Search results for: biogas recovery
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1898

Search results for: biogas recovery

1838 Thermo-Economic Evaluation of Sustainable Biogas Upgrading via Solid-Oxide Electrolysis

Authors: Ligang Wang, Theodoros Damartzis, Stefan Diethelm, Jan Van Herle, François Marechal

Abstract:

Biogas production from anaerobic digestion of organic sludge from wastewater treatment as well as various urban and agricultural organic wastes is of great significance to achieve a sustainable society. Two upgrading approaches for cleaned biogas can be considered: (1) direct H₂ injection for catalytic CO₂ methanation and (2) CO₂ separation from biogas. The first approach usually employs electrolysis technologies to generate hydrogen and increases the biogas production rate; while the second one usually applies commercially-available highly-selective membrane technologies to efficiently extract CO₂ from the biogas with the latter being then sent afterward for compression and storage for further use. A straightforward way of utilizing the captured CO₂ is on-site catalytic CO₂ methanation. From the perspective of system complexity, the second approach may be questioned, since it introduces an additional expensive membrane component for producing the same amount of methane. However, given the circumstance that the sustainability of the produced biogas should be retained after biogas upgrading, renewable electricity should be supplied to drive the electrolyzer. Therefore, considering the intermittent nature and seasonal variation of renewable electricity supply, the second approach offers high operational flexibility. This indicates that these two approaches should be compared based on the availability and scale of the local renewable power supply and not only the technical systems themselves. Solid-oxide electrolysis generally offers high overall system efficiency, and more importantly, it can achieve simultaneous electrolysis of CO₂ and H₂O (namely, co-electrolysis), which may bring significant benefits for the case of CO₂ separation from the produced biogas. When taking co-electrolysis into account, two additional upgrading approaches can be proposed: (1) direct steam injection into the biogas with the mixture going through the SOE, and (2) CO₂ separation from biogas which can be used later for co-electrolysis. The case study of integrating SOE to a wastewater treatment plant is investigated with wind power as the renewable power. The dynamic production of biogas is provided on an hourly basis with the corresponding oxygen and heating requirements. All four approaches mentioned above are investigated and compared thermo-economically: (a) steam-electrolysis with grid power, as the base case for steam electrolysis, (b) CO₂ separation and co-electrolysis with grid power, as the base case for co-electrolysis, (c) steam-electrolysis and CO₂ separation (and storage) with wind power, and (d) co-electrolysis and CO₂ separation (and storage) with wind power. The influence of the scale of wind power supply is investigated by a sensitivity analysis. The results derived provide general understanding on the economic competitiveness of SOE for sustainable biogas upgrading, thus assisting the decision making for biogas production sites. The research leading to the presented work is funded by European Union’s Horizon 2020 under grant agreements n° 699892 (ECo, topic H2020-JTI-FCH-2015-1) and SCCER BIOSWEET.

Keywords: biogas upgrading, solid-oxide electrolyzer, co-electrolysis, CO₂ utilization, energy storage

Procedia PDF Downloads 133
1837 Enhancement in Digester Efficiency and Numerical Analysis for Optimal Design Parameters of Biogas Plant Using Design of Experiment Approach

Authors: Rajneesh, Priyanka Singh

Abstract:

Biomass resources have been one of the main energy sources for mankind since the dawn of civilization. There is a vast scope to convert these energy sources into biogas which is a clean, low carbon technology for efficient management and conversion of fermentable organic wastes into a cheap and versatile fuel and bio/organic manure. Thus, in order to enhance the performance of anaerobic digester, an optimizing analysis of resultant parameters (organic dry matter (oDM) content, methane percentage, and biogas yield) has been done for a plug flow anaerobic digester having mesophilic conditions (20-40°C) with the wet fermentation process. Based on the analysis, correlations for oDM, methane percentage, and biogas yield are derived using multiple regression analysis. A statistical model is developed to correlate the operating variables using the design of experiment approach by selecting central composite design (CCD) of a response surface methodology. Results shown in the paper indicates that as the operating temperature increases the efficiency of digester gets improved provided that the pH and hydraulic retention time (HRT) remains constant. Working in an optimized range of carbon-nitrogen ratio for the plug flow digester, the output parameters show a positive change with the variation of dry matter content (DM).

Keywords: biogas, digester efficiency, design of experiment, plug flow digester

Procedia PDF Downloads 352
1836 Influence of Disintegration of Sida hermaphrodita Silage on Methane Fermentation Efficiency

Authors: Marcin Zielinski, Marcin Debowski, Paulina Rusanowska, Magda Dudek

Abstract:

As a result of sonification, the destruction of complex biomass structures results in an increase in the biogas yield from the conditioned material. First, the amount of organic matter released into the solution due to disintegration was determined. This parameter was determined by changes in the carbon content in liquid phase of the conditioned substrate. The amount of carbon in the liquid phase increased with the prolongation of the sonication time to 16 min. Further increase in the duration of sonication did not cause a statistically significant increase in the amount of organic carbon in the liquid phase. The disintegrated material was then used for respirometric measurements for determination of the impact of the conditioning process used on methane fermentation effectiveness. The relationship between the amount of energy introduced into the lignocellulosic substrate and the amount of biogas produced has been demonstrated. Statistically significant increase in the amount of biogas was observed until sonication of 16 min. Further increase in energy in the conditioning process did not significantly increase the production of biogas from the treated substrate. The biogas production from the conditioned substrate was 17% higher than from the reference biomass at that time. The ultrasonic disintegration method did not significantly affect the observed biogas composition. In all series, the methane content in the produced biogas from the conditioned substrate was similar to that obtained with the raw substrate sample (51.1%). Another method of substrate conditioning was hydrothermal depolymerization. This method consists in application of increased temperature and pressure to substrate. These phenomena destroy the structure of the processed material, the release of organic compounds to the solution, which should lead to increase the amount of produced biogas from such treated biomass. The hydrothermal depolymerization was conducted using an innovative microwave heating method. Control measurements were performed using conventional heating. The obtained results indicate the relationship between depolymerization temperature and the amount of biogas. Statistically significant value of the biogas production coefficients increased as the depolymerization temperature increased to 150°C. Further raising the depolymerization temperature to 180°C did not significantly increase the amount of produced biogas in the respirometric tests. As a result of the hydrothermal depolymerization obtained using microwave at 150°C for 20 min, the rate of biogas production from the Sida silage was 780 L/kg VS, which accounted for nearly 50% increase compared to 370 L/kg VS obtained from the same silage but not depolymerised. The study showed that by microwave heating it is possible to effectively depolymerized substrate. Significant differences occurred especially in the temperature range of 130-150ºC. The pre-treatment of Sida hermaphrodita silage (biogas substrate) did not significantly affect the quality of the biogas produced. The methane concentration was about 51.5% on average. The study was carried out in the framework of the project under program BIOSTRATEG funded by the National Centre for Research and Development No. 1/270745/2/NCBR/2015 'Dietary, power, and economic potential of Sida hermaphrodita cultivation on fallow land'.

