorou

Abstract:

The dynamic variation in memory devices such as the Static Random Access Memory can give errors in read or write operations. In this paper, the effect of low-frequency and random telegraph noise on the dynamic variation of one SRAM cell is detailed. The effect on circuit noise, speed, and length of time of processing is examined, using the Supply Read Retention Voltage and the Read Static Noise Margin. New test run methods are also developed. The obtained results simulation shows the importance of noise caused by dynamic variation, and the impact of Random Telegraph noise on SRAM variability is examined by evaluating the statistical distributions of Random Telegraph noise amplitude in the pull-up, pull-down. The threshold voltage mismatch between neighboring cell transistors due to intrinsic fluctuations typically contributes to larger reductions in static noise margin. Also the contribution of each of the SRAM transistor to total dynamic variation has been identified.

Keywords: low-frequency noise, random telegraph noise, dynamic variation, SRRV

Procedia PDF Downloads 155
517 Nanotechnology as a Futuristic Approach to Architecture with Special Reference to Chandigarh

Authors: Chaudhary Archana, Dhingra Poshika

Abstract:

The architecture of the world is at a crossroads with the advent of new technology. The issues of energy efficiency and global warming are getting important with the coming times. New technologies are making their mark. For the architecture profession, nanotechnology will greatly impact construction materials and their properties. Nanotechnology, the understanding and control of matter at a scale of one to one hundred billions of a meter, is bringing incredible changes to the materials and processes of buildings. Materials will behave in many different ways as we are able to more precisely control their properties at the nanoscale. It is precisely called the next industrial revolution. We live in an age where scientific progress continues to transform human lifestyle. This is evermore true when it comes to the progress being made in the field of nanotechnology. This science stands to change and advance the practice of design in a multitude of ways – where architectural progress is being made at the molecular level. The nanotechnology has already been adopted in various buildings across the world. What an impact it shall have on the futuristic architecture in Chandigarh, India shall be discussed in the paper. But before we hurtle off toward a nano-utopia, we need to step back and ask ourselves whether this is a direction in which we really want to go.

Keywords: building materials, energy efficiency, nanotechnology, sustainability

Procedia PDF Downloads 439
516 Electrochemistry of Metal Chalcogenides Semiconductor Materials; Theory and Practical Applications

Authors: Mahmoud Elrouby

Abstract:

Metal chalcogenide materials have wide spectrum of properties, for that these materials can be used in electronics, optics, magnetics, solar energy conversion, catalysis, passivation, ion sensing, batteries, and fuel cells. This work aims to, how can obtain these materials via electrochemical methods simply for further applications. The work regards in particular the systems relevant to the sulphur sub-group elements, i.e., sulphur, selenium, and tellurium. The role of electrochemistry in synthesis, development, and characterization of the metal chalcogenide materials and related devices is vital and important. Electrochemical methods as preparation tool offer the advantages of soft chemistry to access bulk, thin, nano film and epitaxial growth of a wide range of alloys and compounds, while as a characterization tool provides exceptional assistance in specifying the physicochemical properties of materials. Moreover, quite important applications and modern devices base their operation on electrochemical principles. Thereupon, our scope in the first place was to organize existing facts on the electrochemistry of metal chalcogenides regarding their synthesis, properties, and applications.

Keywords: electrodeposition, metal chacogenides, semiconductors, applications

Procedia PDF Downloads 275
515 3D Linear and Cyclic Homo-Peptide Crystals Forged by Supramolecular Swelling Self-Assembly

Authors: Wenliang Song, Yu Zhang, Hua Jin, Il Kim

Abstract:

The self-assembly of the polypeptide (PP) into well-defined structures at different length scales is both biomimetic relevant and fundamentally interesting. Although there are various reports of nanostructures fabricated by the self-assembly of various PPs, directed self-assembly of PP into three-dimensional (3D) hierarchical structure has proven to be difficult, despite their importance for biological applications. Herein, an efficient method has been developed through living polymerization of phenylalanine N-Carboxy anhydride (NCA) towards the linear and cyclic polyphenylalanine, and the new invented swelling methodology can form diverse hierarchical polypeptide crystals. The solvent-dependent self-assembly behaviors of these homopolymers were characterized by high-resolution imaging tools such as atomic force microscopy, transmission electron microscopy, scanning electron microscope. The linear and cyclic polypeptide formed 3D nano hierarchical shapes, such as a sphere, cubic, stratiform and hexagonal star in different solvents. Notably, a crystalline packing model was proposed to explain the formation of 3D nanostructures based on the various diffraction patterns, looking forward to give an insight for their dissimilar shape inflection during the self-assembly process.

