Search results for: mitochondria membrane potential
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12148

Search results for: mitochondria membrane potential

11278 Investigation of Corrosion of Steel Buried in Unsaturated Soil in the Presence of Cathodic Protection: The Modified Voltammetry Technique

Authors: Mandlenkosi G. R. Mahlobo, Peter A. Olubambi, Philippe Refait

Abstract:

The aim of this study was to use voltammetry as a method to understand the behaviour of steel in unsaturated soil in the presence of cathodic protection (CP). Three carbon steel coupons were buried in artificial soil wetted at 65-70% of saturation for 37 days. All three coupons were left at open circuit potential (OCP) for the first seven days in the unsaturated soil before CP, which was only applied on two of the three coupons at the protection potential -0.8 V vs Cu/CuSO₄ for the remaining 30 days of the experiment. Voltammetry was performed weekly on the coupon without CP, while electrochemical impedance spectroscopy (EIS) was performed daily to monitor and correct the applied CP potential from the ohmic drop. Voltammetry was finally performed on the last day on the coupons under CP. All the voltammograms were modeled with mathematical equations in order to compute the electrochemical parameters and subsequently deduced the corrosion rate of the steel coupons. For the coupon without CP, the corrosion rate was determined at 300 µm/y. For the coupons under CP, the residual corrosion rate under CP was estimated at 12 µm/y while the corrosion rate of the coupons, after interruption of CP, was estimated at 25 µm/y. This showed that CP was efficient due to two effects: a direct effect from the decreased potential and an induced effect associated with the increased interfacial pH that promoted the formation of a protective layer on the steel surface.

Keywords: carbon steel, cathodic protection, voltammetry, unsaturated soil, Raman spectroscopy

Procedia PDF Downloads 60
11277 Biocontrol Potential of Trichoderma sp. against Macrophomina phaseolina

Authors: Jayarama Reddy, Anand S., H., Sundaram, Jeldi Hemachandran

Abstract:

Forty two strains of Trichoderma sp. were isolated from cultivated lands around Bangalore and analyzed for their antagonistic potential against Macrophomina phaseolina. The potential of biocontrol agents ultimately lies in their capacity to control pathogens in vivo. Bioefficacy studies were hence conducted using chickpea (Cicer arientum c.v. Annigeri) as an experimental plant by the roll paper towel method. Overall the isolates T6, T35, T30, and T25 showed better antagonistic potential in addition to enhancing plant growth. The production of chitinases to break down the mycelial cell walls of fungal plant pathogens has been implicated as a major cause of biocontrol activity. In order to study the mechanism of biocontrol against Macrophomina phaseolina, ten better performing strains were plated on media, amended with colloidal chitin and Sclerotium rolfsii cell wall extract. All the isolates showed chitinolytic activity on day three as well as day five. Production of endochitinase and exochitinase were assayed in liquid media using colloidal chitin amended broth. Strains T35 and T6 displayed maximum endochitinase and exochitinase activity. Although all strains exhibited cellulase activity, the quantum of enzyme produced was higher in T35 and T6. The results also indicate a positive correlation between enzyme production and bioefficacy.

Keywords: biocontrol, bioefficacy, cellulase, chitinase

Procedia PDF Downloads 371
11276 A Neurofeedback Learning Model Using Time-Frequency Analysis for Volleyball Performance Enhancement

Authors: Hamed Yousefi, Farnaz Mohammadi, Niloufar Mirian, Navid Amini

Abstract:

Investigating possible capacities of visual functions where adapted mechanisms can enhance the capability of sports trainees is a promising area of research, not only from the cognitive viewpoint but also in terms of unlimited applications in sports training. In this paper, the visual evoked potential (VEP) and event-related potential (ERP) signals of amateur and trained volleyball players in a pilot study were processed. Two groups of amateur and trained subjects are asked to imagine themselves in the state of receiving a ball while they are shown a simulated volleyball field. The proposed method is based on a set of time-frequency features using algorithms such as Gabor filter, continuous wavelet transform, and a multi-stage wavelet decomposition that are extracted from VEP signals that can be indicative of being amateur or trained. The linear discriminant classifier achieves the accuracy, sensitivity, and specificity of 100% when the average of the repetitions of the signal corresponding to the task is used. The main purpose of this study is to investigate the feasibility of a fast, robust, and reliable feature/model determination as a neurofeedback parameter to be utilized for improving the volleyball players’ performance. The proposed measure has potential applications in brain-computer interface technology where a real-time biomarker is needed.

Keywords: visual evoked potential, time-frequency feature extraction, short-time Fourier transform, event-related spectrum potential classification, linear discriminant analysis

Procedia PDF Downloads 132
11275 Root Cause Analysis of Surveillance Quality in Tanjung Priok Port to Prevent Epidemic Potential Disease as a Form of Bioterrorism Threat

Authors: Dina A. Amu, Fifi N. Afifah, Catur Rosidati, Tirton Nefianto

Abstract:

Indonesia was shaken up by the avian influenza cases that had caused the country suffered losses of millions of dollars. The avian influenza case had even been suspected as a bioterrorism attack since it was an uncommon case in epidemiology. Furthermore, this avian influenza virus is a high pathogenic one and Indonesia has the highest case of fatality rate in the world. Bioterrorism threats or epidemic potential disease outbreaks currently does not exist in Tanjung Priok port yet. However, the surveillance system enhancement on epidemic potential diseases should be taken as a prevention, especially because Indonesia is currently facing the ASEAN Economic Society (AES). Therefore, this research evaluates the health surveillance system which is organized by Control, Quarantine and Surveillance Department, Health Office of Tanjung Priok Port. This study uses qualitative-evaluative method which utilizes Urgency Seriousness Growth (USG) method to determine priority issues and Root Cause analysis to determine the cause of prior problem. The result of this research shows that the implementation of epidemic potential disease surveillance in Tanjung Priok port has not done in the best possible way. It is because the lack of time allocation and the succinctness of the check list of ship's environmental health inspection. Therefore, Health Ministry of Indonesia should recruit more employees at the health office of Tanjung Priok port, hold a simulation of ship's inspection and simplify the list for ship's environmental health inspection.

