Search results for: disease gene identification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7202

Search results for: disease gene identification

7202 Parkinson's Disease Gene Identification Using Physicochemical Properties of Amino Acids

Authors: Priya Arora, Ashutosh Mishra

Abstract:

Gene identification, towards the pursuit of mutated genes, leading to Parkinson’s disease, puts forward a challenge towards proactive cure of the disorder itself. Computational analysis is an effective technique for exploring genes in the form of protein sequences, as the theoretical and manual analysis is infeasible. The limitations and effectiveness of a particular computational method are entirely dependent on the previous data that is available for disease identification. The article presents a sequence-based classification method for the identification of genes responsible for Parkinson’s disease. During the initiation phase, the physicochemical properties of amino acids transform protein sequences into a feature vector. The second phase of the method employs Jaccard distances to select negative genes from the candidate population. The third phase involves artificial neural networks for making final predictions. The proposed approach is compared with the state of art methods on the basis of F-measure. The results confirm and estimate the efficiency of the method.

Keywords: disease gene identification, Parkinson’s disease, physicochemical properties of amino acid, protein sequences

Procedia PDF Downloads 101
7201 A C/T Polymorphism at the 5’ Untranslated Region of CD40 Gene in Patients Associated with Graves’ Disease in Kumaon Region

Authors: Sanjeev Kumar Shukla, Govind Singh, Prabhat Pant Shahzad Ahmad

Abstract:

Background: Graves’ disease is an autoimmune disorder with a genetic predisposition, and CD40 plays a pathogenic role in various autoimmune diseases. A single nucleotide polymorphism at position –1 of the Kozak sequence of the 5 untranslated regions of the CD40 gene of exon 1 has been reported to be associated with the development of Graves’ Disease. Objective: The aim of the present study was to investigate whether CD40 gene polymorphism confers susceptibility to Graves’ disease in the Kumaon region. CD40 gene polymorphisms were studied in Graves’ Disease patients (n=50) and healthy control subjects without anti-thyroid autoantibodies or a family history of autoimmune disorders (n=50). Material and Method: CD40 gene polymorphisms were studied in fifty Graves’ Disease patients and fifty healthy control subjects. All samples were collected from STG Hospital, Haldwani, Nainital. A C/T polymorphism at position –1 of the CD40 gene was measured using the polymerase chain reaction-restriction fragment length polymorphism. Results: There was no significant difference in allele or genotype frequency of the CD40 SNP between Graves’ Disease and control subjects. There was a significant decrease in the TT genotype frequency in the Graves’ Disease patients who developed Graves’ Disease after 40 years old than those under 40 years of age. These data suggest that the SNP of the CD40 gene is associated with susceptibility to the later onset of Graves’ Disease. Conclusion: The CD40 gene was a different susceptibility gene for Graves’ Disease within certain families because it was both linked and associated with Graves’ Disease.

Keywords: autoimmune diseases, pathogenesis, diagnosis, therapy

Procedia PDF Downloads 7
7200 Identification and Validation of Co-Dominant Markers for Selection of the CO-4 Anthracnose Disease Resistance Gene in Common Bean Cultivar G2333

Authors: Annet Namusoke, Annet Namayanja, Peter Wasswa, Shakirah Nampijja

Abstract:

Common bean cultivar G2333 which offers broad resistance for anthracnose has been widely used as a source of resistance in breeding for anthracnose resistance. The cultivar is pyramided with three genes namely CO-4, CO-5 and CO-7 and of these three genes, the CO-4 gene has been found to offer the broadest resistance. The main aim of this work was to identify and validate easily assayable PCR based co-dominant molecular markers for selection of the CO-4 gene in segregating populations derived from crosses of G2333 with RWR 1946 and RWR 2075, two commercial Andean cultivars highly susceptible to anthracnose. Marker sequences for the study were obtained by blasting the sequence of the COK-4 gene in the Phaseolus gene database. Primer sequence pairs that were not provided from the Phaseolus gene database were designed by the use of Primer3 software. PCR conditions were optimized and the PCR products were run on 6% HPAGE gel. Results of the polymorphism test indicated that out of 18 identified markers, only two markers namely BM588 and BM211 behaved co-dominantly. Phenotypic evaluation for reaction to anthracnose disease was done by inoculating 21days old seedlings of three parents, F1 and F2 populations with race 7 of Colletotrichum lindemuthianum in the humid chamber. DNA testing of the BM588 marker onto the F2 segregating population of the crosses RWR 1946 x G 2333 and RWR 2075 x G2333 further revealed that the marker BM588 co-segregated with disease resistance with co-dominance of two alleles of 200bp and 400bp, fitting the expected segregation ratio of 1:2:1. The BM588 marker was significantly associated with disease resistance and gave promising results for marker assisted selection of the CO-4 gene in the breeding lines. Activities to validate the BM211 marker are also underway.

Keywords: codominant, Colletotrichum lindemuthianum, MAS, Phaseolus vulgaris

Procedia PDF Downloads 259
7199 The Use of Medical Biotechnology to Treat Genetic Disease

Authors: Rachel Matar, Maxime Merheb

Abstract:

Chemical drugs have been used for many centuries as the only way to cure diseases until the novel gene therapy has been created in 1960. Gene therapy is based on the insertion, correction, or inactivation of genes to treat people with genetic illness (1). Gene therapy has made wonders in Parkison’s, Alzheimer and multiple sclerosis. In addition to great promises in the healing of deadly diseases like many types of cancer and autoimmune diseases (2). This method implies the use of recombinant DNA technology with the help of different viral and non-viral vectors (3). It is nowadays used in somatic cells as well as embryos and gametes. Beside all the benefits of gene therapy, this technique is deemed by some opponents as an ethically unacceptable treatment as it implies playing with the genes of living organisms.

