Search results for: electrode materials
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7235

Search results for: electrode materials

6335 Wood Decay Fungal Strains Useful for Bio-Composite Material Production

Authors: C. Girometta, S. Babbini, R. M. Baiguera, D. S. Branciforti, M. Cartabia, D. Dondi, M. Pellegrini, A. M. Picco, E. Savino

Abstract:

Interest on wood decay fungi (WDF) has been increasing in the last year's thanks to the potentiality of this kind of fungi; research on new WDF strains has increased as well thus pointing out the key role of the culture collections. One of the most recent biotechnological application of WDF is the development of novel materials from natural or recycled resources. Based on different combinations of fungal species, substrate, and processing treatment involved (e.g. heat pressing), it is possible to achieve a wide variety of materials with different features useful for many industrial applications: from packaging to thermal and acoustic insulation. In comparison with the conventional ones, these materials represent a 100% natural and compostable alternative involving low amounts of energy in the production process. The purpose of the present work was to isolate and select WDF strains able to colonize and degrade different plant wastes thus producing a fungal biomass shapeable to achieve bio-composite materials. Strains were selected within the mycological culture collection of Pavia University (MicUNIPV, over 300 strains of WDF). The selected strains have been investigated with regards their ability to colonize and degrade plant residues from the local major cultivations (e.g. poplar, alfalfa, maize, rice, and wheat) and produce the fungal biomass. The degradation of the substrate was assessed by Thermogravimetric analysis (TGA) and Fourier Transform Infrared Spectroscopy (FTIR). Chemical characterization confirmed that TGA and FTIR are complementary techniques able to provide quality-quantitative information on compositional and structural variation that occurs during the transformation from the substrate to the bio-composite material. This pilot study provides a fundamental step to tune further applications in fungus-residues composite biomaterials.

Keywords: bio-composite material, lignocellulosic residues, sustainable materials, wood decay fungi

Procedia PDF Downloads 137
6334 Open Educational Resource in Online Mathematics Learning

Authors: Haohao Wang

Abstract:

Technology, multimedia in Open Educational Resources, can contribute positively to student performance in an online instructional environment. Student performance data of past four years were obtained from an online course entitled Applied Calculus (MA139). This paper examined the data to determine whether multimedia (independent variable) had any impact on student performance (dependent variable) in online math learning, and how students felt about the value of the technology. Two groups of student data were analyzed, group 1 (control) from the online applied calculus course that did not use multimedia instructional materials, and group 2 (treatment) of the same online applied calculus course that used multimedia instructional materials. For the MA139 class, results indicate a statistically significant difference (p = .001) between the two groups, where group 1 had a final score mean of 56.36 (out of 100), group 2 of 70.68. Additionally, student testimonials were discussed in which students shared their experience in learning applied calculus online with multimedia instructional materials.

Keywords: online learning, open educational resources, multimedia, technology

Procedia PDF Downloads 368
6333 Using Authentic and Instructional Materials to Support Intercultural Communicative Competence in ELT

Authors: Jana Beresova

Abstract:

The paper presents a study carried out in 2015-2016 within the national scheme of research - VEGA 1/0106/15 based on theoretical research and empirical verification of the concept of intercultural communicative competence. It focuses on the current conception concerning target languages teaching compatible with the Common European Framework of Reference for Languages: Learning, teaching, assessment. Our research had revealed how the concept of intercultural communicative competence had been perceived by secondary-school teachers of English in Slovakia before they were intensively trained. Intensive workshops were based on the use of both authentic and instructional materials with the goal to support interculturally oriented language teaching aimed at challenging thinking. The former concept that supported the development of the students´ linguistic knowledge and the use of a target language to obtain information about the culture of the country whose language learners were learning was expanded by the meaning-making framework which views language as a typical means by which culture is mediated. The goal of the workshop was to influence English teachers to better understand the concept of intercultural communicative competence, combining theory and practice optimally. The results of the study will be presented and analysed, providing particular recommendations for language teachers and suggesting some changes in the National Educational Programme from which English learners should benefit in their future studies or professional careers.