Keywords: surveillance, epidemic potential disease, port health, bioterrorism

Procedia PDF Downloads 361
11274 Emblica officinalis Fruit Extract Ameliorates Cisplatin-Induced Nephrotoxicity in Experimental Rats

Authors: Prerna Kalra, Surender Singh

Abstract:

Cisplatin is the most common chemotherapeutic agent used in different solid tumors, but its main limiting factor is dose-dependent nephrotoxicity by generating reactive oxygen species, by stimulating inflammatory and apoptotic pathways. Additional adjuvant therapies to decrease the toxicity of this chemotherapeutic drug are essential. This study was designed to evaluate the protective role of Emblica officinalis Geartn (Indian gooseberry) against cisplatin induced nephrotoxicity. Emblica officinalis was orally administered to Wistar rats (n=6) for 10 days in 50, 100 and 200mg/kg body weight. On day 7, 8mg/kg of cisplatin was administered intra-peritoneally to rats in all groups. Serum creatinine, blood urea nitrogen and antioxidant levels were measured on day10. The renal damage was evaluated by histopathological and transmission electron microscopy. We found that 200mg/kg dose of Emblica officinalis significantly inhibited the elevation of biochemical parameters i.e. serum creatinine, blood urea nitrogen, oxidant stress marker (malondialdehyde) and increased the reduced levels of antioxidant marker (endogenous glutathione and superoxide dismutase). Cisplatin treated rats have shown acute tubular necrosis and infiltration of inflammatory cells in rat kidney which was reversed after treating the animals with Emblica officinalis in the treatment group. In ultrastructural changes cisplatin treated group showed the damaged mitochondria (M) with dissolved cristae and large number of lysosomes (L) and vacuole (V) formation in tubular epithelial cells. EOE administered group showed visible cristae formation and sign of autophagy vacuoles at a dose of 200mg/kg. Further in-silico studies revealed that ellagic acid is responsible for its nephroprotective effect. The above findings conclude that the Emblica officinalis may be used as an adjuvant therapy in cisplatin induced nephrotoxicity.

Keywords: antioxidant, cisplatin, Emblica officinalis, in silico, nephrotoxicity

Procedia PDF Downloads 286
11273 Role of Biotechnology to Reduce Climate - Induced Impact

Authors: Sandani Muthukumarana, Malith Shehan Keraminiyage, Pavithra Rathnasiri

Abstract:

Climate change is one of the most pressing issues facing our generation. However, it also presents an opportunity to grow the economy using biotechnology. Biotechnology offers a variety of solutions that can help mitigate the effects of global warming. Despite this, there is a lack of research on the potential and challenges associated with the further use of biotechnology to combat the impacts of climate change. To address this gap, it is essential to investigate the current context surrounding the use of biotechnology for climate change mitigation, including potential applications, current practices, and existing challenges. By reviewing the existing literature on these perspectives, this paper aims to provide a comprehensive understanding of the potential for biotechnology to mitigate the hazards of climate change. The use of biotechnology to mitigate the effects of climate change will be made easier as a result, and this will lay the groundwork for further study and actual initiatives in this field. Biotechnology can play a crucial role in mitigating the impacts of climate change. It offers a range of solutions, such as genetically modified crops, bioremediation, and bioenergy, that can help reduce greenhouse gas emissions, enhance carbon sequestration, and increase climate resilience. By utilizing biotechnology, we can reduce the negative impacts of climate change and create a more sustainable future. According to this knowledge, researchers can harness the potential of biotechnology to fight climate change and build a more sustainable future for future generations.

Keywords: biotechnology, impact, solutions, climate changes

Procedia PDF Downloads 91
11272 Acrylic Microspheres-Based Microbial Bio-Optode for Nitrite Ion Detection

Authors: Siti Nur Syazni Mohd Zuki, Tan Ling Ling, Nina Suhaity Azmi, Chong Kwok Feng, Lee Yook Heng

Abstract:

Nitrite (NO2-) ion is used prevalently as a preservative in processed meat. Elevated levels of nitrite also found in edible bird’s nests (EBNs). Consumption of NO2- ion at levels above the health-based risk may cause cancer in humans. Spectrophotometric Griess test is the simplest established standard method for NO2- ion detection, however, it requires careful control of pH of each reaction step and susceptible to strong oxidants and dyeing interferences. Other traditional methods rely on the use of laboratory-scale instruments such as GC-MS, HPLC and ion chromatography, which cannot give real-time response. Therefore, it is of significant need for devices capable of measuring nitrite concentration in-situ, rapidly and without reagents, sample pretreatment or extraction step. Herein, we constructed a microspheres-based microbial optode for visual quantitation of NO2- ion. Raoutella planticola, the bacterium expressing NAD(P)H nitrite reductase (NiR) enzyme has been successfully extracted by microbial technique from EBN collected from local birdhouse. The whole cells and the lipophilic Nile Blue chromoionophore were physically absorbed on the photocurable poly(n-butyl acrylate-N-acryloxysuccinimide) [poly (nBA-NAS)] microspheres, whilst the reduced coenzyme NAD(P)H was covalently immobilized on the succinimide-functionalized acrylic microspheres to produce a reagentless biosensing system. Upon the NiR enzyme catalyzes the oxidation of NAD(P)H to NAD(P)+, NO2- ion is reduced to ammonium hydroxide, and that a colour change from blue to pink of the immobilized Nile Blue chromoionophore is perceived as a result of deprotonation reaction increasing the local pH in the microspheres membrane. The microspheres-based optosensor was optimized with a reflectance spectrophotometer at 639 nm and pH 8. The resulting microbial bio-optode membrane could quantify NO2- ion at 0.1 ppm and had a linear response up to 400 ppm. Due to the large surface area to mass ratio of the acrylic microspheres, it allows efficient solid state diffusional mass transfer of the substrate to the bio-recognition phase, and achieve the steady state response as fast as 5 min. The proposed optical microbial biosensor requires no sample pre-treatment step and possesses high stability as the whole cell biocatalyst provides protection to the enzymes from interfering substances, hence it is suitable for measurements in contaminated samples.

