Search results for: disease modeling
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7632

Search results for: disease modeling

7572 Prevalence and Associated Factors of Periodontal Disease among Diabetes Patients in Addis Ababa, Ethiopia, 2018

Authors: Addisu Tadesse Sahile, Tennyson Mgutshini

Abstract:

Background: Periodontal disease is a common, complex, inflammatory disease characterized by the destruction of tooth-supporting soft and hard tissues of the periodontium and a major public health problem across developed and developing countries. Objectives: The study was aimed at assessing the prevalence of periodontal disease and associated factors among diabetes patients in Addis Ababa, Ethiopia, 2018. Methods: Institutional based cross-sectional study was conducted on 388 diabetes patients selected by systematic random sampling method from March to May 2018. The study was conducted at two conveniently selected public hospitals in Addis Ababa. Data were collected with pre-tested, structured and translated questionnaire then entered to SPSS version 23 software for analysis. Descriptive statistics as a summary, in line with chi-square and binary logistics regression to identify factors associated with periodontal disease, were applied. A 95% CI with a p-value less than 5% was used as a level of significance. Results: Ninety-one percent (n=353) of participants had periodontal disease while oral examination was done in six regions. While only 9% (n=35) of participants were free of periodontal disease. The number of tooth brushings per day, correct techniques of brushing, malocclusion, and fillings that are defective were associated with periodontal disease at p < 0.05. Conclusion and recommendation: A higher prevalence of periodontal disease among diabetes patient was observed. The frequency of tooth brushing, correct techniques of brushing, malocclusion and defective fillings were associated with periodontal disease. Emphasis has to be given to oral health of diabetes patients by every concerned body so as to control the current higher burden of periodontal disease in diabetes.

Keywords: periodontal disease, risk factors, diabetes mellitus, Addis Ababa

Procedia PDF Downloads 128
7571 Estimation of Chronic Kidney Disease Using Artificial Neural Network

Authors: Ilker Ali Ozkan

Abstract:

In this study, an artificial neural network model has been developed to estimate chronic kidney failure which is a common disease. The patients’ age, their blood and biochemical values, and 24 input data which consists of various chronic diseases are used for the estimation process. The input data have been subjected to preprocessing because they contain both missing values and nominal values. 147 patient data which was obtained from the preprocessing have been divided into as 70% training and 30% testing data. As a result of the study, artificial neural network model with 25 neurons in the hidden layer has been found as the model with the lowest error value. Chronic kidney failure disease has been able to be estimated accurately at the rate of 99.3% using this artificial neural network model. The developed artificial neural network has been found successful for the estimation of chronic kidney failure disease using clinical data.

Keywords: estimation, artificial neural network, chronic kidney failure disease, disease diagnosis

Procedia PDF Downloads 447
7570 Thymoquinone Prevented the Development of Symptoms in Animal Model of Parkinson’s Disease

Authors: Kambiz Hassanzadeh, Seyedeh Shohreh Ebrahimi, Shahrbanoo Oryan, Arman Rahimmi, Esmael Izadpanah

Abstract:

Parkinson’s disease is one of the most prevalent neurodegenerative diseases which occurs in elderly. There are convincing evidences that oxidative stress has an important role in both the initiation and progression of Parkinson’s disease. Thymoquinone (TQ) is shown to have antioxidant and anti-inflammatory properties in invitro and invivo studies. It is well documented that TQ acts as a free radical scavenger and prevents the cell damage. Therefore this study aimed to evaluate the effect of TQ on motor and non-motor symptoms in animal model of Parkinson’s disease. Male Wistar rats (10-12 months) received rotenone (1mg/kg/day, sc) to induce Parkinson’s disease model. Pretreatment with TQ (7.5 and 15 mg/kg/day, po) was administered one hour before the rotenone injection. Three motor tests (rotarod, rearing and bar tests) and two non-motor tests (forced swimming and elevated plus maze) were performed for behavioral assessment. Our results indicated that TQ significantly ameliorated the rotenone-induced motor dysfunction in rotarod and rearing tests also it could prevent the non-motor dysfunctions in forced swimming and elevated plus maze tests. In conclusion we found that TQ delayed the Parkinson's disease induction by rotenone and this effect might be related to its proved antioxidant effect.