Keywords: disintegration, biogas, methane fermentation, Virginia fanpetals, biomass

Procedia PDF Downloads 275
1835 Hydrogen Sulfide Removal from Biogas Using Biofilm on Packed Bed of Salak Fruit Seeds

Authors: Retno A. S. Lestari, Wahyudi B. Sediawan, Siti Syamsiah, Sarto

Abstract:

Sulfur-oxidizing bacteria were isolated and then grown on snakefruits seeds forming biofilm. Their performance in sulfide removal were experimentally observed. Snakefruit seeds were then used as packing material in a cylindrical tube. Biological treatment of hydrogen sulfide from biogas was investigated using biofilm on packed bed of snakefruits seeds. Biogas containing 27,9512 ppm of hydrogen sulfide was flown through the bed. Then the hydrogen sulfide concentrations in the outlet at various times were analyzed. A set of simple kinetics model for the rate of the sulfide removal and the bacterial growth was proposed. The axial sulfide concentration gradient in the flowing liquid are assumed to be steady-state. Mean while the biofilm grows on the surface of the seeds and the oxidation takes place in the biofilm. Since the biofilm is very thin, the sulfide concentration in the biofilm is assumed to be uniform. The simultaneous ordinary differential equations obtained were then solved numerically using Runge-Kutta method. The acuracy of the model proposed was tested by comparing the calcultion results using the model with the experimental data obtained. It turned out that the model proposed can be applied to describe the removal of sulfide liquid using bio-filter in packed bed. The values of the parameters were also obtained by curve-fitting. The biofilter could remove 89,83 % of the inlet of hydrogen sulfide from biogas for 2.5 h, and optimum loading of 8.33 ml/h.

Keywords: Sulfur-oxidizing bacteria, snakefruits seeds, biofilm, packing material, biogas

Procedia PDF Downloads 386
1834 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO₂ Mixture

Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti

Abstract:

CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.

Keywords: CO₂ mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux

Procedia PDF Downloads 169
1833 The Effect of Temperature, Contact Time and Agitation Speed During Pre-Treatment on Elution of Gold

Authors: T. P. Oladele, C. A. Snyders, S. M. Bradshaw, G. Akdogan

Abstract:

The effect of temperature, contact time and agitation during pre-treatment was investigated on the elution of gold from granular activated carbon at fixed caustic-cyanide concentration and elution conditions. It was shown that there are interactions between parameters during pre-treatment. At 80oC, recovery is independent of the contact time while the maximum recovery is obtained in the absence of agitation (0rpm). Increase in agitation speed from 0 rev/min to 1200 rev/min showed a decrease in recovery of approximately 20 percent at 80°C. Recovery with increased time from 15 minutes to 45 minutes is only pronounced at 25°C with approximately 4 percent increase at all agitation speeds. The results from elution recovery are aimed to give insight into the mechanisms of pre-treatment under the combinations of the chosen parameters.

Keywords: gold, temperature, contact time, agitation speed, recovery

Procedia PDF Downloads 450
1832 Energy and Economic Analysis of Heat Recovery from Boiler Exhaust Flue Gas

Authors: Kemal Comakli, Meryem Terhan

Abstract:

In this study, the potential of heat recovery from waste flue gas was examined in 60 MW district heating system of a university, and fuel saving was aimed by using the recovered heat in the system as a source again. Various scenarios are intended to make use of waste heat. For this purpose, actual operation data of the system were taken. Besides, the heat recovery units that consist of heat exchangers such as flue gas condensers, economizers or air pre-heaters were designed theoretically for each scenario. Energy analysis of natural gas-fired boiler’s exhaust flue gas in the system, and economic analysis of heat recovery units to predict payback periods were done. According to calculation results, the waste heat loss ratio from boiler flue gas in the system was obtained as average 16%. Thanks to the heat recovery units, thermal efficiency of the system can be increased, and fuel saving can be provided. At the same time, a huge amount of green gas emission can be decreased by installing the heat recovery units.

Keywords: heat recovery from flue gas, energy analysis of flue gas, economical analysis, payback period

Procedia PDF Downloads 264
1831 Gas Separation by Water-Swollen Membrane

Authors: Lenka Morávková, Zuzana Sedláková, Jiří Vejražka, Věra Jandová, Pavel Izák

Abstract:

The need to minimize the costs of biogas upgrading leads to a continuous search for new and more effective membrane materials. The improvement of biogas combustion efficiency is connected with polar gases removal from a feed stream. One of the possibilities is the use of water–swollen polyamide layer of thin film composite reverse osmosis membrane for simultaneous carbon dioxide and hydrogen sulphide removal. Transport properties and basic characteristics of a thin film composite membrane were compared in the term of appropriate water-swollen membrane choice for biogas upgrading. SEM analysis showed that the surface of the best performing composites changed significantly upon swelling by water. The surface changes were found to be a proof that the selective skin polyamide layer was swollen well. Further, the presence of a sufficient number of associative centers, namely amido groups, inside the upper layer of the hydrophilic thin composite membrane can play an important role in the polar gas separation from a non-polar gas. The next key factor is a high porosity of the membrane support.