Keywords: acrylic microspheres, microbial bio-optode, nitrite ion, reflectometric

Procedia PDF Downloads 440
11271 Wind Power Potential in Selected Algerian Sahara Regions

Authors: M. Dahbi, M. Sellam, A. Benatiallah, A. Harrouz

Abstract:

The wind energy is one of the most significant and rapidly developing renewable energy sources in the world and it provides a clean energy resource, which is a promising alternative in the short term in Algeria The main purpose of this paper is to compared and discuss the wind power potential in three sites located in sahara of Algeria (south west of Algeria) and to perform an investigation on the wind power potential of desert of Algeria. In this comparative, wind speed frequency distributions data obtained from the web site SODA.com are used to calculate the average wind speed and the available wind power. The Weibull density function has been used to estimate the monthly power wind density and to determine the characteristics of monthly parameters of Weibull for these three sites. The annual energy produced by the BWC XL.1 1KW wind machine is obtained and compared. The analysis shows that in the south west of Algeria, at 10 m height, the available wind power was found to vary between 136.59 W/m2 and 231.04 W/m2. The highest potential wind power was found at Adrar, with 21h per day and the mean wind speed is above 6 m/s. Besides, it is found that the annual wind energy generated by that machine lie between 512 KWh and 1643.2 kWh. However, the wind resource appears to be suitable for power production on the sahara and it could provide a viable substitute to diesel oil for irrigation pumps and rural electricity generation.

Keywords: Weibull distribution, parameters of Wiebull, wind energy, wind turbine, operating hours

Procedia PDF Downloads 491
11270 Determination of Economic and Ecological Potential of Bio Hydrogen Generated through Dark Photosynthesis Process

Authors: Johannes Full, Martin Reisinger, Alexander Sauer, Robert Miehe

Abstract:

The use of biogenic residues for the biotechnological production of chemical energy carriers for electricity and heat generation as well as for mobile applications is an important lever for the shift away from fossil fuels towards a carbon dioxide neutral post-fossil future. A multitude of promising biotechnological processes needs, therefore, to be compared against each other. For this purpose, a multi-objective target system and a corresponding methodology for the evaluation of the underlying key figures are presented in this paper, which can serve as a basis for decisionmaking for companies and promotional policy measures. The methodology considers in this paper the economic and ecological potential of bio-hydrogen production using the example of hydrogen production from fruit and milk production waste with the purple bacterium R. rubrum (so-called dark photosynthesis process) for the first time. The substrate used in this cost-effective and scalable process is fructose from waste material and waste deposits. Based on an estimation of the biomass potential of such fructose residues, the new methodology is used to compare different scenarios for the production and usage of bio-hydrogen through the considered process. In conclusion, this paper presents, at the example of the promising dark photosynthesis process, a methodology to evaluate the ecological and economic potential of biotechnological production of bio-hydrogen from residues and waste.

Keywords: biofuel, hydrogen, R. rubrum, bioenergy

Procedia PDF Downloads 192
11269 Investigation of the Progressive Collapse Potential in Steel Buildings with Composite Floor System

Authors: Pouya Kaafi, Gholamreza Ghodrati Amiri

Abstract:

Abnormal loads due to natural events, implementation errors and some other issues can lead to occurrence of progressive collapse in structures. Most of the past researches consist of 2- Dimensional (2D) models of steel frames without consideration of the floor system effects, which reduces the accuracy of the modeling. While employing a 3-Dimensional (3D) model and modeling the concrete slab system for the floors have a crucial role in the progressive collapse evaluation. In this research, a 3D finite element model of a 5-story steel building is modeled by the ABAQUS software once with modeling the slabs, and the next time without considering them. Then, the progressive collapse potential is evaluated. The results of the analyses indicate that the lack of the consideration of the slabs during the analyses, can lead to inaccuracy in assessing the progressive failure potential of the structure.

Keywords: abnormal loads, composite floor system, intermediate steel moment resisting frame system, progressive collapse

Procedia PDF Downloads 454
11268 Preparation of Ceramic Membranes from Syrian Sand Loaded with Silver Nanoparticles for Water Treatment

Authors: Abdulrazzaq Hammal

Abstract:

In this study, Syrian sand was used to create ceramic membranes. The process of preparing the membranes involved several steps, starting with the purification of the studied sand using hydrochloric acid, sorting according to granular size, and mixing the sand with liquid sodium silicates as a binder. Next, the effects of binder ratio, pressure formation, treatment temperature, and sand grain size were studied. Further, nanoparticles of silver were added to the formed membranes to improve their ability to purify bacterially polluted water. Prepared membranes were quite successful in removing bacteria and chemicals from water, and the water's requirements were brought up to level with Syrian drinking water standards.

Keywords: ceramic, membrane, water, wastewater

Procedia PDF Downloads 61
11267 Intelligent Swarm-Finding in Formation Control of Multi-Robots to Track a Moving Target

Authors: Anh Duc Dang, Joachim Horn

Abstract:

This paper presents a new approach to control robots, which can quickly find their swarm while tracking a moving target through the obstacles of the environment. In this approach, an artificial potential field is generated between each free-robot and the virtual attractive point of the swarm. This artificial potential field will lead free-robots to their swarm. The swarm-finding of these free-robots dose not influence the general motion of their swarm and nor other robots. When one singular robot approaches the swarm then its swarm-search will finish, and it will further participate with its swarm to reach the position of the target. The connections between member-robots with their neighbours are controlled by the artificial attractive/repulsive force field between them to avoid collisions and keep the constant distances between them in ordered formation. The effectiveness of the proposed approach has been verified in simulations.