Keywords: authentic materials, English language teaching, instructional materials, intercultural communicative competence

Procedia PDF Downloads 264
6332 Predicting the Solubility of Aromatic Waste Petroleum Paraffin Wax in Organic Solvents to Separate Ultra-Pure Phase Change Materials (PCMs) by Molecular Dynamics Simulation

Authors: Fathi Soliman

Abstract:

With the ultimate goal of developing the separation of n-paraffin as phase change material (PCM) by means of molecular dynamic simulations, we attempt to predict the solubility of aromatic n-paraffin in two organic solvents: Butyl Acetate (BA) and Methyl Iso Butyl Ketone (MIBK). A simple model of aromatic paraffin: 2-hexadecylantharacene with amorphous molecular structure and periodic boundary conditions was constructed. The results showed that MIBK is the best solvent to separate ultra-pure phase change materials and this data was compatible with experimental data done to separate ultra-pure n-paraffin from waste petroleum aromatic paraffin wax, the separated n-paraffin was characterized by XRD, TGA, GC and DSC, moreover; data revealed that the n-paraffin separated by using MIBK is better as PCM than that separated using BA.

Keywords: molecular dynamics simulation, n-paraffin, organic solvents, phase change materials, solvent extraction

Procedia PDF Downloads 185
6331 Combining Impedance and Hydrodynamic Methods toward Hydrogen Evolution Reaction to Characterize Pt(pc), Pt5Gd, and Nanostructure Pd Electrocatalyst

Authors: Kun-Ting Song, Christian Schott, Peter Schneider, Sebastian Watzele, Regina Kluge, Elena Gubanova, Aliaksandr S. Bandarenka

Abstract:

The combination of electrochemical impedance spectroscopy (EIS) and the hydrodynamic technique like rotation disc electrode (RDE) provides a critical method for quantitively investigating mechanisms of hydrogen evolution reaction (HER) in acidic and alkaline media. Pt5Gd represented higher HER activities than polycrystalline Pt (Pt(pc)) by means of the surface strain effects. The model of the equivalent electric circuit to fit the impedance data under the RDE configurations is developed. To investigate the relative reaction contribution, the ratio of the charge transfer reactions of the Volmer-Heyrovsky and Volmer-Tafel pathways on Pt and Pt5Gd electrodes is determined. The ratio remains comparably similar in acidic media, but it changes in alkaline media with Volmer–Heyrovsky pathway dominating. This combined approach of EIS and RDE can help to study the electrolyte effects and other essential reactions for electrocatalysis in future work.

Keywords: hydrogen evolution reaction, electrochemical impedance spectroscopy, hydrodynamic methods, electrocatalysis, electrochemical interface

Procedia PDF Downloads 78
6330 Creation of GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) Nanoparticles Using Pulse Laser Ablation Method

Authors: Yong Pan, Li Wang, Xue Qiong Su, Dong Wen Gao

Abstract:

To date, nanomaterials have received extensive attention over the years because of their wide application. Various nanomaterials such as nanoparticles, nanowire, nanoring, nanostars and other nanostructures have begun to be systematically studied. The preparation of these materials by chemical methods is not only costly, but also has a long cycle and high toxicity. At the same time, preparation of nanoparticles of multi-doped composites has been limited due to the special structure of the materials. In order to prepare multi-doped composites with the same structure as macro-materials and simplify the preparation method, the GaxCo1-xZnSe0.4 (x = 0.1, 0.3, 0.5) nanoparticles are prepared by Pulse Laser Ablation (PLA) method. The particle component and structure are systematically investigated by X-ray diffraction (XRD) and Raman spectra, which show that the success of our preparation and the same concentration between nanoparticles (NPs) and target. Morphology of the NPs characterized by Transmission Electron Microscopy (TEM) indicates the circular-shaped particles in preparation. Fluorescence properties are reflected by PL spectra, which demonstrate the best performance in concentration of Ga0.3Co0.3ZnSe0.4. Therefore, all the results suggest that PLA is promising to prepare the multi-NPs since it can modulate performance of NPs.

Keywords: PLA, physics, nanoparticles, multi-doped

Procedia PDF Downloads 164
6329 Experimental Damping Performance of Composite Materials with Different Fibre Orientations

Authors: Ferhat Kadioglu

Abstract:

A clamped-free vibrating beam technique was used to evaluate dynamic properties of glass fiber reinforced polymer matrix composite. In the experiment, an electromagnetic shaker and a non-contact laser head were used to vibrate and to take the response of the specimens, respectively. Test results showed that damping and elastic modulus of the material, as dynamic properties, could be obtained successfully using this technique. It was found that the balanced and symmetric specimens with 45 degrees are the best for damping performance. It is believed that such results could be used for the modal design of aerospace structures.