Keywords: biogas upgrading, carbon dioxide separation, hydrogen sulphide separation, water-swollen membrane

Procedia PDF Downloads 322
1830 Investigation of the Effects of the Whey Addition on the Biogas Production of a Reactor Using Cattle Manure for Biogas Production

Authors: Behnam Mahdiyan Nasl

Abstract:

In a lab-scale research, the effects of feeding whey into the biogas system and how to solve the probable problems arising were analysed. In the study a semi-continuous glass reactor, having a total capacity of 13 liters and having a working capacity of 10 liters, was placed in an incubator, and the temperature was tried to be held at 38 °C. At first, the reactor was operated by adding 5 liters of animal manure and water with a ratio of 1/1. By passing time, the production rate of the gas reduced intensively that on the fourth day there was no production of gas and the system stopped working. In this condition, the pH was adjusted and by adding NaOH, it was increased from 5.4 to 7. On 48th day, the first gas measurement was done and an amount of 12.07 % of CH₄ was detected. After making buffer in the ambient, the number of bacteria existing in the cattle’s manure and contributing to the gas production was thought to be not adequate, and up to 20 % of its volume 2 liters of mud was added to the reactor. 7 days after adding the anaerobic mud, second gas measurement was carried out, and biogas including 43 % CH₄ was obtained. From the 61st day of the study, the cheese whey with the animal manure was started to be added with an amount of 40 mL per day. However, by passing time, the raising of the microorganisms existed in the whey (especially Ni and Co), the percent of methane in the biogas decreased. In fact, 2 weeks after adding PAS, the gas measurement was done and 36,97 % CH₄ was detected. 0,06 mL Ni-Co (to gain a concentration of 0.05 mg/L in the reactor’s mixture) solution was added to the system for 15 days. To find out the effect of the solution on archaea, 7 days after stopping addition of the solution, methane gas was found to have a 9,03 % increase and reach 46 %. Lastly, the effects of adding molasses to the reactor were investigated. The effects of its activity on the bacteria was analysed by adding 4 grams of it to the system. After adding molasses in 10 days, according to the last measurement, the amount of methane gas reached up to 49%.

Keywords: biogas, cheese whey, cattle manure, energy

Procedia PDF Downloads 306
1829 Insights into the Annotated Genome Sequence of Defluviitoga tunisiensis L3 Isolated from a Thermophilic Rural Biogas Producing Plant

Authors: Irena Maus, Katharina Gabriella Cibis, Andreas Bremges, Yvonne Stolze, Geizecler Tomazetto, Daniel Wibberg, Helmut König, Alfred Pühler, Andreas Schlüter

Abstract:

Within the agricultural sector, the production of biogas from organic substrates represents an economically attractive technology to generate bioenergy. Complex consortia of microorganisms are responsible for biomass decomposition and biogas production. Recently, species belonging to the phylum Thermotogae were detected in thermophilic biogas-production plants utilizing renewable primary products for biomethanation. To analyze adaptive genome features of representative Thermotogae strains, Defluviitoga tunisiensis L3 was isolated from a rural thermophilic biogas plant (54°C) and completely sequenced on an Illumina MiSeq system. Sequencing and assembly of the D. tunisiensis L3 genome yielded a circular chromosome with a size of 2,053,097 bp and a mean GC content of 31.38%. Functional annotation of the complete genome sequence revealed that the thermophilic strain L3 encodes several genes predicted to facilitate growth of this microorganism on arabinose, galactose, maltose, mannose, fructose, raffinose, ribose, cellobiose, lactose, xylose, xylan, lactate and mannitol. Acetate, hydrogen (H2) and carbon dioxide (CO2) are supposed to be end products of the fermentation process. The latter gene products are metabolites for methanogenic archaea, the key players in the final step of the anaerobic digestion process. To determine the degree of relatedness of dominant biogas community members within selected digester systems to D. tunisiensis L3, metagenome sequences from corresponding communities were mapped on the L3 genome. These fragment recruitments revealed that metagenome reads originating from a thermophilic biogas plant covered 95% of D. tunisiensis L3 genome sequence. In conclusion, availability of the D. tunisiensis L3 genome sequence and insights into its metabolic capabilities provide the basis for biotechnological exploitation of genome features involved in thermophilic fermentation processes utilizing renewable primary products.

Keywords: genome sequence, thermophilic biogas plant, Thermotogae, Defluviitoga tunisiensis

Procedia PDF Downloads 471
1828 Biogas Production from Pistachio (Pistacia vera L.) Processing Waste

Authors: İ. Çelik, Goksel Demirer

Abstract:

Turkey is the third largest producer of pistachio (Pistacia vera L.) after Iran and United States. Harvested pistachio nuts are covered with organic hull which is removed by de-hulling process. Most of the pistachio by-products which are produced during de-hulling process are considered as agricultural waste and often mixed with soil, to a lesser extent are used as feedstuff by local livestock farmers and a small portion is used as herbal medicine. Due to its high organic and phenolic content as well as high solids concentration, pistachio processing wastes create significant waste management problems unless they are properly managed. However, there is not a well-established waste management method compensating the waste generated during the processing of pistachios. This study investigated the anaerobic treatability and biogas generation potential of pistachio hull waste. The effect of pre-treatment on biogas generation potential was investigated. For this purpose, Biochemical Methane Potential (BMP) Assays were conducted for two Chemical Oxygen Demand (COD) concentrations of 22 and 33 g tCOD l-1 at the absence and presence of chemical and thermal pre-treatment methods. The results revealed anaerobic digestion of the pistachio de-hulling wastes and subsequent biogas production as a renewable energy source are possible. The observed percent COD removal and methane yield values of the pre-treated pistachio de-hulling waste samples were significantly higher than the raw pistachio de-hulling waste. The highest methane yield was observed as 213.4 ml CH4/g COD.