Keywords: gene therapy, genetic disease, cancer, multiple sclerosis

Procedia PDF Downloads 502
7198 Identification of Mx Gene Polymorphism in Indragiri Hulu duck by PCR-RFLP

Authors: Restu Misrianti

Abstract:

The amino acid variation of Asn (allele A) at position 631 in Mx gene was specific to positive antiviral to avian viral desease. This research was aimed at identifying polymorphism of Mx gene in duck using molecular technique. Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP) technique was used to select the genotype of AA, AG and GG. There were thirteen duck from Indragiri Hulu regency (Riau Province) used in this experiment. DNA amplification results showed that the Mx gene in duck is found in a 73 bp fragment. Mx gene in duck did not show any polymorphism. The frequency of the resistant allele (AA) was 0%, while the frequency of the susceptible allele (GG) was 100%.

Keywords: duck, Mx gene, PCR, RFLP

Procedia PDF Downloads 292
7197 Construction of the Large Scale Biological Networks from Microarrays

Authors: Fadhl Alakwaa

Abstract:

One of the sustainable goals of the system biology is understanding gene-gene interactions. Hence, gene regulatory networks (GRN) need to be constructed for understanding the disease ontology and to reduce the cost of drug development. To construct gene regulatory from gene expression we need to overcome many challenges such as data denoising and dimensionality. In this paper, we develop an integrated system to reduce data dimension and remove the noise. The generated network from our system was validated via available interaction databases and was compared to previous methods. The result revealed the performance of our proposed method.

Keywords: gene regulatory network, biclustering, denoising, system biology

Procedia PDF Downloads 206
7196 Identification of Significant Genes in Rheumatoid Arthritis, Melanoma Metastasis, Ulcerative Colitis and Crohn’s Disease

Authors: Krishna Pal Singh, Shailendra Kumar Gupta, Olaf Wolkenhauer

Abstract:

Background: Our study aimed to identify common genes and potential targets across the four diseases, which include rheumatoid arthritis, melanoma metastasis, ulcerative colitis, and Crohn’s disease. We used a network and systems biology approach to identify the hub gene, which can act as a potential target for all four disease conditions. The regulatory network was extracted from the PPI using the MCODE module present in Cytoscape. Our objective was to investigate the significance of hub genes in these diseases using gene ontology and KEGG pathway enrichment analysis. Methods: Our methodology involved collecting disease gene-related information from DisGeNET databases and performing protein-protein interaction (PPI) network and core genes screening. We then conducted gene ontology and KEGG pathway enrichment analysis. Results: We found that IL6 plays a critical role in all disease conditions and in different pathways that can be associated with the development of all four diseases. Conclusions: The theoretical importance of our research is that we employed various systems and structural biology techniques to identify a crucial protein that could serve as a promising target for treating multiple diseases. Our data collection and analysis procedures involved rigorous scrutiny, ensuring high-quality results. Our conclusion is that IL6 plays a significant role in all four diseases, and it can act as a potential target for treating them. Our findings may have important implications for the development of novel therapeutic interventions for these diseases.

Keywords: melanoma metastasis, rheumatoid arthritis, inflammatory bowel diseases, integrated bioinformatics analysis

Procedia PDF Downloads 51
7195 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes

Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani

Abstract:

The development of the method to annotate unknown gene functions is an important task in bioinformatics. One of the approaches for the annotation is The identification of the metabolic pathway that genes are involved in. Gene expression data have been utilized for the identification, since gene expression data reflect various intracellular phenomena. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.

Keywords: metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning

Procedia PDF Downloads 372
7194 Application of ATP7B Gene Mutation Analysis in Prenatal Diagnosis of Wilson’s Disease

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Chi V. Phan, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le

Abstract:

Wilson’s disease is an autosomal recessive disorder of copper metabolism, which is caused by mutation in copper- transporting P-type ATPase (ATP7B). The mechanism of this disease is a failure of hepatic excretion of copper to the bile, and it leads to copper deposits in the liver and other organs. Most clinical symptoms of Wilson’s disease can present as liver disease and/or neurologic disease. Objective: The goal of the study is prenatal diagnosis for pregnant women at high risk of Wilson’s disease in Northern Vietnam. Material and method: Three probands with clinically diagnosed liver disease were detected in the mutations of 21 exons and exon-intron boundaries of the ATP7B gene by direct Sanger-sequencing. Prenatal diagnoses were performed by amniotic fluid sampling from pregnant women in the 16th-18th weeks of pregnancy after the genotypes of parents with the probands were identified. Result: A total of three different mutations of the probands, including of S105*, P1052L, P1273G, were detected. Among three fetuses which underwent prenatal genetic testing, one fetus was homozygote; two fetuses were carriers. Conclusion: Genetic testing provided a useful method for prenatal diagnosis, and is a basis for genetic counseling.