Keywords: composite materials, damping values, dynamic properties, non-contact measurements

Procedia PDF Downloads 340
6328 Development of Nanostructured Materials for the Elimination of Emerging Pollutants in Water through Adsorption Processes

Authors: J. Morillo, Otal E., A. Caballero, R. M. Pereñiguez, J. Usero

Abstract:

The present work shows in the first place, the manufacture of the perovskitic material used as adsorbent, by means of two different methods to obtain two types of perovskites (LaFeO₃ and BiFeO₃). The results of this work show the characteristics of this manufactured material, as well as the synthesis yields obtained, achieving a better result for the self-combustion synthesis. Secondly, from the manufactured perovskites, an adsorption system has been developed, at the laboratory level, for the adsorption of the emerging pollutants Trimethoprim, Ciprofloxacin and Ibuprofen.

Keywords: nanostructured materials, emerging pollutants, water, adsorption processes

Procedia PDF Downloads 143
6327 Study of Electrocoagulation on the Elimination of Chromium in Waste Water From an Electroplating Bath Using Aluminium Electrodes

Authors: Salim Ahmed

Abstract:

Electrocoagulation has proven its effectiveness in industrial effluent treatment by eliminating pollutants, particularly metallic ones. The electrochemical processes that occur at aluminium electrodes give excellent performance. In this work, electrocoagulation tests were carried out on an industrial effluent from an electroplating bath located in Casablanca (Morocco). The aim was to remove chromium and reuse the purified water for other purposes within the company. To this end, we have optimised the operating parameters that affect the efficiency of electrocoagulation, such as electrical voltage, electrode material, stirring speed and distance between electrodes. We also evaluated these parameters. The effect on pH, conductivity, turbidity and chromium concentration. The tests were carried out in a perfectly stirred reactor on an industrial solution rich in chromium. The effluent concentration was 1000 mg/L of Cr6+. Chromium removal efficiency was determined for the following operating conditions: aluminium electrodes, regulated voltage of 6 volts and 12 volts, optimum stirring speed of 600 rpm and distance between electrodes of 2 cm. The sludge produced by electrocoagulation was characterised by X-ray diffractometry, infrared spectroscopy (IR) and scanning electron microscopy (SEM).

Keywords: wastewater, chromium, electrocoagulation, aluminium, aluminium hydroxide

Procedia PDF Downloads 81
6326 Water Repellent Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, water repellent, textiles, cotton

Procedia PDF Downloads 230
6325 Effect of Electrodes Spacing on Energy Consumption of Electrocoagulation Cells

Authors: Khalid S. Hashim, Andy Shaw, Rafid Al-Khaddar, Montserrat Ortoneda Pedrola

Abstract:

In spite of the acknowledged advantages of the electrocoagulation (EC) method to remove a wide range of pollutants from waters and wastewaters, its efficiency is limited by several operational parameters (such as electrolysis time, current density, electrode material, distance between electrodes, and water temperature). Hence, optimizing these key operating parameters is considered a vital step to remove a pollutant efficiently. In this context, the present study has been carried out to explore the influence of electrodes spacing on energy consumption, temperature of the water being treated, and iron removal from water. To achieve this target, iron containing synthetic water samples were electrolysed for 20 min, using a new flow column electrocoagulation reactor (FCER), at three different gaps between electrodes (5, 10, and 20 mm). These batch experiments were commenced at a constant current density of 1.5 mA/cm² and initial pH of 6. The obtained results demonstrated that increasing gap between electrodes negatively influenced the performance of the EC method. It was found that increasing the gap between electrodes from 5 to 20 mm increased the energy consumption from about 3.3 to 7.3 kW.h/m³, and water temperature from 20.2 to 22 °C, respectively. In addition, it has been found, after 20 min of electrolysing, that increasing the gap between electrodes from 5 to 20 mm increased the residual iron concentration from 0.05 to 1.01 mg/L, respectively.

Keywords: electrocoagulation, water, electrodes, iron

Procedia PDF Downloads 256
6324 Environmental Impact of Autoclaved Aerated Concrete in Modern Construction: A Case Study from the New Egyptian Administrative Capital

Authors: Esraa A. Khalil, Mohamed N. AbouZeid

Abstract:

Building materials selection is critical for the sustainability of any project. The choice of building materials has a huge impact on the built environment and cost of projects. Building materials emit huge amount of carbon dioxide (CO2) due to the use of cement as a basic component in the manufacturing process and as a binder, which harms our environment. Energy consumption from buildings has increased in the last few years; a huge amount of energy is being wasted from using unsustainable building and finishing materials, as well as from the process of heating and cooling of buildings. In addition, the construction sector in Egypt is taking a good portion of the economy; however, there is a lack of awareness of buildings environmental impacts on the built environment. Using advanced building materials and different wall systems can help in reducing heat consumption, the project’s initial and long-term costs, and minimizing the environmental impacts. Red Bricks is one of the materials that are being used widely in Egypt. There are many other types of bricks such as Autoclaved Aerated Concrete (AAC); however, the use of Red Bricks is dominating the construction industry due to its affordability and availability. This research focuses on the New Egyptian Administrative Capital as a case study to investigate the potential of the influence of using different wall systems such as AAC on the project’s cost and the environment. The aim of this research is to conduct a comparative analysis between the traditional and most commonly used bricks in Egypt, which is Red Bricks, and AAC wall systems. Through an economic and environmental study, the difference between the two wall systems will be justified to encourage the utilization of uncommon techniques in the construction industry to build more affordable, energy efficient and sustainable buildings. The significance of this research is to show the potential of using AAC in the construction industry and its positive influences. The study analyzes the factors associated with choosing suitable building materials for different projects according to the need and criteria of each project and its nature without harming the environment and wasting materials that could be saved or recycled. The New Egyptian Administrative Capital is considered as the country’s new heart, where ideas regarding energy savings and environmental benefits are taken into consideration. Meaning that, Egypt is taking good steps to move towards more sustainable construction. According to the analysis and site visits, there is a potential in reducing the initial costs of buildings by 12.1% and saving energy by using different techniques up to 25%. Interviews with the mega structures project engineers and managers reveal that they are more open to introducing sustainable building materials that will help in saving the environment and moving towards green construction as well as to studying more effective techniques for energy conservation.

Keywords: AAC blocks, building material, environmental impact, modern construction, new Egyptian administrative capital

Procedia PDF Downloads 115
6323 Evaluation of P300 and CNV Changes in Patients with Essential Tremor

Authors: Sehur Sibel Ozkaynak, Zakir Koc, Ebru Barcın

Abstract:

Essential tremor (ET) is one of the most common movement disorders and has long been considered a monosymptomatic disorder. While ET has traditionally been categorized as a pure motor disease, cross-sectional and longitudinal studies of cognition in ET have been demonstrated that these patients may have cognitive dysfunction. We investigated the neuro physiological aspects of cognition in ET, using event-related potentials (ERPs).Twenty patients with ET and 20 age-education and sex matched healthy controls underwent a neuro physiological evaluation. P300 components and Contingent Negative Variation (CNV) were recorded. The latencies and amplitudes of the P300 and CNV were evaluated. P200-N200 amplitude was significantly smaller in the ET group, while no differences emerged between patients and controls in P300 latencies. CNV amplitude was significantly smaller at Cz electrode site in the ET group. No differences were observed between in the two groups in CNV latencies. As a result, P300 and CNV parameters did not show significant differences between in the two groups, does not mean that there aren't mild cognitive changes in ET patients. In this regard, there is a need to further studies using electro physiological tests related to cognitive changes in ET patients.

Keywords: cognition, essential tremor, event related potentials

Procedia PDF Downloads 279
6322 Laser-Ultrasonic Method for Measuring the Local Elastic Moduli of Porosity Isotropic Composite Materials

Authors: Alexander A. Karabutov, Natalia B. Podymova, Elena B. Cherepetskaya, Vladimir A. Makarov, Yulia G. Sokolovskaya

Abstract:

The laser-ultrasonic method is realized for quantifying the influence of porosity on the local Young’s modulus of isotropic composite materials. The method is based on a laser generation of ultrasound pulses combined with measurement of the phase velocity of longitudinal and shear acoustic waves in samples. The main advantage of this method compared with traditional ultrasonic research methods is the efficient generation of short and powerful probing acoustic pulses required for reliable testing of ultrasound absorbing and scattering heterogeneous materials. Using as an example samples of a metal matrix composite with reinforcing microparticles of silicon carbide in various concentrations, it is shown that to provide an effective increase in Young’s modulus with increasing concentration of microparticles, the porosity of the final sample should not exceed 2%.