Keywords: pistachio de-hulling waste, biogas, renewable energy, pre-treatment

Procedia PDF Downloads 190
1827 Biogas Enhancement Using Iron Oxide Nanoparticles and Multi-Wall Carbon Nanotubes

Authors: John Justo Ambuchi, Zhaohan Zhang, Yujie Feng

Abstract:

Quick development and usage of nanotechnology have resulted to massive use of various nanoparticles, such as iron oxide nanoparticles (IONPs) and multi-wall carbon nanotubes (MWCNTs). Thus, this study investigated the role of IONPs and MWCNTs in enhancing bioenergy recovery. Results show that IONPs at a concentration of 750 mg/L and MWCNTs at a concentration of 1500 mg/L induced faster substrate utilization and biogas production rates than the control. IONPs exhibited higher carbon oxygen demand (COD) removal efficiency than MWCNTs while on the contrary, MWCNT performance on biogas generation was remarkable than IONPs. Furthermore, scanning electron microscopy (SEM) investigation revealed extracellular polymeric substances (EPS) excretion from AGS had an interaction with nanoparticles. This interaction created a protective barrier to microbial consortia hence reducing their cytotoxicity. Microbial community analyses revealed genus predominance of bacteria of Anaerolineaceae and Longilinea. Their role in biodegradation of the substrate could have highly been boosted by nanoparticles. The archaea predominance of the genus level of Methanosaeta and Methanobacterium enhanced methanation process. The presence of bacteria of genus Geobacter was also reported. Their presence might have significantly contributed to direct interspecies electron transfer in the system. Exposure of AGS to nanoparticles promoted direct interspecies electron transfer among the anaerobic fermenting bacteria and their counterpart methanogens during the anaerobic digestion process. This results provide useful insightful information in understanding the response of microorganisms to IONPs and MWCNTs in the complex natural environment.

Keywords: anaerobic granular sludge, extracellular polymeric substances, iron oxide nanoparticles, multi-wall carbon nanotubes

Procedia PDF Downloads 269
1826 Renewable Energy Potential of Diluted Poultry Manure during Ambient Anaerobic Stabilisation

Authors: Cigdem Yangin-Gomec, Aigerim Jaxybayeva, Orhan Ince

Abstract:

In this study, the anaerobic treatability of chicken manure diluted with tap water (with an influent feed ratio of 1 kg of fresh chicken manure to 6 liter of tap water) was investigated in a lab-scale anaerobic sludge bed (ASB) reactor inoculated with the granular sludge already adapted to chicken manure. The raw waste digested in this study was the manure from laying-hens having average total solids (TS) of about 30% with ca. 60% volatile content. The ASB reactor was fed semi-continuously at ambient operating temperature range (17-23C) at a HRT of 13 and 26 days for about 6 months, respectively. The respective average total and soluble chemical oxygen demand (COD) removals were ca. 90% and 75%, whereas average biomethane production rate was calculated ca. 180 lt per kg of CODremoved from the ASB reactor at an average HRT of 13 days. Moreover, total suspended solids (TSS) and volatile suspended solids (VSS) in the influent were reduced more than 97%. Hence, high removals of the organic compounds with respective biogas production made anaerobic stabilization of the diluted chicken manure by ASB reactor at ambient operating temperatures viable. By this way, external heating up to 35C (i.e. anaerobic processes have been traditionally operated at mesophilic conditions) could be avoided in the scope of this study.

Keywords: ambient anaerobic digestion, biogas recovery, poultry manure, renewable energy

Procedia PDF Downloads 391
1825 Protecting the Cloud Computing Data Through the Data Backups

Authors: Abdullah Alsaeed

Abstract:

Virtualized computing and cloud computing infrastructures are no longer fuzz or marketing term. They are a core reality in today’s corporate Information Technology (IT) organizations. Hence, developing an effective and efficient methodologies for data backup and data recovery is required more than any time. The purpose of data backup and recovery techniques are to assist the organizations to strategize the business continuity and disaster recovery approaches. In order to accomplish this strategic objective, a variety of mechanism were proposed in the recent years. This research paper will explore and examine the latest techniques and solutions to provide data backup and restoration for the cloud computing platforms.

Keywords: data backup, data recovery, cloud computing, business continuity, disaster recovery, cost-effective, data encryption.

Procedia PDF Downloads 59
1824 Two-Stage Anaerobic Digester for Biogas Production from Sewage Sludge: A Case Study in One of Kuwait’s Wastewater Treatment Plant

Authors: Abdullah Almatouq, Abdulla Abusam, Hussain Hussain, Mishari Khajah, Hussain Abdullah, Rashed Al-Yaseen, Mariam Al-Jumaa, Farah Al-Ajeel, Mohammad Aljassam

Abstract:

Due to the high demand for energy from unsustainable resources in Kuwait, the Kuwaiti government has focused recently on using sustainable resources for energy, such as solar and wind energy. In addition, sludge which is generated as a by-product of physical, chemical, and biological processes during wastewater treatment, can be used as a substrate to generate energy through anaerobic digestion. Kuwait’s wastewater treatment plants produce more than 1.7 million m3 of sludge per year, and this volume is accumulated in the treatment plants without any treatment. Therefore, a pilot-scale (3 m3) two-stage anaerobic digester was constructed in one of the largest treatment plants in Kuwait. The reactor was operated in batch mode, and the hydraulic retention time varied between 14 – 27 days. The main of this study is to evaluate the technical feasibility of a two-stage anaerobic digester for sludge treatability and energy generation in Kuwait. The anaerobic digester achieved a total biogas production of 37 m3, and the highest value of daily biogas production was 0.4 m3/day. The methane content ranged between 50 % and 66 %, and the other gases were as follows: CO2 20 %, H2S 13 %, and 1 % O2. The generated biogas was used on-site for cooking and lighting. In some batches, low C/N was noticed, and that lead to maintaining the concentration of CH4 between 50%-55%. In conclusion, an anaerobic digester is an environmentally friendly technology that can be applied in Kuwait, and the obtained results support the scale-up of the process in all the treatment plants.