Keywords: ATP7B gene, genetic testing, prenatal diagnosis, pedigree, Wilson disease

Procedia PDF Downloads 418
7193 Computational Agent-Based Approach for Addressing the Consequences of Releasing Gene Drive Mosquito to Control Malaria

Authors: Imran Hashmi, Sipkaduwa Arachchige Sashika Sureni Wickramasooriya

Abstract:

Gene-drive technology has emerged as a promising tool for disease control by influencing the population dynamics of disease-carrying organisms. Various gene drive mechanisms, derived from global laboratory experiments, aim to strategically manage and prevent the spread of targeted diseases. One prominent strategy involves population replacement, wherein genetically modified mosquitoes are introduced to replace the existing local wild population. To enhance our understanding and aid in the design of effective release strategies, we employ a comprehensive mathematical model. The utilized approach employs agent-based modeling, enabling the consideration of individual mosquito attributes and flexibility in parameter manipulation. Through the integration of an agent-based model and a meta-population spatial approach, the dynamics of gene drive mosquito spreading in a released site are simulated. The model's outcomes offer valuable insights into future population dynamics, providing guidance for the development of informed release strategies. This research significantly contributes to the ongoing discourse on the responsible and effective implementation of gene drive technology for disease vector control.

Keywords: gene drive, agent-based modeling, disease-carrying organisms, malaria

Procedia PDF Downloads 33
7192 Molecular Identification and Genotyping of Human Brucella Strains Isolated in Kuwait

Authors: Abu Salim Mustafa

Abstract:

Brucellosis is a zoonotic disease endemic in Kuwait. Human brucellosis can be caused by several Brucella species with Brucella melitensis causing the most severe and Brucella abortus the least severe disease. Furthermore, relapses are common after successful chemotherapy of patients. The classical biochemical methods of culture and serology for identification of Brucellae provide information about the species and serotypes only. However, to differentiate between relapse and reinfection/epidemiological investigations, the identification of genotypes using molecular methods is essential. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-16] were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. The 16S rRNA gene sequencing suggested that all the strains were B. melitensis and real-time PCR confirmed their species identity as B. melitensis. The ERIC-PCR band profiles produced a dendrogram of 75 branches suggesting each strain to be of a unique type. The cluster classification, based on ~ 80% similarity, divided all the ERIC genotypes into two clusters, A and B. Cluster A consisted of 9 ERIC genotypes (A1-A9) corresponding to 9 individual strains. Cluster B comprised of 13 ERIC genotypes (B1-B13) with B5 forming the largest cluster of 51 strains. MLVA-16 identified all isolates as B. melitensis and divided them into 71 MLVA-types. The cluster analysis of MLVA-16-types suggested that most of the strains in Kuwait originated from the East Mediterranean Region, a few from the African group and one new genotype closely matched with the West Mediterranean region. In conclusion, this work demonstrates that B. melitensis, the most pathogenic species of Brucella, is prevalent in Kuwait. Furthermore, MLVA-16 is the best molecular method, which can identify the Brucella species and genotypes as well as determine their origin in the global context. Supported by Kuwait University Research Sector grants MI04/15 and SRUL02/13.

Keywords: Brucella, ERIC-PCR, MLVA-16, RT-PCR, 16S rRNA gene sequencing

Procedia PDF Downloads 344
7191 Microarray Data Visualization and Preprocessing Using R and Bioconductor

Authors: Ruchi Yadav, Shivani Pandey, Prachi Srivastava

Abstract:

Microarrays provide a rich source of data on the molecular working of cells. Each microarray reports on the abundance of tens of thousands of mRNAs. Virtually every human disease is being studied using microarrays with the hope of finding the molecular mechanisms of disease. Bioinformatics analysis plays an important part of processing the information embedded in large-scale expression profiling studies and for laying the foundation for biological interpretation. A basic, yet challenging task in the analysis of microarray gene expression data is the identification of changes in gene expression that are associated with particular biological conditions. Careful statistical design and analysis are essential to improve the efficiency and reliability of microarray experiments throughout the data acquisition and analysis process. One of the most popular platforms for microarray analysis is Bioconductor, an open source and open development software project based on the R programming language. This paper describes specific procedures for conducting quality assessment, visualization and preprocessing of Affymetrix Gene Chip and also details the different bioconductor packages used to analyze affymetrix microarray data and describe the analysis and outcome of each plots.

Keywords: microarray analysis, R language, affymetrix visualization, bioconductor

Procedia PDF Downloads 446
7190 CMT4G: Rare Form of Charcot-Marie-Tooth Disease in Slovak Roma Patient

Authors: Dana Gabriková, Martin Mistrík, Jarmila Bernasovská, Iveta Tóthová, Jana Kisková

Abstract:

The Roma (Gypsies) is a transnational minority with a high degree of consanguineous marriages. Similar to other genetically isolated founder populations, the Roma harbor a number of unique or rare genetic disorders. This paper discusses about a rare form of Charcot-Marie-Tooth disease – type 4G (CMT4G), also called Hereditary Motor and Sensory Neuropathy type Russe, an autosomal recessive disease caused by mutation private to Roma characterized by abnormally increased density of non-myelinated axons. CMT4G was originally found in Bulgarian Roma and in 2009 two putative causative mutations in the HK1 gene were identified. Since then, several cases were reported in Roma families mainly from Bulgaria and Spain. Here we present a Slovak Roma family in which CMT4G was diagnosed on the basis of clinical examination and genetic testing. This case is a further proof of the role of the HK1 gene in pathogenesis of the disease. It confirms that mutation in the HK1 gene is a common cause of autosomal recessive CMT disease in Roma and should be considered as a common part of a diagnostic procedure.