Keywords: laser ultrasonic, longitudinal and shear ultrasonic waves, porosity, composite, local elastic moduli

Procedia PDF Downloads 344
6321 Comparison of Efficient Production of Small Module Gears

Authors: Vaclav Musil, Robert Cep, Sarka Malotova, Jiri Hajnys, Frantisek Spalek

Abstract:

The new designs of satellite gears comprising a number of small gears pose high requirements on the precise production of small module gears. The objective of the experimental activity stated in this article was to compare the conventional rolling gear cutting technology with the modern wire electrical discharge machining (WEDM) technology for the production of small module gear m=0.6 mm (thickness of 2.5 mm and material 30CrMoV9). The WEDM technology lies in copying the profile of gearing from the rendered trajectory which is then transferred to the track of a wire electrode. During the experiment, we focused on the comparison of these production methods. Main measured parameters which significantly influence the lifetime and noise was chosen. The first parameter was to compare the precision of gearing profile in respect to the mathematic model. The second monitored parameter was the roughness and surface topology of the gear tooth side. The experiment demonstrated high accuracy of WEDM technology, but a low quality of machined surface.

Keywords: precision of gearing, small module gears, surface topology, WEDM technology

Procedia PDF Downloads 226
6320 Green Synthesized Palladium Loaded Titanium Nanotube Arrays for Simultaneous Azo-Dye Degradation and Hydrogen Production

Authors: Yen-Ping Peng, Ku-Fan Chen, Ken-Lin Chang, Jian Sun

Abstract:

In this study, palladium loaded titanium dioxide nanotube arrays (Pd/TNAs) was successfully synthesized by anodic oxidation etching method combined with microwave hydrothermal method, using tea or coffee as a green reductant. Pd/TNAs was employed as an electrode in a photoelectrochemcial (PEC) system to simultaneously remove azo-dye and to generate hydrogen in the anodic and cathodic chamber, respectively. The chemical and physical properties of as-synthesized Pd/TNAs were characterized by scanning electron microscopy (SEM), ultraviolet–visible spectroscopy (UV-vis), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). SEM image indicates the diameter and the length of Pd/TNAs were approximately 300 nm and 2.5 μm, respectively. XPS analyses indicate that 1.13% (atomic %) of Pd was loaded onto the surface of TNAs. UV-vis results show that the band gap of TNAs was reduced from 3.2 eV to 2.37 eV after Pd loading. In addition, the electrochemical performances of Pd/TNAs were investigated by photocurrent density test and electrochemical impedance spectroscopy (EIS). The photocurrent (4.0 mA/cm²) of Pd /TNAs was higher than that of the uncoated TNAs (1.4 mA/cm²) at a bias potential of 1 V (vs. Ag/AgCl), indicating that Pd/TNAs-C can effectively separate photogenerated electrons and holes. The mechanism of our PEC system was proposed and discussed in detail in this study.

Keywords: Pd/TNAs, photoelectrochemical, azo-dye degradation, hydrogen generation

Procedia PDF Downloads 420
6319 Resin Finishing of Cotton: Teaching and Learning Materials

Authors: C. W. Kan

Abstract:

Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.

Keywords: learning materials, resin, textiles, wrinkle

Procedia PDF Downloads 251
6318 High-Throughput Screening and Selection of Electrogenic Microbial Communities Using Single Chamber Microbial Fuel Cells Based on 96-Well Plate Array

Authors: Lukasz Szydlowski, Jiri Ehlich, Igor Goryanin

Abstract:

We demonstrate a single chamber, 96-well-plated based Microbial Fuel Cell (MFC) with printed, electronic components. This invention is aimed at robust selection of electrogenic microbial community under specific conditions, e.g., electrode potential, pH, nutrient concentration, salt concentration that can be altered within the 96 well plate array. This invention enables robust selection of electrogenic microbial community under the homogeneous reactor, with multiple conditions that can be altered to allow comparative analysis. It can be used as a standalone technique or in conjunction with other selective processes, e.g., flow cytometry, microfluidic-based dielectrophoretic trapping. Mobile conductive elements, like carbon paper, carbon sponge, activated charcoal granules, metal mesh, can be inserted inside to increase the anode surface area in order to collect electrogenic microorganisms and to transfer them into new reactors or for other analytical works. An array of 96-well plate allows this device to be operated by automated pipetting stations.

Keywords: bioengineering, electrochemistry, electromicrobiology, microbial fuel cell

Procedia PDF Downloads 135
6317 Mechanical Behaviour of Sisal Fibre Reinforced Cement Composites

Authors: M. Aruna

Abstract:

Emphasis on the advancement of new materials and technology has been there for the past few decades. The global development towards using cheap and durable materials from renewable resources contributes to sustainable development. An experimental investigation of mechanical behaviour of sisal fiber-reinforced concrete is reported for making a suitable building material in terms of reinforcement. Fibre reinforced composite is one such material, which has reformed the concept of high strength. Sisal fibres are abundantly available in the hot areas. The sisal fiber has emerged as a reinforcing material for concretes, used in civil structures. In this work, properties such as hardness and tensile strength of sisal fibre reinforced cement composites with 6, 12, 18, and 24% by weight of sisal fibres were assessed. Sisal fiber reinforced cement composite slabs with long sisal fibers were manufactured using a cast hand layup technique. Mechanical response was measured under tension. The high energy absorption capacity of the developed composite system was reflected in high toughness values under tension respectively.