Keywords: self-assembly, polypeptide, bio-polymer, crystalline polymer

Procedia PDF Downloads 211
514 Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-To-Peer Network

Authors: Muntadher Sallal, Gareth Owenson, Mo Adda, Safa Shubbar

Abstract:

Bitcoin is a digital currency based on a peer-to-peer network to propagate and verify transactions. Bitcoin is gaining wider adoption than any previous crypto-currency. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical topology can cause a delay overhead in information propagation, which makes the system vulnerable to double-spend attacks. Aiming at alleviating the propagation delay problem, this paper introduces proximity-aware extensions to the current Bitcoin protocol, named Master Node Based Clustering (MNBC). The ultimate purpose of the proposed protocol, that are based on how clusters are formulated and how nodes can define their membership, is to improve the information propagation delay in the Bitcoin network. In MNBC protocol, physical internet connectivity increases, as well as the number of hops between nodes, decreases through assigning nodes to be responsible for maintaining clusters based on physical internet proximity. We show, through simulations, that the proposed protocol defines better clustering structures that optimize the performance of the transaction propagation over the Bitcoin protocol. The evaluation of partition attacks in the MNBC protocol, as well as the Bitcoin network, was done in this paper. Evaluation results prove that even though the Bitcoin network is more resistant against the partitioning attack than the MNBC protocol, more resources are needed to be spent to split the network in the MNBC protocol, especially with a higher number of nodes.

Keywords: Bitcoin network, propagation delay, clustering, scalability

Procedia PDF Downloads 99
513 Cache Analysis and Software Optimizations for Faster on-Chip Network Simulations

Authors: Khyamling Parane, B. M. Prabhu Prasad, Basavaraj Talawar

Abstract:

Fast simulations are critical in reducing time to market in CMPs and SoCs. Several simulators have been used to evaluate the performance and power consumed by Network-on-Chips. Researchers and designers rely upon these simulators for design space exploration of NoC architectures. Our experiments show that simulating large NoC topologies take hours to several days for completion. To speed up the simulations, it is necessary to investigate and optimize the hotspots in simulator source code. Among several simulators available, we choose Booksim2.0, as it is being extensively used in the NoC community. In this paper, we analyze the cache and memory system behaviour of Booksim2.0 to accurately monitor input dependent performance bottlenecks. Our measurements show that cache and memory usage patterns vary widely based on the input parameters given to Booksim2.0. Based on these measurements, the cache configuration having least misses has been identified. To further reduce the cache misses, we use software optimization techniques such as removal of unused functions, loop interchanging and replacing post-increment operator with pre-increment operator for non-primitive data types. The cache misses were reduced by 18.52%, 5.34% and 3.91% by employing above technology respectively. We also employ thread parallelization and vectorization to improve the overall performance of Booksim2.0. The OpenMP programming model and SIMD are used for parallelizing and vectorizing the more time-consuming portions of Booksim2.0. Speedups of 2.93x and 3.97x were observed for the Mesh topology with 30 × 30 network size by employing thread parallelization and vectorization respectively.

Keywords: cache behaviour, network-on-chip, performance profiling, vectorization

Procedia PDF Downloads 174
512 Preparation and Visible Light Photoactivity of N-Doped ZnO/ZnS Photocatalysts

Authors: Nuray Güy, Mahmut Özacar

Abstract:

Semiconductor nanoparticles such as TiO₂ and ZnO as photocatalysts are very efficient catalysts for wastewater treatment by the chemical utilization of light energy, which is capable of converting the toxic and nonbiodegradable organic compounds into carbon dioxide and mineral acids. ZnO semiconductor has a wide bandgap energy of 3.37 eV and a relatively large exciton binding Energy (60 meV), thus can absorb only UV light with the wavelength equal to or less than 385 nm. It exhibits low efficiency under visible light illumination due to its wide band gap energy. In order to improve photocatalytic activity of ZnO under visible light, band gap of ZnO may be narrowed by doping such as N, C, S nonmetal ions and coupled two separate semiconductors possessing different energy levels for their corresponding conduction and valence bands. ZnS has a wider band gap (Eg=3.7 eV) than ZnO and generates electron–hole pairs by photoexcitation rapidly. In the present work, N doped ZnO/ZnS nano photocatalysts with visible-light response were synthesized by microwave-hydrothermal method using thiourea as N source. The prepared photocatalysts were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and UV–visible (UV–vis). The photocatalytic activities samples and undoped ZnO have been studied for the degradation of dye, and have also been compared with together.