Keywords: formation control, potential field method, obstacle avoidance, swarm intelligence, multi-agent systems

Procedia PDF Downloads 433
11266 Numerical Study on the Cavity-Induced Piping Failure of Embankment

Authors: H. J. Kim, G. C. Park, K. C. Kim, J. H. Shin

Abstract:

Cavities are frequently found beneath conduits on pile foundations in old embankments. Cavity reduces seepage length significantly and consequently causes piping failure of embankments. Case studies of embankment failures indicate that the relative settlement between ground and pile supported-concrete conduit was the main reason of the cavity. In this paper, an attempt to simulate the cavity-induced piping failure mechanism was made using finite element numerical method. Piping potential is examined by carrying out parametric study for influencing factors such as cavity length, water level, and flow conditions. The concentration of hydraulic gradient adjacent to cavity was found. It is found that the hydraulic gradient close to the cavity exceeds considerably the critical hydraulic gradient causing piping. Piping failure potential due to the existence of cavity is evaluated and contour map for the potential risk of an embankment for piping failure is proposed.

Keywords: cavity, hydraulic gradient, levee, piping

Procedia PDF Downloads 515
11265 Meat Potential Indicators of Red Sokoto, Sahel and West African Dwarf Goat Based on Morphometrical Measurements

Authors: Ozioma Beauty Nwaodu, Adebowale E Salako, Omolara Mabel Akinyemi, Nkechi Uche, Isuama Isu, Uchechi Jane Elechi

Abstract:

Goats form an integral part of livestock production in the tropics. Meat potential is determined subjectively by resource poor livestock keepers, using hand to measure the rump width (RW). Objective evaluation of meat potential in different breads of goats can overcome problems associated with subjective evaluation. Hence, the objectives were to predict meatiness in Red Sokoto (RS), Sahel and the West African Dwarf (WAD) goats, using product of the body length (BL), wither height (WH) and (RW) and to indicate the inherent size of each breed, using WH: BL ratio. These three parameters were used because they are less environmentally sensitive. A total of 2849 goats were sampled purposefully from the Akinyele and Oranyan markets in Ibadan, Oyo State Nigeria. RS showed no significant difference for BL and WH but different from the RW of both sexes (p < 0.01). Similarly WAD showed no significant difference for the BL and WH, but differed (p < 0.01) between sexes for RW. Using the ANOVA, BL:WH ratio showed no significant difference between the breeds. WAD goats have the highest mean for BL:WH ratio. Western meat livestock is primarily identified using BL:WH. The combinations of these body parameters as indicator for meat type in meat animals showed that WAD goat has more potential to lay down meat, than RS and Sahel.

Keywords: quantitative, morphologial traits, descriptive analysis, goats

Procedia PDF Downloads 180
11264 Evaluation of Liquefaction Potential of Fine Grained Soil: Kerman Case Study

Authors: Reza Ziaie Moayed, Maedeh Akhavan Tavakkoli

Abstract:

This research aims to investigate and evaluate the liquefaction potential in a project in Kerman city based on different methods for fine-grained soils. Examining the previous damages caused by recent earthquakes, it has been observed that fine-grained soils play an essential role in the level of damage caused by soil liquefaction. But, based on previous investigations related to liquefaction, there is limited attention to evaluating the cyclic resistance ratio for fine-grain soils, especially with the SPT method. Although using a standard penetration test (SPT) to find the liquefaction potential of fine-grain soil is not common, it can be a helpful method based on its rapidness, serviceability, and availability. In the present study, the liquefaction potential has been first determined by the soil’s physical properties obtained from laboratory tests. Then, using the SPT test and its available criterion for evaluating the cyclic resistance ratio and safety factor of liquefaction, the correction of effecting fine-grained soils is made, and then the results are compared. The results show that using the SPT test for liquefaction is more accurate than using laboratory tests in most cases due to the contribution of different physical parameters of soil, which leads to an increase in the ultimate N₁(60,cs).

Keywords: liquefaction, cyclic resistance ratio, SPT test, clay soil, cohesion soils

Procedia PDF Downloads 98
11263 Cytotoxicity of 13 South African Macrofungal Species and Mechanism/s of Action against Cancer Cell Lines

Authors: Gerhardt Boukes, Maryna Van De Venter, Sharlene Govender

Abstract:

Macrofungi have been used for the past two thousand years in Asian countries, and more recently in Western countries, for their medicinal properties. Biological activities include antimicrobial, antioxidant, anti-inflammatory, antidiabetic, anticancer and immunomodulatory to name a few. Several biologically active compounds have been identified and isolated. Macrofungal research in Africa is poorly documented and to the best of our knowledge non-existent. South Africa has a rich macrofungal biodiversity, which includes endemic and exotic macrofungal species. Ethanolic extracts of 13 macrofungal species, including mushrooms, bracket fungi and puffballs, were prepared and screened for cytotoxicity against a panel of seven cell lines, including A549 (human lung adenocarcinoma), HeLa (human cervical adenocarcinoma), HT-29 (human colorectal adenocarcinoma), MCF7 (human breast adenocarcinoma), MIA PaCa-2 (human pancreatic ductal adenocarcinoma), PC-3 (human prostate adenocarcinoma) and Vero (African green monkey kidney epithelial) cells using MTT. Cell lines were chosen according to the most prevalent cancer types affecting males and females in South Africa and globally, and the mutations they contain. Preliminary results have shown that three of the macrofungal genera, i.e. Fomitopsis, Gymnopilus and Pycnoporus, have shown cytotoxic activity, ranging between IC50 ~20 and 200 µg/mL. The molecular mechanism of action contributing to cell death investigated and being investigated include apoptosis (i.e. DNA cell cycle arrest, caspase-3 activation and mitochondrial membrane potential), autophagy (i.e. acridine orange and LC3B staining) and ER stress (i.e. thioflavin T staining and caspase-12) in the presence of melphalan, chloroquine and thapsigargin/tuncamycin as positive controls, respectively. The genus, Pycnoporus, has shown the best cytotoxicity of the three macrofungal genera. Future work will focus on the identification and isolation of novel active compounds and elucidating the mechanism/s of action.