Keywords: wastewater, metahne, biogas production potential, anaerobic digestion

Procedia PDF Downloads 77
1823 Technology for Biogas Upgrading with Immobilized Algae Biomass

Authors: Marcin Debowski, Marcin Zielinski, Miroslaw Krzemieniewski, Agata Glowacka-Gil, Paulina Rusanowska, Magdalena Zielinska, Agnieszka Cydzik-Kwiatkowska

Abstract:

Technologies of biogas upgrading are now perceived as competitive solution combustion and production of electricity and heat. Biomethane production will ensure broader application as energy carrier than biogas. Biomethane can be used as fuel in internal combustion engines or introduced into the natural gas transmission network. Therefore, there is a need to search for innovative, economically and technically justified methods for biogas enrichment. The aim of this paper is to present a technology solution for biogas upgrading with immobilized algae biomass. Reactor for biogas upgrading with immobilized algae biomass can be used for removing CO₂ from the biogas, flue gases and the waste gases especially coming from different industry sectors, e.g. from the food industry from yeast production process, biogas production systems, liquid and gaseous fuels combustion systems, hydrocarbon processing technology. The basis for the technological assumptions of presented technology were laboratory works and analyses that tested technological variants of biogas upgrading. The enrichment of biogas with a methane content of 90-97% pointed to technological assumptions for installation on a technical scale. Reactor for biogas upgrading with algae biomass is characterized by a significantly lower cubature in relation to the currently used solutions which use CO₂ removal processes. The invention, by its structure, assumes achieving a very high concentration of biomass of algae through its immobilization in capsules. This eliminates the phenomenon of lowering the pH value, i.e. acidification of the environment in which algae grow, resulting from the introduction of waste gases at a high CO₂ concentration. The system for introducing light into algae capsules is characterized by a higher degree of its use, due to lower losses resulting from the phenomenon of absorption of light energy by water. The light from the light source is continuously supplied to the formed biomass of algae or cyanobacteria in capsules by the light tubes. The light source may be sunlight or a light generator of a different wavelength of light from 300 nm to 800 nm. A portion of gas containing CO₂, accumulated in the tank and conveyed by the pump is periodically introduced into the housing of the photobioreactor tank. When conveying the gas that contains CO₂, it penetrates the algal biomass in capsules through the outer envelope, displacing, from the algal biomass, gaseous metabolic products which are discharged by the outlet duct for gases. It contributes to eliminating the negative impact of this factor on CO₂ binding processes. As a result of the cyclic dosing of gases containing carbon dioxide, gaseous metabolic products of algae are displaced and removed outside the technological system. Technology for biogas upgrading with immobilized algae biomass is suitable for the small biogas plant. The advantages of this technology are high efficiency as well as useful algae biomass which can be used mainly as animal feed, fertilizers and in the power industry. The construction of the device allows effective removal of carbon dioxide from gases at a high CO₂ concentration.

Keywords: biogas, carbon dioxide, immobilised biomass, microalgae, upgrading

Procedia PDF Downloads 129
1822 The Shape Memory Recovery Properties under Load of a Polymer Composite

Authors: Abdul Basit, Gildas Lhostis, Bernard Durand

Abstract:

Shape memory polymers (SMPs) are replacing shape memory alloys (SMAs) in many applications as SMPs have certain superior properties than SMAs. However, SMAs possess some properties like recovery under stress that SMPs lack. SMPs cannot give complete recovery even under a small load. SMPs are initially heated close to their transition temperature (glass transition temperature or the melting temperature). Then force is applied to deform the heated SMP to a specific position. Subsequently, SMP is allowed to cool keeping it deformed. After cooling, SMP gets the temporary shape. This temporary shape can be recovered by heating it again at the same temperature that was given it while heating it initially. As a result, it will recover its original position. SMP can perform unconstrained recovery and constrained recovery, however; under the load, it only recovers partially. In this work, the recovery under the load of an asymmetrical shape memory composite called as CBCM-SMPC has been investigated. It is found that it has the ability to recover under different loads. Under different loads, it shows powerful complete recovery in reference to initial position. This property can be utilized in many applications.

Keywords: shape memory, polymer composite, thermo-mechanical testing, recovery under load

Procedia PDF Downloads 405
1821 Effects of the Different Recovery Durations on Some Physiological Parameters during 3 X 3 Small-Sided Games in Soccer

Authors: Samet Aktaş, Nurtekin Erkmen, Faruk Guven, Halil Taskin

Abstract:

This study aimed to determine the effects of 3 versus 3 small-sided games (SSG) with different recovery times on soma physiological parameters in soccer players. Twelve soccer players from Regional Amateur League volunteered for this study (mean±SD age, 20.50±2.43 years; height, 177.73±4.13 cm; weight, 70.83±8.38 kg). Subjects were performing soccer training for five days per week. The protocol of the study was approved by the local ethic committee in School of Physical Education and Sport, Selcuk University. The subjects were divided into teams with 3 players according to Yo-Yo Intermittent Recovery Test. The field dimension was 26 m wide and 34 m in length. Subjects performed two times in a random order a series of 3 bouts of 3-a-side SSGs with 3 min and 5 min recovery durations. In SSGs, each set were performed with 6 min duration. The percent of maximal heart rate (% HRmax), blood lactate concentration (LA) and Rated Perceived Exertion (RPE) scale points were collected before the SSGs and at the end of each set. Data were analyzed by analysis of variance (ANOVA) with repeated measures. Significant differences were found between %HRmax in before SSG and 1st set, 2nd set, and 3rd set in both SSG with 3 min recovery duration and SSG with 5 min recovery duration (p<0.05). Means of %HRmax in SSG with 3 min recovery duration at both 1st and 2nd sets were significantly higher than SSG with 5 min recovery duration (p<0.05). No significant difference was found between sets of either SSGs in terms of LA (p>0.05). LA in SSG with 3 min recovery duration was higher than SSG with 5 min recovery duration at 2nd sets (p<0.05). RPE in soccer players was not different between SSGs (p>0.05).In conclusion, this study demonstrates that exercise intensity in SSG with 3 min recovery durations is higher than SSG with 5 min recovery durations.