Keywords: Parkinson's disease, thymoquinone, motor and non-motor symptoms, neurodegenerative disease

Procedia PDF Downloads 547
7569 Global Developmental Delay and Its Association with Risk Factors: Validation by Structural Equation Modelling

Authors: Bavneet Kaur Sidhu, Manoj Tiwari

Abstract:

Global Developmental Delay (GDD) is a common pediatric condition. Etiologies of GDD might, however, differ in developing countries. In the last decade, sporadic families are being reported in various countries. As to the author’s best knowledge, many risk factors and their correlation with the prevalence of GDD have been studied but its statistical correlation has not been done. Thus we propose the present study by targeting the risk factor, prevalence and their statistical correlation with GDD. FMR1 gene was studied to confirm the disease and its penetrance. A complete questionnaire-based performance was designed for the statistical studies having a personal, past and present medical history along with their socio-economic status as well. Methods: We distributed the children’s age in 4 different age groups having 5-year intervals and applied structural equation modeling (SEM) techniques, Spearman’s rank correlation coefficient, Karl Pearson correlation coefficient, and chi-square test.Result: A total of 1100 families were enrolled for this study; among them, 330 were clinically and biologically confirmed (radiological studies) for the disease, 204 were males (61.8%), 126 were females (38.18%). We found that 27.87% were genetic and 72.12 were sporadic, out of 72.12 %, 43.277% cases from urban and 56.72% from the rural locality, the mothers' literacy rate was 32.12% and working women numbers were 41.21%. Conclusions: There is a significant association between mothers' age and GDD prevalence, which is also followed by mothers' literacy rate and mothers' occupation, whereas there was no association between fathers' age and GDD.

Keywords: global developmental delay, FMR1 gene, spearman’ rank correlation coefficient, structural equation modeling

Procedia PDF Downloads 135
7568 Synthesis of Metal Curcumin Complexes with Iron(III) and Manganese(II): The Effects on Alzheimer's Disease

Authors: Emel Yildiz, Nurcan Biçer, Fazilet Aksu, Arash Alizadeh Yegani

Abstract:

Plants provide the wealth of bioactive compounds, which exert a substantial strategy for the treatment of neurological disorders such as Alzheimer's disease. Recently, a lot of studies have explored the medicinal properties of curcumin, including antitumoral, antimicrobial, anti-inflammatory, antioxidant, antiviral, and anti-Alzheimer's disease effects. Metal complexes of curcumin (1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione) were synthesized with Mn(II) and Fe(III). The structures of synthesized metal complexes have been characterized by using spectroscopic and analytic methods such as elemental analysis, magnetic susceptibility, FT-IR, AAS, TG and argentometric titration. It was determined that the complexes have octahedral geometry. The effects of the metal complexes on the disorder of memory, which is an important symptom of Alzheimer's Disease were studied on lab rats with Plus-Maze Tests at Behavioral Pharmacology Laboratory.

Keywords: curcumin, Mn(II), Fe(III), Alzheimer disease, beta amyloid 25-35

Procedia PDF Downloads 301
7567 Juvenile Paget’s Disease(JPD) of Bone

Authors: Aftab Ahmed, Ghulam Mehboob

Abstract:

The object of presentation is to highlight the importance of condition which is a very rare genetic disorder although Paget’s disease is common but its juvenile type is very rare and a late presentation due to very slow onset and lack of earlier standard management. We present a case of 25 years old male with a chronic history of bone pain and a slow onset of mild swelling, later on diagnosed as juvenile Paget disease of bone. Rarity of this condition with inaccessibility for standard health treatment can lead to a significant delay in presentation and its management. There have been 50 reported cases worldwide according to Genetic Home Reference. There is increased osteoclastic activity along with osteoblastic activity related to gene alteration and osteoprotegrin deficiency. Morbidity of disease is very significant which lead children to become immobilize.

Keywords: juvenile, Paget’s disease, bone, Northern Area of Pakistan

Procedia PDF Downloads 327
7566 Methodologies, Systems Development Life Cycle and Modeling Languages in Agile Software Development

Authors: I. D. Arroyo

Abstract:

This article seeks to integrate different concepts from contemporary software engineering with an agile development approach. We seek to clarify some definitions and uses, we make a difference between the Systems Development Life Cycle (SDLC) and the methodologies, we differentiate the types of frameworks such as methodological, philosophical and behavioral, standards and documentation. We define relationships based on the documentation of the development process through formal and ad hoc models, and we define the usefulness of using DevOps and Agile Modeling as integrative methodologies of principles and best practices.

Keywords: methodologies, modeling languages, agile modeling, UML

Procedia PDF Downloads 185
7565 Electricity Demand Modeling and Forecasting in Singapore

Authors: Xian Li, Qing-Guo Wang, Jiangshuai Huang, Jidong Liu, Ming Yu, Tan Kok Poh

Abstract:

In power industry, accurate electricity demand forecasting for a certain leading time is important for system operation and control, etc. In this paper, we investigate the modeling and forecasting of Singapore’s electricity demand. Several standard models, such as HWT exponential smoothing model, the ARMA model and the ANNs model have been proposed based on historical demand data. We applied them to Singapore electricity market and proposed three refinements based on simulation to improve the modeling accuracy. Compared with existing models, our refined model can produce better forecasting accuracy. It is demonstrated in the simulation that by adding forecasting error into the forecasting equation, the modeling accuracy could be improved greatly.