Keywords: cancer, cytotoxicity, macrofungi, mechanism/s of action

Procedia PDF Downloads 243
11262 CO₂ Storage Capacity Assessment of Deep Saline Aquifers in Malaysia

Authors: Radzuan Junin, Dayang Zulaika A. Hasbollah

Abstract:

The increasing amount of greenhouse gasses in the atmosphere recently has become one of the discussed topics in relation with world’s concern on climate change. Developing countries’ emissions (such as Malaysia) are now seen to surpass developed country’s emissions due to rapid economic development growth in recent decades. This paper presents the potential storage sites suitability and storage capacity assessment for CO2 sequestration in sedimentary basins of Malaysia. This study is the first of its kind that made an identification of potential storage sites and assessment of CO2 storage capacity within the deep saline aquifers in the country. The CO2 storage capacity in saline formation assessment was conducted based on the method for quick assessment of CO2 storage capacity in closed, and semi-closed saline formations modified to suit the geology setting of Malaysia. Then, an integrated approach that involved geographic information systems (GIS) analysis and field data assessment was adopted to provide the potential storage sites and its capacity for CO2 sequestration. This study concentrated on the assessment of major sedimentary basins in Malaysia both onshore and offshore where potential geological formations which CO2 could be stored exist below 800 meters and where suitable sealing formations are present. Based on regional study and amount of data available, there are 14 sedimentary basins all around Malaysia that has been identified as potential CO2 storage. Meanwhile, from the screening and ranking exercises, it is obvious that Malay Basin, Central Luconia Province, West Baram Delta and Balingian Province are respectively ranked as the top four in the ranking system for CO2 storage. 27% of sedimentary basins in Malaysia were evaluated as high potential area for CO2 storage. This study should provide a basis for further work to reduce the uncertainty in these estimates and also provide support to policy makers on future planning of carbon capture and sequestration (CCS) projects in Malaysia.

Keywords: CO₂ storage, deep saline aquifer, GIS, sedimentary basin

Procedia PDF Downloads 356
11261 Waste Management in a Hot Laboratory of Japan Atomic Energy Agency – 2: Condensation and Solidification Experiments on Liquid Waste

Authors: Sou Watanabe, Hiromichi Ogi, Atsuhiro Shibata, Kazunori Nomura

Abstract:

As a part of STRAD project conducted by JAEA, condensation of radioactive liquid waste containing various chemical compounds using reverse osmosis (RO) membrane filter was examined for efficient and safety treatment of the liquid wastes accumulated inside hot laboratories. NH4+ ion in the feed solution was successfully concentrated, and NH4+ ion involved in the effluents became lower than target value; 100 ppm. Solidification of simulated aqueous and organic liquid wastes was also tested. Those liquids were successfully solidified by adding cement or coagulants. Nevertheless, optimization in materials for confinement of chemicals is required for long time storage of the final solidified wastes.

Keywords: condensation, radioactive liquid waste, solidification, STRAD project

Procedia PDF Downloads 153
11260 Rooibos Extract Antioxidants: In vitro Models to Assess Their Bioavailability

Authors: Ntokozo Dambuza, Maryna Van De Venter, Trevor Koekemoer

Abstract:

Oxidative stress contributes to the pathogenesis of many diseases and consequently antioxidant therapy has attracted much attention as a potential therapeutic strategy. Regardless of the quantities ingested, antioxidants need to reach the diseased tissues at concentrations sufficient to combat oxidative stress. Bioavailability is thus a defining criterion for the therapeutic efficacy of antioxidants. In addition, therapeutic antioxidants must possess biologically relevant characteristics which can target the specific molecular mechanisms responsible for disease related oxidative stress. While many chemical antioxidant assays are available to quantify antioxidant capacity, they relate poorly to the biological environment and provide no information as to the bioavailability. The present comparative study thus aims to characterise green and fermented rooibos extracts, well recognized for their exceptional antioxidant capacity, in terms of antioxidant bioavailability and efficacy in a disease relevant cellular setting. Chinese green tea antioxidant activity was also evaluated. Chemical antioxidant assays (FRAP, DPPH and ORAC) confirmed the potent antioxidant capacity of both green and fermented rooibos, with green rooibos possessing antioxidant activity superior to that of fermented rooibos and Chinese green tea. Bioavailability was assessed using the PAMPA assay and the results indicate that green and fermented rooibos have a permeation coefficient of 5.7 x 10-6 and 6.9 x 10-6 cm/s, respectively. Chinese green tea permeability coefficient was 8.5 x 10-6 cm/s. These values were comparable to those of rifampicin, which is known to have a high permeability across intestinal epithelium with a permeability coefficient of 5 x 10 -6 cm/s. To assess the antioxidant efficacy in a cellular context, U937 and red blood cells were pre-treated with rooibos and Chinese green tea extracts in the presence of a dye DCFH-DA and then exposed to oxidative stress. Green rooibos exhibited highest activity with an IC50 value of 29 μg/ml and 70 μg/ml, when U937 and red blood cells were exposed oxidative stress, respectively. Fermented rooibos and Chinese green tea had IC50 values of 61 μg/ml and 57 μg/ml for U937, respectively, and 221 μg/ml and 405 μg/ml for red blood cells, respectively. These results indicate that fermented and green rooibos extracts were able to permeate the U937 cells and red blood cell membrane and inhibited oxidation of DCFH-DA to a fluorescent DCF within the cells.