Keywords: photocatalyst, synthesis, visible light, ZnO/ZnS

Procedia PDF Downloads 264
511 Synthesis and Characterization of Nanocellulose Based Bio-Composites

Authors: Krishnakant Bhole, Neerakallu D. Shivakumar, Shakti Singh Chauhan, Sanketh Tonannavar, Rajath S

Abstract:

Synthesis of natural-based composite materials is state of the art. This work discusses the preparation and characterization of cellulose nanofibers (CNF) extracted from the bamboo pulp using TEMPO-oxidization and high-pressure homogenization methods. Bio-composites are prepared using synthesized CNF and bamboo particles. Nanocellulose prepared is characterized using SEM and XRD for morphological and crystallinity analysis, and the formation of fibers at the nano level is ensured. Composite specimens are fabricated using these natural sources and subjected to tensile and flexural tests to characterize the mechanical properties such as modulus of elasticity (MOE), modulus of rupture (MOR), and interfacial strength. Further, synthesized nanocellulose is used as a binding agent to prepare particleboards using various natural sources like bamboo, areca nut, and banana in the form of fibers. From the results, it can be inferred that nanocellulose prepared from bamboo pulp acts as a binding agent for making bio-composites. Hence, the concept of using matrix and reinforcement derived from natural sources can be used to prepare green composites that are highly degradable.

Keywords: nanocellulose, biocomposite, CNF, bamboo

Procedia PDF Downloads 66
510 Investigation and Estimation of State of Health of Battery Pack in Battery Electric Vehicles-Online Battery Characterization

Authors: Ali Mashayekh, Mahdiye Khorasani, Thomas Weyh

Abstract:

The tendency to use the Battery-Electric vehicle (BEV) for the low and medium driving range or even high driving range has been growing more and more. As a result, higher safety, reliability, and durability of the battery pack as a component of electric vehicles, which has a great share of cost and weight of the final product, are the topics to be considered and investigated. Battery aging can be considered as the predominant factor regarding the reliability and durability of BEV. To better understand the aging process, offline battery characterization has been widely used, which is time-consuming and needs very expensive infrastructures. This paper presents the substitute method for the conventional battery characterization methods, which is based on battery Modular Multilevel Management (BM3). According to this Topology, the battery cells can be drained and charged concerning their capacity, which allows varying battery pack structures. Due to the integration of the power electronics, the output voltage of the battery pack is no longer fixed but can be dynamically adjusted in small steps. In other words, each cell can have three different states, namely series, parallel, and bypass in connection with the neighbor cells. With the help of MATLAB/Simulink and by using the BM3 modules, the battery string model is created. This model allows us to switch two cells with the different SoC as parallel, which results in the internal balancing of the cells. But if the parallel switching lasts just for a couple of ms, we can have a perturbation pulse which can stimulate the cells out of the relaxation phase. With the help of modeling the voltage response pulse of the battery, it would be possible to characterize the cell. The Online EIS method, which is discussed in this paper, can be a robust substitute for the conventional battery characterization methods.

Keywords: battery characterization, SoH estimation, RLS, BEV

Procedia PDF Downloads 132
509 The Fabrication of Scintillator Column by Hydraulic Pressure Injection Method

Authors: Chien Chon Chen, Chun Mei Chu, Chuan Ju Wang, Chih Yuan Chen, Ker Jer Huang

Abstract:

Cesiumiodide with Na doping (CsI(Na)) solution or melt is easily forming three- dimension dendrites on the free surface. The defects or bobbles form inside the CsI(Na) during the solution or melt solidification. The defects or bobbles can further effect the x-ray path in the CsI(Na) crystal and decrease the scintillation characteristics of CsI(Na). In order to enhance the CsI(Na) scintillated property we made single crystal of CsI(Na) column in the anodic aluminum oxide (AAO) template by hydraulic pressure injection method. It is interesting that when CsI(Na) melt is confined in the small AAO channels, the column grow as stable single column without any dendrites. The high aspect ratio (100~10000) of AAO and nano to sub-micron channel structure which is a suitable template for single of crystal CsI(Na) formation. In this work, a new low-cost approach to fabricate scintillator crystals using anodic aluminum oxide (AAO) rather than Si is reported, which can produce scintillator crystals with a wide range of controllable size to optimize their performance in X-ray detection.