Keywords: power industry, electricity demand, modeling, forecasting

Procedia PDF Downloads 640
7564 Association of Non Synonymous SNP in DC-SIGN Receptor Gene with Tuberculosis (Tb)

Authors: Saima Suleman, Kalsoom Sughra, Naeem Mahmood Ashraf

Abstract:

Mycobacterium tuberculosis is a communicable chronic illness. This disease is being highly focused by researchers as it is present approximately in one third of world population either in active or latent form. The genetic makeup of a person plays an important part in producing immunity against disease. And one important factor association is single nucleotide polymorphism of relevant gene. In this study, we have studied association between single nucleotide polymorphism of CD-209 gene (encode DC-SIGN receptor) and patients of tuberculosis. Dry lab (in silico) and wet lab (RFLP) analysis have been carried out. GWAS catalogue and GEO database have been searched to find out previous association data. No association study has been found related to CD-209 nsSNPs but role of CD-209 in pulmonary tuberculosis have been addressed in GEO database.Therefore, CD-209 has been selected for this study. Different databases like ENSEMBLE and 1000 Genome Project has been used to retrieve SNP data in form of VCF file which is further submitted to different software to sort SNPs into benign and deleterious. Selected SNPs are further annotated by using 3-D modeling techniques using I-TASSER online software. Furthermore, selected nsSNPs were checked in Gujrat and Faisalabad population through RFLP analysis. In this study population two SNPs are found to be associated with tuberculosis while one nsSNP is not found to be associated with the disease.

Keywords: association, CD209, DC-SIGN, tuberculosis

Procedia PDF Downloads 309
7563 Modeling Curriculum for High School Students to Learn about Electric Circuits

Authors: Meng-Fei Cheng, Wei-Lun Chen, Han-Chang Ma, Chi-Che Tsai

Abstract:

Recent K–12 Taiwan Science Education Curriculum Guideline emphasize the essential role of modeling curriculum in science learning; however, few modeling curricula have been designed and adopted in current science teaching. Therefore, this study aims to develop modeling curriculum on electric circuits to investigate any learning difficulties students have with modeling curriculum and further enhance modeling teaching. This study was conducted with 44 10th-grade students in Central Taiwan. Data collection included a students’ understanding of models in science (SUMS) survey that explored the students' epistemology of scientific models and modeling and a complex circuit problem to investigate the students’ modeling abilities. Data analysis included the following: (1) Paired sample t-tests were used to examine the improvement of students’ modeling abilities and conceptual understanding before and after the curriculum was taught. (2) Paired sample t-tests were also utilized to determine the students’ modeling abilities before and after the modeling activities, and a Pearson correlation was used to understand the relationship between students’ modeling abilities during the activities and on the posttest. (3) ANOVA analysis was used during different stages of the modeling curriculum to investigate the differences between the students’ who developed microscopic models and macroscopic models after the modeling curriculum was taught. (4) Independent sample t-tests were employed to determine whether the students who changed their models had significantly different understandings of scientific models than the students who did not change their models. The results revealed the following: (1) After the modeling curriculum was taught, the students had made significant progress in both their understanding of the science concept and their modeling abilities. In terms of science concepts, this modeling curriculum helped the students overcome the misconception that electric currents reduce after flowing through light bulbs. In terms of modeling abilities, this modeling curriculum helped students employ macroscopic or microscopic models to explain their observed phenomena. (2) Encouraging the students to explain scientific phenomena in different context prompts during the modeling process allowed them to convert their models to microscopic models, but it did not help them continuously employ microscopic models throughout the whole curriculum. The students finally consistently employed microscopic models when they had help visualizing the microscopic models. (3) During the modeling process, the students who revised their own models better understood that models can be changed than the students who did not revise their own models. Also, the students who revised their models to explain different scientific phenomena tended to regard models as explanatory tools. In short, this study explored different strategies to facilitate students’ modeling processes as well as their difficulties with the modeling process. The findings can be used to design and teach modeling curricula and help students enhance their modeling abilities.