Keywords: rooibos, antioxidants, permeability, bioavailability

Procedia PDF Downloads 313
11259 Embolism: How Changes in Xylem Sap Surface Tension Affect the Resistance against Hydraulic Failure

Authors: Adriano Losso, Birgit Dämon, Stefan Mayr

Abstract:

In vascular plants, water flows from roots to leaves in a metastable state, and even a small perturbation of the system can lead a sudden transition from the liquid to the vapor phase, resulting in xylem embolism (cavitation). Xylem embolism, induced by drought stress and/or freezing stress is caused by the aspiration of gaseous bubbles into xylem conduits from adjacent gas-filled compartments through pit membrane pores (‘air seeding’). At water potentials less negative than the threshold for air seeding, the surface tension (γ) stabilizes the air-water interface and thus prevents air from passing the pit pores. This hold is probably also true for conifers, where this effect occurs at the edge of the sealed torus. Accordingly, it was experimentally demonstrated that γ influences air seeding, but information on the relevance of this effect under field conditions is missing. In this study, we analyzed seasonal changes in γ of the xylem sap in two conifers growing at the alpine timberline (Picea abies and Pinus mugo). In addition, cut branches were perfused (40 min perfusion at 0.004 MPa) with different γ solutions (i.e. distilled and degassed water, 2, 5 and 15% (v/v) ethanol-water solution corresponding to a γ of 74, 65, 55 and 45 mN m-1, respectively) and their vulnerability to drought-induced embolism analyzed via the centrifuge technique (Cavitron). In both species, xylem sap γ changed considerably (ca. 53-67 and ca. 50-68 mN m-1 in P. abies and P. cembra, respectively) over the season. Branches perfused with low γ solutions showed reduced resistance against drought-induced embolism in both species. A significant linear relationship (P < 0.001) between P12, P50 and P88 (i.e. water potential at 12, 50 and 88% of the loss of conductivity) and xylem sap γ was found. Based on this correlation, a variation in P50 between -3.10 and -3.83 MPa (P. abies) and between -3.21 and -4.11 MPa (P. mugo) over the season could be estimated. Results demonstrate that changes in γ of the xylem sap can considerably influence a tree´s resistance to drought-induced embolism. They indicate that vulnerability analyses, normally conducted at a γ near that of pure water, might often underestimate vulnerabilities under field conditions. For studied timberline conifers, seasonal changes in γ might be especially relevant in winter, when frost drought and freezing stress can lead to an excessive embolism.

Keywords: conifers, Picea abies, Pinus mugo, timberline

Procedia PDF Downloads 288
11258 Modeling of Electrokinetic Mixing in Lab on Chip Microfluidic Devices

Authors: Virendra J. Majarikar, Harikrishnan N. Unni

Abstract:

This paper sets to demonstrate a modeling of electrokinetic mixing employing electroosmotic stationary and time-dependent microchannel using alternate zeta patches on the lower surface of the micromixer in a lab on chip microfluidic device. Electroosmotic flow is amplified using different 2D and 3D model designs with alternate and geometric zeta potential values such as 25, 50, and 100 mV, respectively, to achieve high concentration mixing in the electrokinetically-driven microfluidic system. The enhancement of electrokinetic mixing is studied using Finite Element Modeling, and simulation workflow is accomplished with defined integral steps. It can be observed that the presence of alternate zeta patches can help inducing microvortex flows inside the channel, which in turn can improve mixing efficiency. Fluid flow and concentration fields are simulated by solving Navier-Stokes equation (implying Helmholtz-Smoluchowski slip velocity boundary condition) and Convection-Diffusion equation. The effect of the magnitude of zeta potential, the number of alternate zeta patches, etc. are analysed thoroughly. 2D simulation reveals that there is a cumulative increase in concentration mixing, whereas 3D simulation differs slightly with low zeta potential as that of the 2D model within the T-shaped micromixer for concentration 1 mol/m3 and 0 mol/m3, respectively. Moreover, 2D model results were compared with those of 3D to indicate the importance of the 3D model in a microfluidic design process.

Keywords: COMSOL Multiphysics®, electrokinetic, electroosmotic, microfluidics, zeta potential

Procedia PDF Downloads 241
11257 Novel Technique for calculating Surface Potential Gradient of Overhead Line Conductors

Authors: Sudip Sudhir Godbole

Abstract:

In transmission line surface potential gradient is a critical design parameter for planning overhead line, as it determines the level of corona loss (CL), radio interference (RI) and audible noise (AN).With increase of transmission line voltage level bulk power transfer is possible, using bundle conductor configuration used, it is more complex to find accurate surface stress in bundle configuration. The majority of existing models for surface gradient calculations are based on analytical methods which restrict their application in simulating complex surface geometry. This paper proposes a novel technique which utilizes both analytical and numerical procedure to predict the surface gradient. One of 400 kV transmission line configurations has been selected as an example to compare the results for different methods. The different strand shapes are a key variable in determining.

Keywords: surface gradient, Maxwell potential coefficient method, market and Mengele’s method, successive images method, charge simulation method, finite element method

Procedia PDF Downloads 533
11256 Potential Micro Hydro at Irrigation Canal in the Gorontalo Province and Modeling Setling Basin for Reduction of Sedimentation Effect

Authors: Arifin Matoka, Nadjamuddin Harun, Salama Manjang, M. Arsyad Thaha

Abstract:

Along irrigation canals in certain areas falling water level height is have potential for micro hydro power plant (MHP), which generally MHP potential valley away from society consumer of electricity and needed a long conductor cable, so that with the MHP Irrigation is ideal are typical with an Open Flume type turbines. This study is divided into two phases research phase of the potential power that exist in irrigation channels at the Gorontalo Province and stages solution sedimentation effects. The total power generated in the irrigation channel of the results of this study at 781.83 Kw, it is quite significant for the 1737 rural households on average consumes 450 watt per household. In the field of observation, sedimentation lifting effect on the quality of electric power, at which time the turbid sediment concentrations occur significant voltage fluctuations causing damage to some household electrical appliances such as electronic equipment and lighting. This problem is solution by modeling the sedimentation tub (setling basin) to reduce sedimentation thus olso can reduce the regulation load control equipment which can minimize the cost of investment and maintenance.