Keywords: small-sided games, soccer, heart rate, lactate

Procedia PDF Downloads 437
1820 Reactors with Effective Mixing as a Solutions for Micro-Biogas Plant

Authors: M. Zielinski, M. Debowski, P. Rusanowska, A. Glowacka-Gil, M. Zielinska, A. Cydzik-Kwiatkowska, J. Kazimierowicz

Abstract:

Technologies for the micro-biogas plant with heating and mixing systems are presented as a part of the Research Coordination for a Low-Cost Biomethane Production at Small and Medium Scale Applications (Record Biomap). The main objective of the Record Biomap project is to build a network of operators and scientific institutions interested in cooperation and the development of promising technologies in the sector of small and medium-sized biogas plants. The activities carried out in the project will bridge the gap between research and market and reduce the time of implementation of new, efficient technological and technical solutions. Reactor with simultaneously mixing and heating system is a concrete tank with a rectangular cross-section. In the reactor, heating is integrated with the mixing of substrate and anaerobic sludge. This reactor is solution dedicated for substrates with high solids content, which cannot be introduced to the reactor with pumps, even with positive displacement pumps. Substrates are poured to the reactor and then with a screw pump, they are mixed with anaerobic sludge. The pumped sludge, flowing through the screw pump, is simultaneously heated by a heat exchanger. The level of the fermentation sludge inside the reactor chamber is above the bottom edge of the cover. Cover of the reactor is equipped with the screw pump driver. Inside the reactor, an electric motor is installed that is driving a screw pump. The heated sludge circulates in the digester. The post-fermented sludge is collected using a drain well. The inlet to the drain well is below the level of the sludge in the digester. The biogas is discharged from the reactor by the biogas intake valve located on the cover. The technology is very useful for fermentation of lignocellulosic biomass and substrates with high content of dry mass (organic wastes). The other technology is a reactor for micro-biogas plant with a pressure mixing system. The reactor has a form of plastic or concrete tank with a circular cross-section. The effective mixing of sludge is ensured by profiled at 90° bottom of the tank. Substrates for fermentation are supplied by an inlet well. The inlet well is equipped with a cover that eliminates odour release. The introduction of a new portion of substrates is preceded by pumping of digestate to the disposal well. Optionally, digestate can gravitationally flow to digestate storage tank. The obtained biogas is discharged into the separator. The valve supplies biogas to the blower. The blower presses the biogas from the fermentation chamber in such a way as to facilitate the introduction of a new portion of substrates. Biogas is discharged from the reactor by valve that enables biogas removal but prevents suction from outside the reactor.

Keywords: biogas, digestion, heating system, mixing system

Procedia PDF Downloads 127
1819 Influence of Measurement System on Negative Bias Temperature Instability Characterization: Fast BTI vs Conventional BTI vs Fast Wafer Level Reliability

Authors: Vincent King Soon Wong, Hong Seng Ng, Florinna Sim

Abstract:

Negative Bias Temperature Instability (NBTI) is one of the critical degradation mechanisms in semiconductor device reliability that causes shift in the threshold voltage (Vth). However, thorough understanding of this reliability failure mechanism is still unachievable due to a recovery characteristic known as NBTI recovery. This paper will demonstrate the severity of NBTI recovery as well as one of the effective methods used to mitigate, which is the minimization of measurement system delays. Comparison was done in between two measurement systems that have significant differences in measurement delays to show how NBTI recovery causes result deviations and how fast measurement systems can mitigate NBTI recovery. Another method to minimize NBTI recovery without the influence of measurement system known as Fast Wafer Level Reliability (FWLR) NBTI was also done to be used as reference.

Keywords: fast vs slow BTI, fast wafer level reliability (FWLR), negative bias temperature instability (NBTI), NBTI measurement system, metal-oxide-semiconductor field-effect transistor (MOSFET), NBTI recovery, reliability

Procedia PDF Downloads 389
1818 Use of Microbial Fuel Cell for Metal Recovery from Wastewater

Authors: Surajbhan Sevda

Abstract:

Metal containing wastewater is generated in large quintiles due to rapid industrialization. Generally, the metal present in wastewater is not biodegradable and can be accumulated in living animals, humans and plant tissue, causing disorder and diseases. The conventional metal recovery methods include chemical, physical and biological methods, but these are chemical and energy intensive. The recent development in microbial fuel cell (MFC) technology provides a new approach for metal recovery; this technology offers a flexible platform for both reduction and oxidation reaction oriented process. The use of MFCs will be a new platform for more efficient and low energy approach for metal recovery from the wastewater. So far metal recover was extensively studied using chemical, physical and biological methods. The MFCs present a new and efficient approach for removing and recovering metals from different wastewater, suggesting the use of different electrode for metal recovery can be a new efficient and effective approach.

Keywords: metal recovery, microbial fuel cell, wastewater, bioelectricity

Procedia PDF Downloads 191
1817 Metrics and Methods for Improving Resilience in Agribusiness Supply Chains

Authors: Golnar Behzadi, Michael O'Sullivan, Tava Olsen, Abraham Zhang

Abstract:

By definition, increasing supply chain resilience improves the supply chain’s ability to return to normal, or to an even more desirable situation, quickly and efficiently after being hit by a disruption. This is especially critical in agribusiness supply chains where the products are perishable and have a short life-cycle. In this paper, we propose a resilience metric to capture and improve the recovery process in terms of both performance and time, of an agribusiness supply chain following either supply or demand-side disruption. We build a model that determines optimal supply chain recovery planning decisions and selects the best resilient strategies that minimize the loss of profit during the recovery time window. The model is formulated as a two-stage stochastic mixed-integer linear programming problem and solved with a branch-and-cut algorithm. The results show that the optimal recovery schedule is highly dependent on the duration of the time-window allowed for recovery. In addition, the profit loss during recovery is reduced by utilizing the proposed resilient actions.