Keywords: electric circuits, modeling curriculum, science learning, scientific model

Procedia PDF Downloads 460
7562 Easymodel: Web-based Bioinformatics Software for Protein Modeling Based on Modeller

Authors: Alireza Dantism

Abstract:

Presently, describing the function of a protein sequence is one of the most common problems in biology. Usually, this problem can be facilitated by studying the three-dimensional structure of proteins. In the absence of a protein structure, comparative modeling often provides a useful three-dimensional model of the protein that is dependent on at least one known protein structure. Comparative modeling predicts the three-dimensional structure of a given protein sequence (target) mainly based on its alignment with one or more proteins of known structure (templates). Comparative modeling consists of four main steps 1. Similarity between the target sequence and at least one known template structure 2. Alignment of target sequence and template(s) 3. Build a model based on alignment with the selected template(s). 4. Prediction of model errors 5. Optimization of the built model There are many computer programs and web servers that automate the comparative modeling process. One of the most important advantages of these servers is that it makes comparative modeling available to both experts and non-experts, and they can easily do their own modeling without the need for programming knowledge, but some other experts prefer using programming knowledge and do their modeling manually because by doing this they can maximize the accuracy of their modeling. In this study, a web-based tool has been designed to predict the tertiary structure of proteins using PHP and Python programming languages. This tool is called EasyModel. EasyModel can receive, according to the user's inputs, the desired unknown sequence (which we know as the target) in this study, the protein sequence file (template), etc., which also has a percentage of similarity with the primary sequence, and its third structure Predict the unknown sequence and present the results in the form of graphs and constructed protein files.

Keywords: structural bioinformatics, protein tertiary structure prediction, modeling, comparative modeling, modeller

Procedia PDF Downloads 97
7561 The Strengths and Limitations of the Statistical Modeling of Complex Social Phenomenon: Focusing on SEM, Path Analysis, or Multiple Regression Models

Authors: Jihye Jeon

Abstract:

This paper analyzes the conceptual framework of three statistical methods, multiple regression, path analysis, and structural equation models. When establishing research model of the statistical modeling of complex social phenomenon, it is important to know the strengths and limitations of three statistical models. This study explored the character, strength, and limitation of each modeling and suggested some strategies for accurate explaining or predicting the causal relationships among variables. Especially, on the studying of depression or mental health, the common mistakes of research modeling were discussed.

Keywords: multiple regression, path analysis, structural equation models, statistical modeling, social and psychological phenomenon

Procedia PDF Downloads 652
7560 Prediction Modeling of Alzheimer’s Disease and Its Prodromal Stages from Multimodal Data with Missing Values

Authors: M. Aghili, S. Tabarestani, C. Freytes, M. Shojaie, M. Cabrerizo, A. Barreto, N. Rishe, R. E. Curiel, D. Loewenstein, R. Duara, M. Adjouadi

Abstract:

A major challenge in medical studies, especially those that are longitudinal, is the problem of missing measurements which hinders the effective application of many machine learning algorithms. Furthermore, recent Alzheimer's Disease studies have focused on the delineation of Early Mild Cognitive Impairment (EMCI) and Late Mild Cognitive Impairment (LMCI) from cognitively normal controls (CN) which is essential for developing effective and early treatment methods. To address the aforementioned challenges, this paper explores the potential of using the eXtreme Gradient Boosting (XGBoost) algorithm in handling missing values in multiclass classification. We seek a generalized classification scheme where all prodromal stages of the disease are considered simultaneously in the classification and decision-making processes. Given the large number of subjects (1631) included in this study and in the presence of almost 28% missing values, we investigated the performance of XGBoost on the classification of the four classes of AD, NC, EMCI, and LMCI. Using 10-fold cross validation technique, XGBoost is shown to outperform other state-of-the-art classification algorithms by 3% in terms of accuracy and F-score. Our model achieved an accuracy of 80.52%, a precision of 80.62% and recall of 80.51%, supporting the more natural and promising multiclass classification.

Keywords: eXtreme gradient boosting, missing data, Alzheimer disease, early mild cognitive impairment, late mild cognitive impair, multiclass classification, ADNI, support vector machine, random forest

Procedia PDF Downloads 188
7559 Visual Improvement with Low Vision Aids in Children with Stargardt’s Disease

Authors: Anum Akhter, Sumaira Altaf

Abstract:

Purpose: To study the effect of low vision devices i.e. telescope and magnifying glasses on distance visual acuity and near visual acuity of children with Stargardt’s disease. Setting: Low vision department, Alshifa Trust Eye Hospital, Rawalpindi, Pakistan. Methods: 52 children having Stargardt’s disease were included in the study. All children were diagnosed by pediatrics ophthalmologists. Comprehensive low vision assessment was done by me in Low vision clinic. Visual acuity was measured using ETDRS chart. Refraction and other supplementary tests were performed. Children with Stargardt’s disease were provided with different telescopes and magnifying glasses for improving far vision and near vision. Results: Out of 52 children, 17 children were males and 35 children were females. Distance visual acuity and near visual acuity improved significantly with low vision aid trial. All children showed visual acuity better than 6/19 with a telescope of higher magnification. Improvement in near visual acuity was also significant with magnifying glasses trial. Conclusions: Low vision aids are useful for improvement in visual acuity in children. Children with Stargardt’s disease who are having a problem in education and daily life activities can get help from low vision aids.