Keywords: cesiumiodide, AAO, scintillator, crystal, X-ray

Procedia PDF Downloads 442
508 Synthesis and Characterization of Novel Hollow Silica Particle through DODAB Vesicle Templating

Authors: Eun Ju Park, Wendy Rusli, He Tao, Alexander M. Van Herk, Sanggu Kim

Abstract:

Hollow micro-/nano- structured materials have proven to be promising in wide range of applications, such as catalysis, drug delivery and controlled release, biotechnology, and personal and consumer care. Hollow sphere structures can be obtained through various templating approaches; colloid templates, emulsion templates, multi-surfactant templates, and single crystal templates. Vesicles are generally the self-directed assemblies of amphiphilic molecules including cationic, anionic, and cationic surfactants in aqueous solutions. The directed silica capsule formations were performed at the surface of dioctadecyldimethylammoniumbromide(DODAB) bilayer vesicles as soft template. The size of DODAB bilayer vesicles could be tuned by extrusion of a preheated dispersion of DODAB. The synthesized hollow silica particles were characterized by conventional TEM, cryo-TEM and SEM to determine the morphology and structure of particles and dynamic light scattering (DLS) method to measure the particle size and particle size distribution.

Keywords: characterization, DODAB, hollow silica particle, synthesis, vesicle

Procedia PDF Downloads 291
507 Behavior of Epoxy Insulator with Surface Defect under HVDC Stress

Authors: Qingying Liu, S. Liu, L. Hao, B. Zhang, J. D. Yan

Abstract:

HVDC technology is becoming increasingly popular due to its simplicity in topology and less power loss over long distance of power transmission, in comparison with HVAC technology. However, the dielectric behavior of insulators in the long term under HVDC stress is completely different from that under HVAC stress as a result of charge accumulation in a constant electric field. Insulators used in practical systems are never perfect in their structural conditions. Over time shallow cracks may develop on their surface. The presence of defects can lead to drastic change in their dielectric behaviour and thus increase the probability of surface flashover. In this contribution, experimental investigations have been carried out on the charge accumulation phenomenon on the surface of a rod insulator made of epoxy that is placed between two disk shaped electrodes at different voltage levels and in different gases (SF6, CO2 and N2). Many results obtained, such as, the two-dimensional electrostatic potential distribution along the insulator surface after the removal of the power source following a pre-defined period of application. The probe has been carefully calibrated before each test. Results show that surface charge distribution near the two disk shaped electrodes is not uniform in the circumferential direction, possibly due to the imperfect electrical connections between the embeded conductor in the insulator and the disk shaped electrodes. The axial length of this non-uniform region is experimentally determined, which provides useful information for shielding design. A charge transport model is also used to explain the formation of the long term electrostatic potential distribution under a constant applied voltage.

Keywords: HVDC, power systems, dielectric behavior, insulation, charge accumulation

Procedia PDF Downloads 205
506 Influence of Nanozeolite Particles on Improvement of Clayey Soil

Authors: A. Goodarzian, A. Ghasemipanah, R. Ziaie Moayed, H. Niroumand

Abstract:

The problem of soil stabilization has been one of the important issues in geotechnical engineering. Nowadays, nanomaterials have revolutionized many industries. In this research, improvement of the Kerman fine-grained soil by nanozeolite and nanobentonite additives separately has been investigated using Atterberg Limits and unconfined compression test. In unconfined compression test, the samples were prepared with 3, 5 and 7% nano additives, with 1, 7 and 28 days curing time with strain control method. Finally, the effect of different percentages of nanozeolite and nanobentonite on the geotechnical behavior and characteristics of Kerman fine-grained soil was investigated. The results showed that with increasing the amount of nanozeolite and also nanobentonite to fine-grained soil, the soil exhibits more compression strength. So that by adding 7% nanozeolite and nanobentonite with 1 day curing, the unconfined compression strength is 1.18 and 2.1 times higher than the unstabilized soil. In addition, the failure strain decreases in samples containing nanozeolite, whereas it increases in the presence of nanobentonite. Increasing the percentage of nanozeolite and nanobentonite also increased the elasticity modulus of soil.

Keywords: nanoparticles, soil improvement, clayey soil, unconfined compression stress

Procedia PDF Downloads 100
505 Determining the Electrospinning Parameters of Poly(ε-Caprolactone)

Authors: M. Kagan Keler, Sibel Daglilar, Isil Kerti, Oguzhan Gunduz

Abstract:

Electrospinning is a versatile way to occur fibers at nano-scale and polycaprolactone is a biomedical material which has a wide usage in cartilage defects and tissue regeneration. PCL is biocompatible and durable material which can be used in bio-implants. Therefore, electrospinning process was chosen as a fabrication method to get PCL fibers in an effective way because of its significant adjustments. In this research study, electrospinning parameters was evaluated during the producing of polymer tissue scaffolds. Polycaprolactone’s molecular weight was 80.000 Da and was employed as a tissue material in the electrospinning process. PCL was decomposed in dimethylformamid(DMF) and chloroform(CF) with the weight ratio of 1:1. Different compositions (1%, 3%, 5%, 10% and 20 %) of PCL was prepared in the laboratory conditions. All solvents with different percentages of PCL have been taken into the syringe and loaded into the electrospinning system. In electrospinning dozens of trial were applied to get homogeneously uniform scaffold samples. Taylor cone which is crucial point for electrospinning characteristic was occurred and changed in different voltages up to the material compositions’ conductivity. While the PCL percentages were increasing in the electrospinning, structure started to arise with droplets, which was an expressive problem for tissue scaffold. The vertical and horizontal layouts were applied to produce non-woven structures at all.