Keywords: gypsies, HK1, HSMN-Russe, rare disease

Procedia PDF Downloads 358
7189 The Identification of Combined Genomic Expressions as a Diagnostic Factor for Oral Squamous Cell Carcinoma

Authors: Ki-Yeo Kim

Abstract:

Trends in genetics are transforming in order to identify differential coexpressions of correlated gene expression rather than the significant individual gene. Moreover, it is known that a combined biomarker pattern improves the discrimination of a specific cancer. The identification of the combined biomarker is also necessary for the early detection of invasive oral squamous cell carcinoma (OSCC). To identify the combined biomarker that could improve the discrimination of OSCC, we explored an appropriate number of genes in a combined gene set in order to attain the highest level of accuracy. After detecting a significant gene set, including the pre-defined number of genes, a combined expression was identified using the weights of genes in a gene set. We used the Principal Component Analysis (PCA) for the weight calculation. In this process, we used three public microarray datasets. One dataset was used for identifying the combined biomarker, and the other two datasets were used for validation. The discrimination accuracy was measured by the out-of-bag (OOB) error. There was no relation between the significance and the discrimination accuracy in each individual gene. The identified gene set included both significant and insignificant genes. One of the most significant gene sets in the classification of normal and OSCC included MMP1, SOCS3 and ACOX1. Furthermore, in the case of oral dysplasia and OSCC discrimination, two combined biomarkers were identified. The combined genomic expression achieved better performance in the discrimination of different conditions than in a single significant gene. Therefore, it could be expected that accurate diagnosis for cancer could be possible with a combined biomarker.

Keywords: oral squamous cell carcinoma, combined biomarker, microarray dataset, correlated genes

Procedia PDF Downloads 387
7188 Pathway and Differential Gene Expression Studies for Colorectal Cancer

Authors: Ankita Shukla, Tiratha Raj Singh

Abstract:

Colorectal cancer (CRC) imposes serious mortality burden worldwide and it has been increasing for past consecutive years. Continuous efforts have been made so far to diagnose the disease condition and to identify the root cause for it. In this study, we performed the pathway level as well as the differential gene expression studies for CRC. We analyzed the gene expression profile GSE24514 from Gene Expression Omnibus (GEO) along with the gene pathways involved in the CRC. This analysis helps us to understand the behavior of the genes that have shown differential expression through their targeted pathways. Pathway analysis for the targeted genes covers the wider area which therefore decreases the possibility to miss the significant ones. This will prove to be beneficial to expose the ones that have not been given attention so far. Through this analysis, we attempt to understand the various neighboring genes that have close relationship to the targeted one and thus proved to be significantly controlling the CRC. It is anticipated that the identified hub and neighboring genes will provide new directions to look at the pathway level differently and will be crucial for the regulatory processes of the disease.

Keywords: mismatch repair, microsatellite instability, carcinogenesis, morbidity

Procedia PDF Downloads 288
7187 Study of Virus/es Threatening Large Cardamom Cultivation in Sikkim and Darjeeling Hills of Northeast India

Authors: Dharmendra Pratap

Abstract:

Large Cardamom (Amomum subulatum), family Zingiberaceae is an aromatic spice crop and has rich medicinal value. Large Cardamom is as synonymous to Sikkim as Tea is to Darjeeling. Since Sikkim alone contributes up to 88% of India's large cardamom production which is the world leader by producing over 50% of the global yield. However, the production of large cardamom has declined almost to half since last two decade. The economic losses have been attributed to two viral diseases namely, chirke and Foorkey. Chirke disease is characterized by light and dark green streaks on leaves. The affected leaves exhibit streak mosaic, which gradually coalesce, turn brown and eventually dry up. Excessive sprouting and formation of bushy dwarf clumps at the base of mother plants that gradually die characterize the foorkey disease. In our surveys in Sikkim–Darjeeling hill area during 2012-14, 40-45% of plants were found to be affected with foorkey disease and 10-15% with chirke. Mechanical and aphid transmission study showed banana as an alternate host for both the disease. For molecular identification, total genomic DNA and RNA was isolated from the infected leaf tissues and subjected to Rolling circle amplification (RCA) and RT-PCR respectively. The DNA concatamers produced in the RCA reaction were monomerized by different restriction enzymes and the bands corresponding to ~1 kb genomes were purified and cloned in the respective sites. The nucleotide sequencing results revealed the association of Nanovirus with the foorkey disease of large cardamom. DNA1 showed 74% identity with Replicase gene of FBNYV, DNA2 showed 77% identity with the NSP gene of BBTV and DNA3 showed 74% identity with CP gene of BBTV. The finding suggests the presence of a new species of nanovirus associated with foorkey disease of large cardamom in Sikkim and Darjeeling hills. The details of their epidemiology and other factors would be discussed.

Keywords: RCA, nanovirus, large cardamom, molecular virology and microbiology

Procedia PDF Downloads 472
7186 Genome-Wide Association Study Identify COL2A1 as a Susceptibility Gene for the Hand Development Failure of Kashin-Beck Disease

Authors: Feng Zhang

Abstract:

Kashin-Beck disease (KBD) is a chronic osteochondropathy. The mechanism of hand growth and development failure of KBD remains elusive now. In this study, we conducted a two-stage genome-wide association study (GWAS) of palmar length-width ratio (LWR) of KBD, totally involving 493 Chinese Han KBD patients. Affymetrix Genome Wide Human SNP Array 6.0 was applied for SNP genotyping. Association analysis was conducted by PLINK software. Imputation analysis was performed by IMPUTE against the reference panel of the 1000 genome project. In the GWAS, the most significant association was observed between palmar LWR and rs2071358 of COL2A1 gene (P value = 4.68×10-8). Imputation analysis identified 3 SNPs surrounding rs2071358 with significant or suggestive association signals. Replication study observed additional significant association signals at both rs2071358 (P value = 0.017) and rs4760608 (P value = 0.002) of COL2A1 gene after Bonferroni correction. Our results suggest that COL2A1 gene was a novel susceptibility gene involved in the growth and development failure of hand of KBD.