Keywords: irrigation canals, microhydro powerplant, sedimentation, Gorontalo Province

Procedia PDF Downloads 579
11255 The Potential of Public Open Space to Promote Sustainable Transportation and Reduce Dependence on Cars

Authors: Farnoosh Faal

Abstract:

The excessive reliance on private cars has led to a range of problems, such as traffic congestion, air pollution, and carbon emissions, which have significant impacts on public health and the environment. Public open spaces have the potential to promote sustainable transportation and reduce dependence on cars by providing alternative mobility options, including walking, cycling, and public transit. This paper examines the existing research on the relationship between public open spaces and sustainable transportation. It discusses the key design principles and planning strategies that can enhance the accessibility and safety of public open spaces, particularly for pedestrians and cyclists. The paper also explores the role of public open spaces in promoting active mobility and reducing car use in urban and suburban contexts. Finally, the paper highlights the policy and institutional barriers that hinder the integration of public open spaces with sustainable transportation systems and suggests some potential solutions to overcome these barriers. Overall, the paper argues that public open spaces have immense potential to facilitate sustainable transportation and reduce car dependence, and therefore, it is important to prioritize the development and maintenance of public open spaces as a key component of sustainable urban and regional planning.

Keywords: public open space, sustainable transportation, active mobility, car dependence, urban and regional planning, traffic congestion

Procedia PDF Downloads 150
11254 The Scientific Study of the Relationship Between Physicochemical and Microstructural Properties of Ultrafiltered Cheese: Protein Modification and Membrane Separation

Authors: Shahram Naghizadeh Raeisi, Ali Alghooneh

Abstract:

The loss of curd cohesiveness and syneresis are two common problems in the ultrafiltered cheese industry. In this study, by using membrane technology and protein modification, a modified cheese was developed and its properties were compared with a control sample. In order to decrease the lactose content and adjust the protein, acidity, dry matter and milk minerals, a combination of ultrafiltration, nanofiltration and reverse osmosis technologies was employed. For protein modification, a two-stage chemical and enzymatic reaction was employed before and after ultrafiltration. The physicochemical and microstructural properties of the modified ultrafiltered cheese were compared with the control one. Results showed that the modified protein enhanced the functional properties of the final cheese significantly (pvalue< 0.05), even if the protein content was 50% lower than the control one. The modified cheese showed 21 ± 0.70, 18 ± 1.10 & 25±1.65% higher hardness, cohesiveness and water-holding capacity values, respectively, than the control sample. This behavior could be explained by the developed microstructure of the gel network. Furthermore, chemical-enzymatic modification of milk protein induced a significant change in the network parameter of the final cheese. In this way, the indices of network linkage strength, network linkage density, and time scale of junctions were 10.34 ± 0.52, 68.50 ± 2.10 & 82.21 ± 3.85% higher than the control sample, whereas the distance between adjacent linkages was 16.77 ± 1.10% lower than the control sample. These results were supported by the results of the textural analysis. A non-linear viscoelastic study showed a triangle waveform stress of the modified protein contained cheese, while the control sample showed rectangular waveform stress, which suggested a better sliceability of the modified cheese. Moreover, to study the shelf life of the products, the acidity, as well as molds and yeast population, were determined in 120 days. It’s worth mentioning that the lactose content of modified cheese was adjusted at 2.5% before fermentation, while the lactose of the control one was at 4.5%. The control sample showed 8 weeks shelf life, while the shelf life of the modified cheese was 18 weeks in the refrigerator. During 18 weeks, the acidity of modified and control samples increased from 82 ± 1.50 to 94 ± 2.20 °D and 88 ± 1.64 to 194 ± 5.10 °D, respectively. The mold and yeast populations, with time, followed the semicircular shape model (R2 = 0.92, R2adj = 0.89, RMSE = 1.25). Furthermore, the mold and yeast counts and their growth rate in the modified cheese were lower than those for control one; Aforementioned result could be explained by the shortage of the source of energy for the microorganism in the modified cheese. The lactose content of the modified sample was less than 0.2 ± 0.05% at the end of fermentation, while this was 3.7 ± 0.68% in the control sample.

Keywords: non-linear viscoelastic, protein modification, semicircular shape model, ultrafiltered cheese

Procedia PDF Downloads 70
11253 The Impact of Intelligent Control Systems on Biomedical Engineering and Research

Authors: Melkamu Tadesse Getachew

Abstract:

Intelligent control systems have revolutionized biomedical engineering, advancing research and enhancing medical practice. This review paper examines the impact of intelligent control on various aspects of biomedical engineering. It analyzes how these systems enhance precision and accuracy in biomedical instrumentation, improving diagnostics, monitoring, and treatment. Integration challenges are addressed, and potential solutions are proposed. The paper also investigates the optimization of drug delivery systems through intelligent control. It explores how intelligent systems contribute to precise dosing, targeted drug release, and personalized medicine. Challenges related to controlled drug release and patient variability are discussed, along with potential avenues for overcoming them. The comparison of algorithms used in intelligent control systems in biomedical control is also reviewed. The implications of intelligent control in computational and systems biology are explored, showcasing how these systems enable enhanced analysis and prediction of complex biological processes. Challenges such as interpretability, human-machine interaction, and machine reliability are examined, along with potential solutions. Intelligent control in biomedical engineering also plays a crucial role in risk management during surgical operations. This section demonstrates how intelligent systems improve patient safety and surgical outcomes when integrated into surgical robots, augmented reality, and preoperative planning. The challenges associated with these implementations and potential solutions are discussed in detail. In summary, this review paper comprehensively explores the widespread impact of intelligent control on biomedical engineering, showing the future of human health issues promising. It discusses application areas, challenges, and potential solutions, highlighting the transformative potential of these systems in advancing research and improving medical practice.