Keywords: Stargardt, s disease, low vision aids, telescope, magnifiers

Procedia PDF Downloads 539
7558 Economic Loss due to Ganoderma Disease in Oil Palm

Authors: K. Assis, K. P. Chong, A. S. Idris, C. M. Ho

Abstract:

Oil palm or Elaeis guineensis is considered as the golden crop in Malaysia. But oil palm industry in this country is now facing with the most devastating disease called as Ganoderma Basal Stem Rot disease. The objective of this paper is to analyze the economic loss due to this disease. There were three commercial oil palm sites selected for collecting the required data for economic analysis. Yield parameter used to measure the loss was the total weight of fresh fruit bunch in six months. The predictors include disease severity, change in disease severity, number of infected neighbor palms, age of palm, planting generation, topography, and first order interaction variables. The estimation model of yield loss was identified by using backward elimination based regression method. Diagnostic checking was conducted on the residual of the best yield loss model. The value of mean absolute percentage error (MAPE) was used to measure the forecast performance of the model. The best yield loss model was then used to estimate the economic loss by using the current monthly price of fresh fruit bunch at mill gate.

Keywords: ganoderma, oil palm, regression model, yield loss, economic loss

Procedia PDF Downloads 389
7557 Trend of Foot and Mouth Disease and Adopted Control Measures in Limpopo Province during the Period 2014 to 2020

Authors: Temosho Promise Chuene, T. Chitura

Abstract:

Background: Foot and mouth disease is a real challenge in South Africa. The disease is a serious threat to the viability of livestock farming initiatives and affects local and international livestock trade. In Limpopo Province, the Kruger National Park and other game reserves are home to the African buffalo (Syncerus caffer), a notorious reservoir of the picornavirus, which causes foot and mouth disease. Out of the virus’s seven (7) distinct serotypes, Southern African Territories (SAT) 1, 2, and 3 are commonly endemic in South Africa. The broad objective of the study was to establish the trend of foot and mouth disease in Limpopo Province over a seven-year period (2014-2020), as well as the adoption and comprehensive reporting of the measures that are taken to contain disease outbreaks in the study area. Methods: The study used secondary data from the World Organization for Animal Health (WOAH) on reported cases of foot and mouth disease in South Africa. Descriptive analysis (frequencies and percentages) and Analysis of variance (ANOVA) were used to present and analyse the data. Result: The year 2020 had the highest prevalence of foot and mouth disease (3.72%), while 2016 had the lowest prevalence (0.05%). Serotype SAT 2 was the most endemic, followed by SAT 1. Findings from the study demonstrated the seasonal nature of foot and mouth disease in the study area, as most disease cases were reported in the summer seasons. Slaughter of diseased and at-risk animals was the only documented disease control strategy, and information was missing for some of the years. Conclusion: The study identified serious underreporting of the adopted control strategies following disease outbreaks. Adoption of comprehensive disease control strategies coupled with thorough reporting can help to reduce outbreaks of foot and mouth disease and prevent losses to the livestock farming sector of South Africa and Limpopo Province in particular.

Keywords: livestock farming, African buffalo, prevalence, serotype, slaughter

Procedia PDF Downloads 64
7556 Application of Low-order Modeling Techniques and Neural-Network Based Models for System Identification

Authors: Venkatesh Pulletikurthi, Karthik B. Ariyur, Luciano Castillo

Abstract:

The system identification from the turbulence wakes will lead to the tactical advantage to prepare and also, to predict the trajectory of the opponents’ movements. A low-order modeling technique, POD, is used to predict the object based on the wake pattern and compared with pre-trained image recognition neural network (NN) to classify the wake patterns into objects. It is demonstrated that low-order modeling, POD, is able to predict the objects better compared to pretrained NN by ~30%.

Keywords: the bluff body wakes, low-order modeling, neural network, system identification

Procedia PDF Downloads 180
7555 Turkey Disaster Risk Management System Project (TAFRISK)

Authors: Ahmet Parlak, Celalettin Bilgen

Abstract:

In order to create an effective early warning system, Identification of the risks, preparation and carrying out risk modeling of risk scenarios, taking into account the shortcomings of the old disaster scenarios should be used to improve the system. In the light of this, the importance of risk modeling in creating an effective early warning system is understood. In the scope of TAFRISK project risk modeling trend analysis report on risk modeling developed and a demonstration was conducted for Risk Modeling for flood and mass movements. For risk modeling R&D, studies have been conducted to determine the information, and source of the information, to be gathered, to develop algorithms and to adapt the current algorithms to Turkey’s conditions for determining the risk score in the high disaster risk areas. For each type of the disaster; Disaster Deficit Index (DDI), Local Disaster Index (LDI), Prevalent Vulnerability Index (PVI), Risk Management Index (RMI) have been developed as disaster indices taking danger, sensitivity, fragility, and vulnerability, the physical and economic damage into account in the appropriate scale of the respective type.