Keywords: Kashin-Beck disease, genome-wide association study, COL2A1, hand

Procedia PDF Downloads 179
7185 mRNA Expression of NFKB1 with Parkinson's Disease

Authors: Ali Bayram, Burak Uz, Remzi Yiğiter

Abstract:

The aim of the present study was to investigate the expression levels of homo sapiens nuclear factor of kappa light polypeptide gene enhancer in B-cells 1, transcript variant 1 (NFKB1*1) mRNA in the peripheral blood of patients with Parkinson to elucidate the role in the pathogenesis of Parkinson disease (PD). The study group comprised 50 patients with the diagnosis of PD who have applied to Gaziantep University Faculty of Medicine, and Department of Neurology. 50 healthy individuals without any neuro degenerative disease are included as controls. Ribonucleic acid (RNA) was obtained from blood samples of patient and control groups. Complementary deoxyribonucleic acid (cDNA) was obtained from RNA samples using reverse transcription polymerase chain reaction (RT-PCR) technique. The gene expression of NFKB1*1 in patient/control groups were observed to decrease significantly, and the differences between groups with the Mann-Whitney method within 95% confidence interval (p<0.05) were analyzed. This salient finding provide a clue for our hypothesis that reduced activity of NFKB1*1 gene might play a role, at least partly, in the pathophysiology of PD.

Keywords: Parkinson’s Disease, NFKB1, mRNA expression, RT-PCR

Procedia PDF Downloads 474
7184 Polymorphism of Candidate Genes for Meat Production in Lori Sheep

Authors: Shahram Nanekarania, Majid Goodarzia

Abstract:

Calpastatin and callipyge have been known as one of the candidate genes in meat quality and quantity. Calpastatin gene has been located to chromosome 5 of sheep and callipyge gene has been localized in the telomeric region on ovine chromosome 18. The objective of this study was identification of calpastatin and callipyge genes polymorphism and analysis of genotype structure in population of Lori sheep kept in Iran. Blood samples were taken from 120 Lori sheep breed and genomic DNA was extracted by salting out method. Polymorphism was identified using the PCR-RFLP technique. The PCR products were digested with MspI and FaqI restriction enzymes for calpastatin gene and callipyge gene, respectively. In this population, three patterns were observed and AA, AB, BB genotype have been identified with the 0.32, 0.63, 0.05 frequencies for calpastatin gene. The results obtained for the callipyge gene revealed that only the wild-type allele A was observed, indicating that only genotype AA was present in the population under consideration.

Keywords: polymorphism, calpastatin, callipyge, PCR-RFLP, Lori sheep

Procedia PDF Downloads 579
7183 Mutation Analysis of the ATP7B Gene in 43 Vietnamese Wilson’s Disease Patients

Authors: Huong M. T. Nguyen, Hoa A. P. Nguyen, Mai P. T. Nguyen, Ngoc D. Ngo, Van T. Ta, Hai T. Le, Chi V. Phan

Abstract:

Wilson’s disease (WD) is an autosomal recessive disorder of the copper metabolism, which is caused by a mutation in the copper-transporting P-type ATPase (ATP7B). The mechanism of this disease is the failure of hepatic excretion of copper to bile, and leads to copper deposits in the liver and other organs. The ATP7B gene is located on the long arm of chromosome 13 (13q14.3). This study aimed to investigate the gene mutation in the Vietnamese patients with WD, and make a presymptomatic diagnosis for their familial members. Forty-three WD patients and their 65 siblings were identified as having ATP7B gene mutations. Genomic DNA was extracted from peripheral blood samples; 21 exons and exon-intron boundaries of the ATP7B gene were analyzed by direct sequencing. We recognized four mutations ([R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G) in the sum of 20 detectable mutations, accounting for 87.2% of the total. Mutation S105* was determined to have a high rate (32.6%) in this study. The hotspot regions of ATP7B were found at exons 2, 16, and 8, and intron 14, in 39.6 %, 11.6 %, 9.3%, and 7 % of patients, respectively. Among nine homozygote/compound heterozygote siblings of the patients with WD, three individuals were determined as asymptomatic by screening mutations of the probands. They would begin treatment after diagnosis. In conclusion, 20 different mutations were detected in 43 WD patients. Of this number, four novel mutations were explored, including [R723=; H724Tfs*34], V1042Cfs*79, D1027H, and IVS6+3A>G. The mutation S105* is the most prevalent and has been considered as a biomarker that can be used in a rapid detection assay for diagnosis of WD patients. Exons 2, 8, and 16, and intron 14 should be screened initially for WD patients in Vietnam. Based on risk profile for WD, genetic testing for presymptomatic patients is also useful in diagnosis and treatment.