Keywords: sisal fibre, fiber-reinforced concrete, mechanical behaviour, composite materials

Procedia PDF Downloads 253
6316 Experimental Research of Corrosion Resistance Desalination Plant Pipe According to Weld Overlay Layers

Authors: Ryu Wonjin, Choi Hyeok, Park Joonhong

Abstract:

Overlay welding for improving surface properties is a method of the surface treatments which improve surface properties of material by welding materials of alloy having corrosion resistance on the basic material surface. Overlay welding affects contents of chemical components and weld hardness from different parts by dilution of the lamination layer thickness, and it determines surface properties. Therefore, overlay welding has to take into account thickness of the lamination layers with the process. As a result in this study examined contents of Fe, weldability of the base metal and monel materials, hardness and surface flatness from different parts according to each the lamination layer parameters by overlay welding monel materials with corrosion resources to the base material of carbon steel. Through this, evaluated effect by the lamination layer parameters of welding and presented decision methods of the lamination layer parameters of the overlay welding by the purpose of use.

Keywords: clad pipe, lamination layer parameters, monel, overlay welding

Procedia PDF Downloads 266
6315 Utilization of Waste Crushed Tile as Coarse Aggregate in Concrete

Authors: Harkaranjit Singh, Arun Kumar

Abstract:

Depletion of natural resources is a common phenomenon in developing countries like India due to rapid urbanization and industrialization involving construction of infrastructure and other amenities. In view of this, people have started searching for suitable other viable alternative materials for concrete so that the existing natural resources could be preserved to the possible extent for the future generation. In this process, different industrial waste materials such as fly ash, blast furnace slag, quarry dust, tile waste, bricks, broken glass waste, waste aggregate from demolition of structures, ceramic insulator waste, etc. have been tried as a viable substitute material to the conventional materials in concrete and has also been succeeded. This paper describes the studies conducted on strength characteristics of concrete made with utilizing of crushed tiles as a coarse aggregate. The waste crushed tiles can be used as coarse aggregates with the replacement ratio of 0, 50, 75 and 100% were used. Mechanical and physical tests were conducted on specimens. It was found that, the concrete made of waste ceramic tile aggregate produced more strength in compression, and flexure.

Keywords: compressive strength, flexural strength, waste crushed tile, concrete

Procedia PDF Downloads 398
6314 Numerical Analysis of Laminar Flow around Square Cylinders with EHD Phenomenon

Authors: M. Salmanpour, O. Nourani Zonouz

Abstract:

In this research, a numerical simulation of an Electrohydrodynamic (EHD) actuator’s effects on the flow around a square cylinder by using a finite volume method has been investigated. This is one of the newest ways for controlling the fluid flows. Two plate electrodes are flush-mounted on the surface of the cylinder and one wire electrode is placed on the line with zero angle of attack relative to the stagnation point and excited with DC power supply. The discharge produces an electric force and changes the local momentum behaviors in the fluid layers. For this purpose, after selecting proper domain and boundary conditions, the electric field relating to the problem has been analyzed and then the results in the form of electrical body force have been entered in the governing equations of fluid field (Navier-Stokes equations). The effect of ionic wind resulted from the Electrohydrodynamic actuator, on the velocity, pressure and the wake behind cylinder has been considered. According to the results, it is observed that the fluid flow accelerates in the nearest wall of the frontal half of the cylinder and the pressure difference between frontal and hinder cylinder is increased.