Keywords: disaster, hazard, risk modeling, sensor

Procedia PDF Downloads 428
7554 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 140
7553 Bayesian Prospective Detection of Small Area Health Anomalies Using Kullback Leibler Divergence

Authors: Chawarat Rotejanaprasert, Andrew Lawson

Abstract:

Early detection of unusual health events depends on the ability to detect rapidly any substantial changes in disease, thus facilitating timely public health interventions. To assist public health practitioners to make decisions, statistical methods are adopted to assess unusual events in real time. We introduce a surveillance Kullback-Leibler (SKL) measure for timely detection of disease outbreaks for small area health data. The detection methods are compared with the surveillance conditional predictive ordinate (SCPO) within the framework of Bayesian hierarchical Poisson modeling and applied to a case study of a group of respiratory system diseases observed weekly in South Carolina counties. Properties of the proposed surveillance techniques including timeliness and detection precision are investigated using a simulation study.

Keywords: Bayesian, spatial, temporal, surveillance, prospective

Procedia PDF Downloads 311
7552 Detection of Chaos in General Parametric Model of Infectious Disease

Authors: Javad Khaligh, Aghileh Heydari, Ali Akbar Heydari

Abstract:

Mathematical epidemiological models for the spread of disease through a population are used to predict the prevalence of a disease or to study the impacts of treatment or prevention measures. Initial conditions for these models are measured from statistical data collected from a population since these initial conditions can never be exact, the presence of chaos in mathematical models has serious implications for the accuracy of the models as well as how epidemiologists interpret their findings. This paper confirms the chaotic behavior of a model for dengue fever and SI by investigating sensitive dependence, bifurcation, and 0-1 test under a variety of initial conditions.

Keywords: epidemiological models, SEIR disease model, bifurcation, chaotic behavior, 0-1 test

Procedia PDF Downloads 324
7551 ANA Negative but FANA Positive Patients with Clinical Symptoms of Rheumatic Disease: The Suggestion for Clinicians

Authors: Abdolreza Esmaeilzadeh, Mehri Mirzaei

Abstract:

Objective: Rheumatic disease is a chronic disease that causes pain, stiffness, swelling and limited motion and function of many joints. RA is the most common form of autoimmune arthritis, affecting more than 1.3 million Americans. Of these, about 75% are women. Materials and Methods: This study was formed due to the misconception about ANA test, which is frequently performed with methods based upon solid phase as ELISA. This experiment was conducted on 430 patients, with clinical symptoms that are likely affected with rheumatic diseases, simultaneously by means of ANA and FANA. Results: 36 cases (8.37%) of patients, despite positive ANA, have demonstrated negative results via Indirect Immunofluorescence Assay (IIFA), (false positive). 116 cases (27%) have demonstrated negative ANA results, by means of the ELISA technique, although they had positive IIFA results. Conclusion: Other advantages of IIFA are antibody titration and specific pattern detection that have the capability of distinguishing positive dsDNA results. According to the restrictions and false negative cases, in patients, IIFA test is highly recommended for these disease's diagnosis.

Keywords: autoimmune disease, IIFA, EIA, rheumatic disease

Procedia PDF Downloads 499
7550 Use of Beta Blockers in Patients with Reactive Airway Disease and Concomitant Hypertension or Ischemic Heart Disease

Authors: Bharti Chogtu Magazine, Dhanya Soodana Mohan, Shruti Nair, Tanwi Trushna

Abstract:

The study was undertaken to analyse the cardiovascular drugs being prescribed in patients with concomitant reactive airway disease and hypertension or ischemic heart diseases (IHD). Also, the effect of beta-blockers on respiratory symptoms in these patients was recorded. Data was collected from medical records of patients with reactive airway disease and concomitant hypertension and IHD. It included demographic details of the patients, diagnosis, drugs prescribed and the patient outcome regarding the exacerbation of asthma symptoms with intake of beta blockers. Medical records of 250 patients were analysed.13% of patients were prescribed beta-blockers. 12% of hypertensive patients, 16.6% of IHD patients and 20% of patients with concomitant hypertension and IHD were prescribed beta blockers. Of the 33 (13%) patients who were on beta-blockers, only 3 patients had an exacerbation of bronchial asthma symptoms. Cardioselective beta-blockers under supervision appear to be safe in patients with reactive airway disease and concomitant hypertension and IHD.