Keywords: agribusiness supply chain, recovery, resilience metric, risk management

Procedia PDF Downloads 368
1816 Oil Recovery Study by Low Temperature Carbon Dioxide Injection in High-Pressure High-Temperature Micromodels

Authors: Zakaria Hamdi, Mariyamni Awang

Abstract:

For the past decades, CO2 flooding has been used as a successful method for enhanced oil recovery (EOR). However, high mobility ratio and fingering effect are considered as important drawbacka of this process. Low temperature injection of CO2 into high temperature reservoirs may improve the oil recovery, but simulating multiphase flow in the non-isothermal medium is difficult, and commercial simulators are very unstable in these conditions. Furthermore, to best of authors’ knowledge, no experimental work was done to verify the results of the simulations and to understand the pore-scale process. In this paper, we present results of investigations on injection of low temperature CO2 into a high-pressure high-temperature micromodel with injection temperature range from 34 to 75 °F. Effect of temperature and saturation changes of different fluids are measured in each case. The results prove the proposed method. The injection of CO2 at low temperatures increased the oil recovery in high temperature reservoirs significantly. Also, CO2 rich phases available in the high temperature system can affect the oil recovery through the better sweep of the oil which is initially caused by penetration of LCO2 inside the system. Furthermore, no unfavorable effect was detected using this method. Low temperature CO2 is proposed to be used as early as secondary recovery.

Keywords: enhanced oil recovery, CO₂ flooding, micromodel studies, miscible flooding

Procedia PDF Downloads 323
1815 Surfactant Improved Heavy Oil Recovery in Sandstone Reservoirs by Wettability Alteration

Authors: Rabia Hunky, Hayat Kalifa, Bai

Abstract:

The wettability of carbonate reservoirs has been widely recognized as an important parameter in oil recovery by flooding technology. Many surfactants have been studied for this application. However, the importance of wettability alteration in sandstone reservoirs by surfactant has been poorly studied. In this paper, our recent study of the relationship between rock surface wettability and cumulative oil recovery for sandstone cores is reported. In our research, it has been found there is a good agreement between the wettability and oil recovery. Nonionic surfactants, Tomadol® 25-12 and Tomadol® 45-13, are very effective in wettability alteration of sandstone core surface from highly oil-wet conditions to water-wet conditions. By spontaneous imbibition test, Interfacial tension, and contact angle measurement these two surfactants exhibit the highest recovery of the synthetic oil made with heavy oil. Based on these experimental results, we can further conclude that the contact angle measurement and imbibition test can be used as rapid screening tools to identify better EOR surfactants to increase heavy oil recovery from sandstone reservoirs.

Keywords: EOR, oil gas, IOR, WC, IF, oil and gas

Procedia PDF Downloads 75
1814 Simulation of Utility Accrual Scheduling and Recovery Algorithm in Multiprocessor Environment

Authors: A. Idawaty, O. Mohamed, A. Z. Zuriati

Abstract:

This paper presents the development of an event based Discrete Event Simulation (DES) for a recovery algorithm known Backward Recovery Global Preemptive Utility Accrual Scheduling (BR_GPUAS). This algorithm implements the Backward Recovery (BR) mechanism as a fault recovery solution under the existing Time/Utility Function/ Utility Accrual (TUF/UA) scheduling domain for multiprocessor environment. The BR mechanism attempts to take the faulty tasks back to its initial safe state and then proceeds to re-execute the affected section of the faulty tasks to enable recovery. Considering that faults may occur in the components of any system; a fault tolerance system that can nullify the erroneous effect is necessary to be developed. Current TUF/UA scheduling algorithm uses the abortion recovery mechanism and it simply aborts the erroneous task as their fault recovery solution. None of the existing algorithm in TUF/UA scheduling domain in multiprocessor scheduling environment have considered the transient fault and implement the BR mechanism as a fault recovery mechanism to nullify the erroneous effect and solve the recovery problem in this domain. The developed BR_GPUAS simulator has derived the set of parameter, events and performance metrics according to a detailed analysis of the base model. Simulation results revealed that BR_GPUAS algorithm can saved almost 20-30% of the accumulated utilities making it reliable and efficient for the real-time application in the multiprocessor scheduling environment.

Keywords: real-time system (RTS), time utility function/ utility accrual (TUF/UA) scheduling, backward recovery mechanism, multiprocessor, discrete event simulation (DES)

Procedia PDF Downloads 284
1813 Effect of the Magnetite Nanoparticles Concentration on Biogas and Methane Production from Chicken Litter

Authors: Guadalupe Stefanny Aguilar-Moreno, Miguel Angel Aguilar-Mendez, Teodoro Espinosa-Solares

Abstract:

In the agricultural sector, one of the main emitters of greenhouse gases is manure management, which has been increased considerably in recent years. Biogas is an energy source that can be produced from different organic materials through anaerobic digestion (AD); however, production efficiency is still low. Several techniques have been studied to increase its performance, such as co-digestion, the variation of digestion conditions, and nanomaterials used. Therefore, the aim of this investigation was to evaluate the effect of magnetite nanoparticles (NPs) concentration, synthesized by co-precipitation, on the biogas and methane production in AD using chicken litter as a substrate. Synthesis of NPs was performed according to the co-precipitation method, for which a fractional factorial experimental design 25⁻² with two replications was used. The study factors were concentrations (precursors and passivating), time of sonication and dissolution temperatures, and the response variables were size, hydrodynamic diameter (HD) and zeta potential. Subsequently, the treatment that presented the smallest NPs was chosen for their use on AD. The AD was established in serological bottles with a working volume of 250 mL, incubated at 36 ± 1 °C for 80 days. The treatments consisted of the addition of different concentrations of NPs in the microcosms: chicken litter only (control), 20 mg∙L⁻¹ of NPs + chicken litter, 40 mg∙L⁻¹ of NPs + chicken litter and 60 mg∙L⁻¹ of NPs + chicken litter, all by triplicate. Methane and biogas production were evaluated daily. The smallest HD (49.5 nm) and the most stable NPs (21.22 mV) were obtained with the highest passivating concentration and the lower precursors dissolution temperature, which were the only factors that had a significant effect on the HD. In the transmission electron microscopy performed to these NPs, an average size of 4.2 ± 0.73 nm was observed. The highest biogas and methane production was obtained with the treatment that had 20 mg∙L⁻¹ of NPs, being 29.5 and 73.9%, respectively, higher than the control, while the treatment with the highest concentration of NPs was not statistically different from the control. From the above, it can be concluded that the magnetite NPs promote the biogas and methane production in AD; however, high concentrations may cause inhibitory effects among methanogenic microorganisms.