Keywords: CFD, corona discharge, electro hydrodynamics, flow around square cylinders, simulation

Procedia PDF Downloads 466
6313 The Effect of Nanoclay on Long Term Performance of Asphalt Concrete Pavement

Authors: A. Khodadadi, Hasani, Salehi

Abstract:

The advantages of using modified asphalt binders are widely recognized—primarily, improved rutting resistance, reduced fatigue cracking and less cold-temperature cracking. Nanoclays are known to enhance the properties of many polymers. Nanoclays are used to improve modulus and tensile strength, flame resistance and thermal and structural properties of many materials. This paper intends to investigate the application and development of nano-technological concepts for bituminous materials and asphalt pavements. The application of nano clay on the fatigue life of asphalt pavement have not been yet thoroughly understood. In this research, two type of highway asphalt materials, dense Marshall specimens, with 2% nano clay and without nano clay, were employed for the fatigue behavior of the asphalt pavement.The effect of nano additive on the performance of flexible pavements has been investigated through the indirect tensile test for the samples prepared with 2% nano clay and without nano clay in four stress levels from 200–500 kPa. The primary results indicated samples with 2% nano clay have almost double or even more fatigue life in most of stress levels.

Keywords: Nano clay, Asphalt, fatigue life, pavement

Procedia PDF Downloads 445
6312 Deformation and Strength of Heat-Shielding Materials in a Long-Term Storage of Aircraft

Authors: Lyudmila L. Gracheva

Abstract:

Thermal shield is a multi-layer structure that consists of layers made of different materials. The use of composite materials (CM) reinforced with carbon fibers in rocket technologies (shells, bearings, wings, fairings, inter-step compartments, etc.) is due to a possibility of reducing the weight while increasing a structural strength. Structures made of a unidirectional carbon fiber reinforced plastic based on an epoxy resin are used as load-bearing skins for aircraft fairings. The results of an experimental study of the physical and mechanical properties of epoxy carbon fiber reinforced plastics depending on temperature for different storage times of products are presented. With an increasing temperature, the physical and mechanical properties of CM are determined by the thermal and deformation properties of the components and the geometry of their distribution. Samples for the study were cut from natural skins of the head fairings.

Keywords: composite material, thermal deformation, carbon fiber, heat shield, epoxy resin, thermal expansion

Procedia PDF Downloads 55
6311 A Contactless Capacitive Biosensor for Muscle Activity Measurement

Authors: Charn Loong Ng, Mamun Bin Ibne Reaz

Abstract:

As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.

Keywords: contactless, capacitive, biosensor, electromyography

Procedia PDF Downloads 444
6310 Effects of Fermentation Techniques on the Quality of Cocoa Beans

Authors: Monday O. Ale, Adebukola A. Akintade, Olasunbo O. Orungbemi

Abstract:

Fermentation as an important operation in the processing of cocoa beans is now affected by the recent climate change across the globe. The major requirement for effective fermentation is the ability of the material used to retain sufficient heat for the required microbial activities. Apart from the effects of climate on the rate of heat retention, the materials used for fermentation plays an important role. Most Farmers still restrict fermentation activities to the use of traditional methods. Improving on cocoa fermentation in this era of climate change makes it necessary to work on other materials that can be suitable for cocoa fermentation. Therefore, the objective of this study was to determine the effects of fermentation techniques on the quality of cocoa beans. The materials used in this fermentation research were heap-leaves (traditional), stainless steel, plastic tin, plastic basket and wooden box. The period of fermentation varies from zero days to 10 days. Physical and chemical tests were carried out for variables in quality determination in the samples. The weight per bean varied from 1.0-1.2 g after drying across the samples and the major color of the dry beans observed was brown except with the samples from stainless steel. The moisture content varied from 5.5-7%. The mineral content and the heavy metals decreased with increase in the fermentation period. A wooden box can conclusively be used as an alternative to heap-leaves as there was no significant difference in the physical features of the samples fermented with the two methods. The use of a wooden box as an alternative for cocoa fermentation is therefore recommended for cocoa farmers.

Keywords: fermentation, effects, fermentation materials, period, quality

Procedia PDF Downloads 198
6309 Experimental Study on Mechanical Properties of Commercially Pure Copper Processed by Severe Plastic Deformation Technique-Equal Channel Angular Extrusion

Authors: Krishnaiah Arkanti, Ramulu Malothu

Abstract:

The experiments have been conducted to study the mechanical properties of commercially pure copper processing at room temperature by severe plastic deformation using equal channel angular extrusion (ECAE) through a die of 90oangle up to 3 passes by route BC i.e. rotating the sample in the same direction by 90o after each pass. ECAE is used to produce from existing coarse grains to ultra-fine, equiaxed grains structure with high angle grain boundaries in submicron level by introducing a large amount of shear strain in the presence of hydrostatic pressure into the material without changing billet shape or dimension. Mechanical testing plays an important role in evaluating fundamental properties of engineering materials as well as in developing new materials and in controlling the quality of materials for use in design and construction. Yield stress, ultimate tensile stress and ductility are structure sensitive properties and vary with the structure of the material. Microhardness and tensile tests were carried out to evaluate the hardness, strength and ductility of the ECAE processed materials. The results reveal that the strength and hardness of commercially pure copper samples improved significantly without losing much ductility after each pass.