Keywords: Intelligent control systems, biomedical instrumentation, drug delivery systems, robotic surgical instruments, Computational monitoring and modeling

Procedia PDF Downloads 39
11252 The Photon-Drag Effect in Cylindrical Quantum Wire with a Parabolic Potential

Authors: Hoang Van Ngoc, Nguyen Thu Huong, Nguyen Quang Bau

Abstract:

Using the quantum kinetic equation for electrons interacting with acoustic phonon, the density of the constant current associated with the drag of charge carriers in cylindrical quantum wire by a linearly polarized electromagnetic wave, a DC electric field and a laser radiation field is calculated. The density of the constant current is studied as a function of the frequency of electromagnetic wave, as well as the frequency of laser field and the basic elements of quantum wire with a parabolic potential. The analytic expression of the constant current density is numerically evaluated and plotted for a specific quantum wires GaAs/AlGaAs to show the dependence of the constant current density on above parameters. All these results of quantum wire compared with bulk semiconductors and superlattices to show the difference.

Keywords: The photon-drag effect, the constant current density, quantum wire, parabolic potential

Procedia PDF Downloads 418
11251 The Potential of Cloud Computing in Overcoming the Problems of Collective Learning

Authors: Hussah M. AlShayea

Abstract:

This study aimed to identify the potential of cloud computing, "Google Drive" in overcoming the problems of collective learning from the viewpoint of Princess Noura University students. The study included (92) students from the College of Education. To achieve the goal of the study, several steps have been taken. First, the most important problems of collective learning were identified from the viewpoint of the students. After that, a survey identifying the potential of cloud computing "Google Drive" in overcoming the problems of collective learning was distributed among the students. The study results showed that the students believe that the use of Google Drive contributed to overcoming these problems. In the light of those results, the researcher presented a set of recommendations and proposals, including: encouraging teachers and learners to employ cloud computing to overcome the problems and constraints of collective learning.

Keywords: cloud computing, collective learning, Google drive, Princess Noura University

Procedia PDF Downloads 484
11250 Preparation of Catalyst-Doped TiO2 Nanotubes by Single Step Anodization and Potential Shock

Authors: Hyeonseok Yoo, Kiseok Oh, Jinsub Choi

Abstract:

Titanium oxide nanotubes have attracted great attention because of its photocatalytic activity and large surface area. For enhancing electrochemical properties, catalysts should be doped into the structure because titanium oxide nanotubes themselves have low electroconductivity and catalytic activity. It has been reported that Ru and Ir doped titanium oxide electrodes exhibit high efficiency and low overpotential in the oxygen evolution reaction (OER) for water splitting. In general, titanium oxide nanotubes with high aspect ratio cannot be easily doped by conventional complex methods. Herein, two types of facile routes, namely single step anodization and potential shock, for Ru doping into high aspect ratio titanium oxide nanotubes are introduced in detail. When single step anodization was carried out, stability of electrodes were increased. However, onset potential was shifted to anodic direction. On the other hand, when high potential shock voltage was applied, a large amount of ruthenium/ruthenium oxides were doped into titanium oxide nanotubes and thick barrier oxide layers were formed simultaneously. Regardless of doping routes, ruthenium/ ruthenium oxides were homogeneously doped into titanium oxide nanotubes. In spite of doping routes, doping in aqueous solution generally led to incorporate high amount of Ru in titanium oxide nanotubes, compared to that in non-aqueous solution. The amounts of doped catalyst were analyzed by X-ray photoelectron spectroscopy (XPS). The optimum condition for water splitting was investigated in terms of the amount of doped Ru and thickness of barrier oxide layer.

Keywords: doping, potential shock, single step anodization, titanium oxide nanotubes

Procedia PDF Downloads 455
11249 Opto-Electronic Properties and Structural Phase Transition of Filled-Tetrahedral NaZnAs

Authors: R. Khenata, T. Djied, R. Ahmed, H. Baltache, S. Bin-Omran, A. Bouhemadou

Abstract:

We predict structural, phase transition as well as opto-electronic properties of the filled-tetrahedral (Nowotny-Juza) NaZnAs compound in this study. Calculations are carried out by employing the full potential (FP) linearized augmented plane wave (LAPW) plus local orbitals (lo) scheme developed within the structure of density functional theory (DFT). Exchange-correlation energy/potential (EXC/VXC) functional is treated using Perdew-Burke and Ernzerhof (PBE) parameterization for generalized gradient approximation (GGA). In addition to Trans-Blaha (TB) modified Becke-Johnson (mBJ) potential is incorporated to get better precision for optoelectronic properties. Geometry optimization is carried out to obtain the reliable results of the total energy as well as other structural parameters for each phase of NaZnAs compound. Order of the structural transitions as a function of pressure is found as: Cu2Sb type → β → α phase in our study. Our calculated electronic energy band structures for all structural phases at the level of PBE-GGA as well as mBJ potential point out; NaZnAs compound is a direct (Γ–Γ) band gap semiconductor material. However, as compared to PBE-GGA, mBJ potential approximation reproduces higher values of fundamental band gap. Regarding the optical properties, calculations of real and imaginary parts of the dielectric function, refractive index, reflectivity coefficient, absorption coefficient and energy loss-function spectra are performed over a photon energy ranging from 0.0 to 30.0 eV by polarizing incident radiation in parallel to both [100] and [001] crystalline directions.

Keywords: NaZnAs, FP-LAPW+lo, structural properties, phase transition, electronic band-structure, optical properties

Procedia PDF Downloads 428