Keywords: agricultural sector, anaerobic digestion, nanotechnology, waste management

Procedia PDF Downloads 116
1812 Study Biogas Produced by Strain Archaea Methanothrix soehngenii in Different Biodigesters UASB in Treating Brewery Effluent in Brazil

Authors: Ederaldo Godoy Junior, Ricardo O. Jesus, Pedro H. Jesus, José R. Camargo, Jorge Y. Oliveira, Nicoly Milhardo Lourenço

Abstract:

This work aimed at the comparative study of the quality and quantity of biogas produced by archaea strain Methanothrix soehngenii operating in different versions of anaerobic digesters upflow sludge bed in the brewery wastewater treatment in Brazil in the tropical region. Four types of UASB digesters were studied made of different geometries and materials which are: a UASB IC steel 20 meters high; a circular UASB steel 6 meters high; an UASB reinforced concrete lined with geomembrane PEAB with 6 meters high; and finally a UASB plug flow comprising two UASB in serious rotomolded HDPE 6 meters high.Observed clearly that the biogas produced in the digester UASB steel H2S concentrations had values lower than the HDPE. With respect to efficiency in short time, the UASB IC showed the best results to absorb overloads, as the UASB circular steel showed an efficiency of 90% removal of the organic load. The UASB system plug flow in HDPE showed the lowest cost of deployment, and its efficiency in removing the organic load was 80%.

Keywords: biogas, achaeas, UASB, Brewery effluent

Procedia PDF Downloads 337
1811 Methane Production from Biomedical Waste (Blood)

Authors: Fatima M. Kabbashi, Abdalla M. Abdalla, Hussam K. Hamad, Elias S. Hassan

Abstract:

This study investigates the production of renewable energy (biogas) from biomedical hazard waste (blood) and eco-friendly disposal. Biogas is produced by the bacterial anaerobic digestion of biomaterial (blood). During digestion process bacterial feeding result in breaking down chemical bonds of the biomaterial and changing its features, by the end of the digestion (biogas production) the remains become manure as known. That has led to the economic and eco-friendly disposal of hazard biomedical waste (blood). The samples (Whole blood, Red blood cells 'RBCs', Blood platelet and Fresh Frozen Plasma ‘FFP’) are collected and measured in terms of carbon to nitrogen C/N ratio and total solid, then filled in connected flasks (three flasks) using water displacement method. The results of trails showed that the platelet and FFP failed to produce flammable gas, but via a gas analyzer, it showed the presence of the following gases: CO, HC, CO₂, and NOX. Otherwise, the blood and RBCs produced flammable gases: Methane-nitrous CH₃NO (99.45%), which has a blue color flame and carbon dioxide CO₂ (0.55%), which has red/yellow color flame. Methane-nitrous is sometimes used as fuel for rockets, some aircraft and racing cars.

Keywords: renewable energy, biogas, biomedical waste, blood, anaerobic digestion, eco-friendly disposal

Procedia PDF Downloads 280
1810 Study on the Enhancement of Soil Fertility and Tomato Quality by Applying Concentrated Biogas Slurry

Authors: Fang Bo Yu, Li Bo Guan

Abstract:

Biogas slurry is a low-cost source of crop nutrients and can offer extra benefits to soil fertility and fruit quality. However, its current utilization mode and low content of active ingredients limit its application scale. In this report, one growing season field research was conducted to assess the effects of concentrated biogas slurry on soil property, tomato fruit quality, and composition of the microflora in both non-rhizosphere and rhizosphere soils. The results showed that application of concentrated slurry could cause significant changes to tomato cultivation, including increases in organic matter, available N, P, and K, total N, and P, electrical conductivity, and fruit contents of amino acids, protein, soluble sugar, β-carotene, tannins, and vitamin C, together with the R/S ratios and the culturable counts of bacteria, actinomycetes, and fungi in soils. It could be concluded as the application is a practicable means in tomato production and might better service the sustainable agriculture in the near future.

Keywords: concentrated slurry, fruit quality, soil fertility, sustainable agriculture

Procedia PDF Downloads 429
1809 Evaluating the effects of Gas Injection on Enhanced Gas-Condensate Recovery and Reservoir Pressure Maintenance

Authors: F. S. Alavi, D. Mowla, F. Esmaeilzadeh

Abstract:

In this paper, the Eclipse 300 simulator was used to perform compositional modeling of gas injection process for enhanced condensate recovery of a real gas condensate well in south of Iran here referred to as SA4. Some experimental data were used to tune the Peng-Robinson equation of state for this case. Different scenarios of gas injection at current reservoir pressure and at abandonment reservoir pressure had been considered with different gas compositions. Methane, carbon dioxide, nitrogen and two other gases with specified compositions were considered as potential gases for injection. According to the obtained results, nitrogen leads to highest pressure maintenance in the reservoir but methane results in highest condensate recovery among the selected injection gases. At low injection rates, condensate recovery percent is strongly affected by gas injection rate but this dependency shifts to zero at high injection rates. Condensate recovery is higher in all cases of injection at current reservoir pressure than injection at abandonment pressure. Using a constant injection rate, increasing the production well bottom hole pressure results in increasing the condensate recovery percent and time of gas breakthrough.

Keywords: gas-condensate reservoir, case-study, compositional modelling, enhanced condensate recovery, gas injection

Procedia PDF Downloads 169