Keywords: equal channel angular extrusion, severe plastic deformation, copper, mechanical properties

Procedia PDF Downloads 182
6308 Determinants of Smallholder Farmers' Intention to Adopt Jatropha as Raw Material for Biodiesel Production: A Proposed Model for Nigeria

Authors: Abdulsalam Mas’ud

Abstract:

Though Nigerian Biofuel Policy and Incentive was introduced in 2007, however, little if any is known about the impact of such policy for biodiesel development in Nigeria. It can be argued that lack of raw materials is one of the important factors that hinder the proper implementation of the policy. In line with this argument, this study aims to explore the determinants of smallholder farmers’ intention to adopt Jatropha as raw materials for biodiesel development in northern Nigeria, with Jigawa State as area of study. The determinants proposed for investigation covers personal factors, physical factors, institutional factors, economic factors, risk and uncertainty factors as well as social factors. The validation of the proposed model will have the implication of guiding policymakers towards enhancement of farmers’ participation in the Jatropha project for biodiesel raw materials production. The eventual byproducts of the proposed model validation and implementation will be employment generation, poverty reduction, combating dessert encroachment, economic diversification to renewable energy sources and electricity generation.

Keywords: adoption, biodiesel, factors, jatropha

Procedia PDF Downloads 298
6307 Study of Microstructure of Weldment Obtained by Submerged Arc Welding (SAW) on IS 2062 Grade B Mild Steel Plate at Zero Degree Celsius

Authors: Ajay Biswas, Swapan Bhaumik, Abhijit Bhowmik

Abstract:

Present experiment has been carried out to study the microstructure of weldment obtained by submerged arc welding on mild steel plate at zero degree Celsius. To study this, bead on plate welding is done by submerged arc welding on the sample plate of heavy duty mild steel of designation IS 2062 grade B, fitted on the special fixture ensuring the plate temperature at zero degree Celsius. Sixteen numbers of such samples are welded by varying the most influencing parameters viz. travel speed, voltage, wire feed rate and electrode stick-out at four different levels. Taguchi’s design of experiment is applied by selecting Taguchi's L16 orthogonal array to restrict the number of experimental runs. Cross sectioned samples are polished and etched to view the weldment. Finally, different zone of the weldment is observed by optical microscope. From the type of microstructure of weldment it is concluded that submerged arc welding is feasible at zero degree Celsius on mild steel plate.

Keywords: Submerged Arc Welding, zero degree Celsius, Taguchi’s design of experiment, microstructure of weldment

Procedia PDF Downloads 437
6306 Anion Exchange Nanocomposite Membrane Doped with ZnO-Nanoparticles for Direct Methanol Alkaline Fuel Cell

Authors: Phumlani Msomi, Patrick Nonjola, Patrick Ndungu, James Ramontja

Abstract:

A series of quaternized poly (2.6 dimethyl – 1.4 phenylene oxide)/ polysulfone (QPPO/PSF) blend anion exchange membrane (AEM) were successfully fabricated and characterized for methanol alkaline fuel cell application. Zinc Oxide (ZnO) nanoparticles were introduced in the polymer matrix to enhance the intrinsic properties of the AEM. To confirm successful fabrication, FT-IR spectroscopy and nuclear magnetic resonance (¹H NMR and HMBC ¹⁵N NMR) were used. The membrane properties were enhanced by the addition of ZnO nanoparticles. The addition of ZnO nanoparticles resulted to a higher ion exchange capacity (IEC) of 3.72 mmol.g⁻¹and a 30-fold ion conductivity (IC) increase of the nanocomposite due to no (zero (0)) methanol permeability at 30 °C and increased water uptake. The QPPO/PSF/2% ZnO composite retained over 80 % of its initial IC when evaluated for alkaline stability at room temperature. The maximum power output reached for the membrane electrode assembly (MEA) constructed with QPPO/PSF/2%ZnO is 69 mW.cm⁻², which is about three times more than the parent QPPO membrane. The above results indicate that QPPO/PSF-ZnO is a good candidate as an anion exchange membrane for fuel cell application.

Keywords: anion exchange membrane, fuel cell, zinc oxide, nanocomposite

Procedia PDF Downloads 267