Keywords: tissue engineering, artificial scaffold, electrospinning, biocomposites

Procedia PDF Downloads 334
504 Design and Implementation of a Nano-Power Wireless Sensor Device for Smart Home Security

Authors: Chia-Chi Chang

Abstract:

Most battery-driven wireless sensor devices will enter in sleep mode as soon as possible to extend the overall lifetime of a sensor network. It is necessary to turn off unnecessary radio and peripheral functions, especially the radio unit always consumes more energy than other components during wireless communication. The microcontroller is the most important part of the wireless sensor device. It is responsible for the manipulation of sensing data and communication protocols. The microcontroller always has different sleep modes, each with a different level of energy usage. The deeper the sleep, the lower the energy consumption. Most wireless sensor devices can only enter the sleep mode: the external low-frequency oscillator is still running to wake up the sleeping microcontroller when the sleep timer expires. In this paper, our sensor device can enter the extended sleep mode: none of the oscillator is running and the wireless sensor device has the nanoampere consumption and self-awaking ability. Finally, these wireless sensor devices were deployed in a smart home security network.

Keywords: wireless sensor network, battery-driven, sleep mode, home security

Procedia PDF Downloads 284
503 Specific Colon Cancer Prophylaxis Using Dendritic Stem Cells and Gold Nanoparticles Functionalized with Colon Cancer Epitopes

Authors: Teodora Mocan, Matea Cristian, Cornel Iancu, Flaviu A. Tabaran, Florin Zaharie, Bartos Dana, Lucian Mocan

Abstract:

Colon cancer (CC) a lethal human malignancy, is one of the most commonly diagnosed cancer. With its high increased mortality rate, as well as low survival rate combined with high resistance to chemotherapy CC, represents one of the most important global health issues. In the presented research, we have developed a distinct nanostructured colon carcinoma vaccine model based on a nano-biosystem composed of 39 nm gold nanoparticles conjugated to colon cancer epitopes. We prove by means of proteomic analysis, immunocytochemistry, flow cytometry and hyperspectral microscopy that our developed nanobioconjugate was able to contribute to an optimal prophylactic effect against CC by promoting major histocompatibility complex mediated (MHC) antigen presentation by dendritic cells. We may conclude that the proposed immunoprophylactic approach could be more effective than the current treatments of CC because it promotes recognition of the tumoral antigens by the immune system.

Keywords: anticancer vaccine, colon cancer, gold nanoparticles, tumor antigen

Procedia PDF Downloads 431
502 Design and Development of Power Sources for Plasma Actuators to Control Flow Separation

Authors: Himanshu J. Bahirat, Apoorva S. Janawlekar

Abstract:

Plasma actuators are essential for aerodynamic flow separation control due to their lack of mechanical parts, lightweight, and high response frequency, which have numerous applications in hypersonic or supersonic aircraft. The working of these actuators is based on the formation of a low-temperature plasma between a pair of parallel electrodes by the application of a high-voltage AC signal across the electrodes, after which air molecules from the air surrounding the electrodes are ionized and accelerated through the electric field. The high-frequency operation is required in dielectric discharge barriers to ensure plasma stability. To carry out flow separation control in a hypersonic flow, the optimal design and construction of a power supply to generate dielectric barrier discharges is carried out in this paper. In this paper, it is aspired to construct a simplified circuit topology to emulate the dielectric barrier discharge and study its various frequency responses. The power supply can generate high voltage pulses up to 20kV at the repetitive frequency range of 20-50kHz with an input power of 500W. The power supply has been designed to be short circuit proof and can endure variable plasma load conditions. Its general outline is to charge a capacitor through a half-bridge converter and then later discharge it through a step-up transformer at a high frequency in order to generate high voltage pulses. After simulating the circuit, the PCB design and, eventually, lab tests are carried out to study its effectiveness in controlling flow separation.

Keywords: aircraft propulsion, dielectric barrier discharge, flow separation control, power source

Procedia PDF Downloads 102