Keywords: ATP7B gene, mutation detection, presymptomatic diagnosis, Vietnamese Wilson’s disease

Procedia PDF Downloads 348
7182 Investigating the Factors Affecting Generalization of Deep Learning Models for Plant Disease Detection

Authors: Praveen S. Muthukumarana, Achala C. Aponso

Abstract:

A large percentage of global crop harvest is lost due to crop diseases. Timely identification and treatment of crop diseases is difficult in many developing nations due to insufficient trained professionals in the field of agriculture. Many crop diseases can be accurately diagnosed by visual symptoms. In the past decade, deep learning has been successfully utilized in domains such as healthcare but adoption in agriculture for plant disease detection is rare. The literature shows that models trained with popular datasets such as PlantVillage does not generalize well on real world images. This paper attempts to find out how to make plant disease identification models that generalize well with real world images.

Keywords: agriculture, convolutional neural network, deep learning, plant disease classification, plant disease detection, plant disease diagnosis

Procedia PDF Downloads 103
7181 DNA Barcoding of Tree Endemic Campanula Species From Artvi̇n, Türki̇ye

Authors: Hayal Akyildirim Beğen, Özgür Emi̇nağaoğlu

Abstract:

DNA barcoding is the method of description of species based on gene diversity. In current studies, registration, genetic identification and protection of especially endemic plants pecies are carried out by DNA barcoding techniques. Molecular studies are based on the amplification and sequencing of the barcode gene region by the PCR method. Endemic Campanula choruhensis Kit Tan & Sorger, Campanula troegera Damboldt and Campanula betulifolia K.Koch is widespread in Artvin, Erzurum and around Çoruh valley passing through it. Intense road and dam constructions are carried out in and around the distribution area of this species. This situation harms the habitat of the species and puts its extinction. In this study, the plastid matK barcode gene regions (650 bp) of three Campanula species were created. To make the identification of this species quickly and accurately, gene sequence compared with sequences of other Campanula L. species. As a result of phylogenetic analysis, C. choruhensis is close relative to C. betulifolia. Morphologically, these species were determined to be more similar to each other with flower and leaf characters. C. troegera formed a separate branch.

Keywords: campanula, DNA barcoding, endemic, türkiye, artvin

Procedia PDF Downloads 35
7180 An Image Processing Scheme for Skin Fungal Disease Identification

Authors: A. A. M. A. S. S. Perera, L. A. Ranasinghe, T. K. H. Nimeshika, D. M. Dhanushka Dissanayake, Namalie Walgampaya

Abstract:

Nowadays, skin fungal diseases are mostly found in people of tropical countries like Sri Lanka. A skin fungal disease is a particular kind of illness caused by fungus. These diseases have various dangerous effects on the skin and keep on spreading over time. It becomes important to identify these diseases at their initial stage to control it from spreading. This paper presents an automated skin fungal disease identification system implemented to speed up the diagnosis process by identifying skin fungal infections in digital images. An image of the diseased skin lesion is acquired and a comprehensive computer vision and image processing scheme is used to process the image for the disease identification. This includes colour analysis using RGB and HSV colour models, texture classification using Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix and Local Binary Pattern, Object detection, Shape Identification and many more. This paper presents the approach and its outcome for identification of four most common skin fungal infections, namely, Tinea Corporis, Sporotrichosis, Malassezia and Onychomycosis. The main intention of this research is to provide an automated skin fungal disease identification system that increase the diagnostic quality, shorten the time-to-diagnosis and improve the efficiency of detection and successful treatment for skin fungal diseases.

Keywords: Circularity Index, Grey Level Run Length Matrix, Grey Level Co-Occurrence Matrix, Local Binary Pattern, Object detection, Ring Detection, Shape Identification

Procedia PDF Downloads 202
7179 A Local Tensor Clustering Algorithm to Annotate Uncharacterized Genes with Many Biological Networks

Authors: Paul Shize Li, Frank Alber

Abstract:

A fundamental task of clinical genomics is to unravel the functions of genes and their associations with disorders. Although experimental biology has made efforts to discover and elucidate the molecular mechanisms of individual genes in the past decades, still about 40% of human genes have unknown functions, not to mention the diseases they may be related to. For those biologists who are interested in a particular gene with unknown functions, a powerful computational method tailored for inferring the functions and disease relevance of uncharacterized genes is strongly needed. Studies have shown that genes strongly linked to each other in multiple biological networks are more likely to have similar functions. This indicates that the densely connected subgraphs in multiple biological networks are useful in the functional and phenotypic annotation of uncharacterized genes. Therefore, in this work, we have developed an integrative network approach to identify the frequent local clusters, which are defined as those densely connected subgraphs that frequently occur in multiple biological networks and consist of the query gene that has few or no disease or function annotations. This is a local clustering algorithm that models multiple biological networks sharing the same gene set as a three-dimensional matrix, the so-called tensor, and employs the tensor-based optimization method to efficiently find the frequent local clusters. Specifically, massive public gene expression data sets that comprehensively cover dynamic, physiological, and environmental conditions are used to generate hundreds of gene co-expression networks. By integrating these gene co-expression networks, for a given uncharacterized gene that is of biologist’s interest, the proposed method can be applied to identify the frequent local clusters that consist of this uncharacterized gene. Finally, those frequent local clusters are used for function and disease annotation of this uncharacterized gene. This local tensor clustering algorithm outperformed the competing tensor-based algorithm in both module discovery and running time. We also demonstrated the use of the proposed method on real data of hundreds of gene co-expression data and showed that it can comprehensively characterize the query gene. Therefore, this study provides a new tool for annotating the uncharacterized genes and has great potential to assist clinical genomic diagnostics.