Keywords: beta blockers, hypertension, ischemic heart disease, asthma

Procedia PDF Downloads 445
7549 3 Dimensional (3D) Assesment of Hippocampus in Alzheimer’s Disease

Authors: Mehmet Bulent Ozdemir, Sultan Çagirici, Sahika Pinar Akyer, Fikri Turk

Abstract:

Neuroanatomical appearance can be correlated with clinical or other characteristics of illness. With the introduction of diagnostic imaging machines, producing 3D images of anatomic structures, calculating the correlation between subjects and pattern of the structures have become possible. The aim of this study is to examine the 3D structure of hippocampus in cases with Alzheimer disease in different dementia severity. For this purpose, 62 female and 38 male- 68 patients’s (age range between 52 and 88) MR scanning were imported to the computer. 3D model of each right and left hippocampus were developed by a computer aided propramme-Surf Driver 3.5. Every reconstruction was taken by the same investigator. There were different apperance of hippocampus from normal to abnormal. In conclusion, These results might improve the understanding of the correlation between the morphological changes in hippocampus and clinical staging in Alzheimer disease.

Keywords: Alzheimer disease, hippocampus, computer-assisted anatomy, 3D

Procedia PDF Downloads 481
7548 Modelling and Simulation of the Freezing Systems and Heat Pumps Using Unisim® Design

Authors: C. Patrascioiu

Abstract:

The paper describes the modeling and simulation of the heat pumps domain processes. The main objective of the study is the use of the heat pump in propene–propane distillation processes. The modeling and simulation instrument is the Unisim® Design simulator. The paper is structured in three parts: An overview of the compressing gases, the modeling and simulation of the freezing systems, and the modeling and simulation of the heat pumps. For each of these systems, there are presented the Unisim® Design simulation diagrams, the input–output system structure and the numerical results. Future studies will consider modeling and simulation of the propene–propane distillation process with heat pump.

Keywords: distillation, heat pump, simulation, unisim design

Procedia PDF Downloads 363
7547 Dynamic Modeling of Energy Systems Adapted to Low Energy Buildings in Lebanon

Authors: Nadine Yehya, Chantal Maatouk

Abstract:

Low energy buildings have been developed to achieve global climate commitments in reducing energy consumption. They comprise energy efficient buildings, zero energy buildings, positive buildings and passive house buildings. The reduced energy demands in Low Energy buildings call for advanced building energy modeling that focuses on studying active building systems such as heating, cooling and ventilation, improvement of systems performances, and development of control systems. Modeling and building simulation have expanded to cover different modeling approach i.e.: detailed physical model, dynamic empirical models, and hybrid approaches, which are adopted by various simulation tools. This paper uses DesignBuilder with EnergyPlus simulation engine in order to; First, study the impact of efficiency measures on building energy behavior by comparing Low energy residential model to a conventional one in Beirut-Lebanon. Second, choose the appropriate energy systems for the studied case characterized by an important cooling demand. Third, study dynamic modeling of Variable Refrigerant Flow (VRF) system in EnergyPlus that is chosen due to its advantages over other systems and its availability in the Lebanese market. Finally, simulation of different energy systems models with different modeling approaches is necessary to confront the different modeling approaches and to investigate the interaction between energy systems and building envelope that affects the total energy consumption of Low Energy buildings.

Keywords: physical model, variable refrigerant flow heat pump, dynamic modeling, EnergyPlus, the modeling approach

Procedia PDF Downloads 221
7546 The Correlation Between Epicardial Fat Pad and Coronary Artery Disease

Authors: Behnam Shakerian, Negin Razavi

Abstract:

The pathogenesis of coronary artery disease is multifactorial. The epicardial fat pad is a localized fat depot lying between the myocardium and the visceral layer of the pericardium. The mechanisms through which epicardial fat pad can cause atherosclerosis are complex. The epicardial fat pad can surround the coronary arteries and contributes to the development and progression of coronary artery disease. Methods: we selected 50 patients who underwent coronary artery angiography for the evaluation of coronary artery disease that results were positive for coronary artery disease. All patients underwent an echocardiographic examination after coronary angiography to measure epicardial fat pad thickness. The epicardial fat pad was defined as an echo-free space between the myocardium's outer wall and the pericardium's visceral layer. Results: The epicardial fat pad was measured on the right ventricle apex in 46 patients. Sixty- five percent of the studied patients were male. The most common vessel with stenosis was the left anterior descending artery. A significant correlation was observed between epicardial fat pad thickness and the severity of coronary artery disease. Discussions: The epicardial fat pad provides a horizon on the pathophysiology of cardiovascular diseases. It directly contributes to the development and progression of coronary artery disease by causing inflammation and endothelial damage. Further investigations are needed to determine whether medical treatment can reduce the mass of epicardial fat pad and can help to improve atherosclerosis. Conclusion: The epicardial fat pad measurement could be used as an indicator of coronary arteries’ atherosclerosis. Therefore, thickness measurement of the epicardial fat pad in the clinical practice could be of assistance in identifying patients at risk and if required, undergoing supplementary diagnosis with coronary angiography.