Keywords: local tensor clustering, query gene, gene co-expression network, gene annotation

Procedia PDF Downloads 100
7178 Gene Names Identity Recognition Using Siamese Network for Biomedical Publications

Authors: Micheal Olaolu Arowolo, Muhammad Azam, Fei He, Mihail Popescu, Dong Xu

Abstract:

As the quantity of biological articles rises, so does the number of biological route figures. Each route figure shows gene names and relationships. Annotating pathway diagrams manually is time-consuming. Advanced image understanding models could speed up curation, but they must be more precise. There is rich information in biological pathway figures. The first step to performing image understanding of these figures is to recognize gene names automatically. Classical optical character recognition methods have been employed for gene name recognition, but they are not optimized for literature mining data. This study devised a method to recognize an image bounding box of gene name as a photo using deep Siamese neural network models to outperform the existing methods using ResNet, DenseNet and Inception architectures, the results obtained about 84% accuracy.

Keywords: biological pathway, gene identification, object detection, Siamese network

Procedia PDF Downloads 239
7177 THRAP2 Gene Identified as a Candidate Susceptibility Gene of Thyroid Autoimmune Diseases Pedigree in Tunisian Population

Authors: Ghazi Chabchoub, Mouna Feki, Mohamed Abid, Hammadi Ayadi

Abstract:

Autoimmune thyroid diseases (AITDs), including Graves’ disease (GD) and Hashimoto’s thyroiditis (HT), are inherited as complex traits. Genetic factors associated with AITDs have been tentatively identified by candidate gene and genome scanning approaches. We analysed three intragenic microsatellite markers in the thyroid hormone receptor associated protein 2 gene (THRAP2), mapped near D12S79 marker, which have a potential role in immune function and inflammation [THRAP2-1(TG)n, THRAP2-2 (AC)n and THRAP2-3 (AC)n]. Our study population concerned 12 patients affected with AITDs belonging to a multiplex Tunisian family with high prevalence of AITDs. Fluorescent genotyping was carried out on ABI 3100 sequencers (Applied Biosystems USA) with the use of GENESCAN for semi-automated fragment sizing and GENOTYPER peak-calling software. Statistical analysis was performed using the non parametric Lod score (NPL) by Merlin software. Merlin outputs non-parametric NPLall (Z) and LOD scores and their corresponding asymptotic P values. The analysis for three intragenic markers in the THRAP2 gene revealed strong evidence for linkage (NPL=3.68, P=0.00012). Our results suggested the possible role of THRAP2 gene in AITDs susceptibility in this family.

Keywords: autoimmunity, autoimmune disease, genetic, linkage analysis

Procedia PDF Downloads 92
7176 Genome-Wide Identification and Characterization of MLO Family Genes in Pumpkin (Cucurbita maxima Duch.)

Authors: Khin Thanda Win, Chunying Zhang, Sanghyeob Lee

Abstract:

Mildew resistance locus o (Mlo), a plant-specific gene family with seven-transmembrane (TM), plays an important role in plant resistance to powdery mildew (PM). PM caused by Podosphaera xanthii is a widespread plant disease and probably represents the major fungal threat for many Cucurbits. The recent Cucurbita maxima genome sequence data provides an opportunity to identify and characterize the MLO gene family in this species. Total twenty genes (designated CmaMLO1 through CmaMLO20) have been identified by using an in silico cloning method with the MLO gene sequences of Cucumis sativus, Cucumis melo, Citrullus lanatus and Cucurbita pepo as probes. These CmaMLOs were evenly distributed on 15 chromosomes of 20 C. maxima chromosomes without any obvious clustering. Multiple sequence alignment showed that the common structural features of MLO gene family, such as TM domains, a calmodulin-binding domain and 30 important amino acid residues for MLO function, were well conserved. Phylogenetic analysis of the CmaMLO genes and other plant species reveals seven different clades (I through VII) and only clade IV is specific to monocots (rice, barley, and wheat). Phylogenetic and structural analyses provided preliminary evidence that five genes belonged to clade V could be the susceptibility genes which may play the importance role in PM resistance. This study is the first comprehensive report on MLO genes in C. maxima to our knowledge. These findings will facilitate the functional analysis of the MLOs related to PM susceptibility and are valuable resources for the development of disease resistance in pumpkin.

Keywords: Mildew resistance locus o (Mlo), powdery mildew, phylogenetic relationship, susceptibility genes

Procedia PDF Downloads 153
7175 The Contribution of Genetic Polymorphisms of Tumor Necrosis Factor Alpha and Vascular Endothelial Growth Factor into the Unfavorable Clinical Course of Ulcerative Colitis

Authors: Y. I. Tretyakova, S. G. Shulkina, T. Y. Kravtsova, A. A. Antipova, N. Y. Kolomeets

Abstract:

The research aimed to assess the functional significance of tumor necrosis factor-alpha (TNF-α) gene polymorphism at the -308G/A (rs1800629) region and vascular endothelial growth factor A (VEGFA) gene polymorphism at the -634G/C (rs 2010963) region in the development of ulcerative colitis (UC), focusing on patients from the Perm region, Russia. We examined 70 UC patients and 50 healthy donors during the active phase of the disease. Our focus was on TNF-α and VEGF concentration in the blood serum, as well as TNF-α and VEGFA gene polymorphisms at the -308G/А and -634G/C regions, respectively. We found that TNF-α and VEGF levels were significantly higher in patients with severe UC and high endoscopic activity compared to those with milder forms of the disease and low endoscopic activity. These tests could serve as additional non-invasive markers for assessing mucosal damage in the large intestine of UC patients. The frequency of allele variations in the TNF-α gene -308G/A (rs1800629) revealed a significantly higher occurrence of the unfavorable homozygote AA in UC patients compared to donors. Additionally, the major allele G and the allele pair GG were more frequent in patients with mild to moderate disease and 1-2 degree of endoscopic activity than in those with severe UC and 3-4 degree of endoscopic activity (χ2=14.19; p=0.000). We also observed a mutant allele A and the unfavorable homozygote AA associated with severe progressive UC. The occurrence of the mutant allele increased the risk of severe UC by 5 times (OR 5.03; CI 12.07-12.21). We did not find any significant differences in the frequency of the CC homozygote (χ2=1.02; p=0.6; OR=1.32) and the mutant allele C of the VEGFA gene -634G/C (rs 2010963) (χ2=0.01; p=0.913; OR=0.97) between groups of UC patients and healthy individuals. However, we detected that the mutant allele C and the unfavorable homozygote CC of the VEGFA gene were associated with more severe endoscopic changes in the colonic mucosa of UC patients (χ2=25,76; р=0,000; OR=0,15). The presence of the mutant allele increased the risk of severe UC by 6 times (OR 6,78; CI 3,13–14,7). We found a direct correlation between TNF-α and VEGFA gene polymorphisms, increased production of the same factors, disease severity, and endoscopic activity (р=0.000). Therefore, the presence of the mutant allele A and homozygote AA of the TNF-α gene at the -308G/A region and the mutant allele C and homozygote CC of the VEGFA gene at the -634G/C region are associated with risks related to an unfavorable clinical course of UC, frequent recurrences, and rapid progression. These findings should be considered when making prognoses regarding the clinical course of the disease and selecting treatment strategies. The presence of the homozygote AA in the TNF-α gene (rs1800629) is considered a sign of genetic predisposition to UC.

Keywords: gene polymorphism, TNF-α, ulcerative colitis, VEGF

Procedia PDF Downloads 41
7174 Whole Exome Sequencing in Characterizing Mysterious Crippling Disorder in India

Authors: Swarkar Sharma, Ekta Rai, Ankit Mahajan, Parvinder Kumar, Manoj K Dhar, Sushil Razdan, Kumarasamy Thangaraj, Carol Wise, Shiro Ikegawa M.D., K.K. Pandita M.D.

Abstract:

Rare disorders are poorly understood hence, remain uncharacterized or patients are misdiagnosed and get poor medical attention. A rare mysterious skeletal disorder that remained unidentified for decades and rendered many people physically challenged and disabled for life has been reported in an isolated remote village ‘Arai’ of Poonch district of Jammu and Kashmir. This village is located deep in mountains and the population residing in the region is highly consanguineous. In our survey of the region, 70 affected people were reported, showing similar phenotype, in the village with a population of approximately 5000 individuals. We were able to collect samples from two multi generational extended families from the village. Through Whole Exome sequencing (WES), we identified a rare variation NM_003880.3:c.156C>A NP_003871.1:p.Cys52Ter, which results in introduction of premature stop codon in WISP3 gene. We found this variation perfectly segregating with the disease in one of the family. However, this variation was absent in other family. Interestingly, a novel splice site mutation at position c.643+1G>A of WISP3 gene, perfectly segregating with the disease was observed in the second family. Thus, exploiting WES and putting different evidences together (familial histories and genetic data, clinical features, radiological and biochemical tests and findings), the disease has finally been diagnosed as a very rare recessive hereditary skeletal disease “Progressive Pseudorheumatoid Arthropathy of Childhood” (PPAC) also known as “Spondyloepiphyseal Dysplasia Tarda with Progressive Arthropathy” (SEDT-PA). This genetic characterization and identification of the disease causing mutations will aid in genetic counseling, critically required to curb this rare disorder and to prevent its appearance in future generations in the population. Further, understanding of the role of WISP3 gene the biological pathways should help in developing treatment for the disorder.

Keywords: whole exome sequencing, Next Generation Sequencing, rare disorders

Procedia PDF Downloads 385
7173 Analysis of OPG Gene Polymorphism T245G (rs3134069) in Slovak Postmenopausal Women

Authors: I. Boroňová, J. Bernasovská, J. Kľoc, Z. Tomková, E. Petrejčíková, S. Mačeková, J. Poráčová, M. M. Blaščáková

Abstract:

Osteoporosis is a common multifactorial disease with a strong genetic component characterized by reduced bone mass and increased risk of fractures. Genetic factors play an important role in the pathogenesis of osteoporosis. The aim of our study was to identify the genotype and allele distribution of T245G polymorphism in OPG gene in Slovak postmenopausal women. A total of 200 unrelated Slovak postmenopausal women with diagnosed osteoporosis and 200 normal controls were genotyped for T245G (rs3134069) polymorphism of OPG gene. Genotyping was performed using the Custom Taqman®SNP Genotyping assays. Genotypes and alleles frequencies showed no significant differences (p=0.5551; p=0.6022). The results of the present study confirm the importance of T245G polymorphism in OPG gene in the pathogenesis of osteoporosis.

Keywords: OPG gene, T245G polymorphism, osteoporosis, T245G polymorphism, real-time PCR

Procedia PDF Downloads 375