Keywords: epicardial, fat pad, coronary artery disease, echocardiography

Procedia PDF Downloads 161
7545 Detecting Potential Biomarkers for Ulcerative Colitis Using Hybrid Feature Selection

Authors: Mustafa Alshawaqfeh, Bilal Wajidy, Echin Serpedin, Jan Suchodolski

Abstract:

Inflammatory Bowel disease (IBD) is a disease of the colon with characteristic inflammation. Clinically IBD is detected using laboratory tests (blood and stool), radiology tests (imaging using CT, MRI), capsule endoscopy and endoscopy. There are two variants of IBD referred to as Ulcerative Colitis (UC) and Crohn’s disease. This study employs a hybrid feature selection method that combines a correlation-based variable ranking approach with exhaustive search wrapper methods in order to find potential biomarkers for UC. The proposed biomarkers presented accurate discriminatory power thereby identifying themselves to be possible ingredients to UC therapeutics.

Keywords: ulcerative colitis, biomarker detection, feature selection, inflammatory bowel disease (IBD)

Procedia PDF Downloads 402
7544 Data Mining in Healthcare for Predictive Analytics

Authors: Ruzanna Muradyan

Abstract:

Medical data mining is a crucial field in contemporary healthcare that offers cutting-edge tactics with enormous potential to transform patient care. This abstract examines how sophisticated data mining techniques could transform the healthcare industry, with a special focus on how they might improve patient outcomes. Healthcare data repositories have dynamically evolved, producing a rich tapestry of different, multi-dimensional information that includes genetic profiles, lifestyle markers, electronic health records, and more. By utilizing data mining techniques inside this vast library, a variety of prospects for precision medicine, predictive analytics, and insight production become visible. Predictive modeling for illness prediction, risk stratification, and therapy efficacy evaluations are important points of focus. Healthcare providers may use this abundance of data to tailor treatment plans, identify high-risk patient populations, and forecast disease trajectories by applying machine learning algorithms and predictive analytics. Better patient outcomes, more efficient use of resources, and early treatments are made possible by this proactive strategy. Furthermore, data mining techniques act as catalysts to reveal complex relationships between apparently unrelated data pieces, providing enhanced insights into the cause of disease, genetic susceptibilities, and environmental factors. Healthcare practitioners can get practical insights that guide disease prevention, customized patient counseling, and focused therapies by analyzing these associations. The abstract explores the problems and ethical issues that come with using data mining techniques in the healthcare industry. In order to properly use these approaches, it is essential to find a balance between data privacy, security issues, and the interpretability of complex models. Finally, this abstract demonstrates the revolutionary power of modern data mining methodologies in transforming the healthcare sector. Healthcare practitioners and researchers can uncover unique insights, enhance clinical decision-making, and ultimately elevate patient care to unprecedented levels of precision and efficacy by employing cutting-edge methodologies.

Keywords: data mining, healthcare, patient care, predictive analytics, precision medicine, electronic health records, machine learning, predictive modeling, disease prognosis, risk stratification, treatment efficacy, genetic profiles, precision health

Procedia PDF Downloads 62
7543 The Burden of Leptospirosis in Terms of Disability Adjusted Life Years in a District of Sri Lanka

Authors: A. M. U. P. Kumari, Vidanapathirana. J., Amarasekara J., Karunanayaka L.

Abstract:

Leptospirosis is a zoonotic infection with significant morbidity and mortality. As an occupational disease, it has become a global concern due to its disease burden in endemic countries and rural areas. The aim of this study was to assess disease burden in terms of DALYs of leptospirosis. A hospital-based descriptive cross-sectional study was conducted using 450 clinically diagnosed leptospirosis patients admitted to base and above hospitals in Monaragala district, Sri Lanka, using a pretested interviewer administered questionnaire. The patients were followed up till normal day today life after discharge. Estimation of DALYs was done using laboratory confirmed leptospirosis patients. Leptospirosis disease burden in the Monaragala district was 44.9 DALYs per 100,000 population which includes 33.18 YLLs and 10.9 YLDs. The incidence of leptospirosis in the Monaragala district during the study period was 59.8 per 100,000 population, and the case fatality rate (CFR) was 1.5% due to delay in health seeking behaviour; 75% of deaths were among males due to multi organ failure. The disease burden of leptospirosis in the Moneragala district was significantly high, and urgent efforts to control and prevent leptospirosis should be a priority.

Keywords: human leptospirosis, disease burden, disability adjusted life Years, Sri Lanka

Procedia PDF Downloads 234