Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7875

Search results for: dielectric recovery rate

7875 Dielectric Recovery Characteristics of High Voltage Gas Circuit Breakers Operating with CO₂ Mixture

Authors: Peng Lu, Branimir Radisavljevic, Martin Seeger, Daniel Over, Torsten Votteler, Bernardo Galletti

Abstract:

CO₂-based gas mixtures exhibit huge potential as the interruption medium for replacing SF₆ in high voltage switchgears. In this paper, the recovery characteristics of dielectric strength of CO₂-O₂ mixture in the post arc phase after the current zero are presented. As representative examples, the dielectric recovery curves under conditions of different gas filling pressures and short-circuit current amplitudes are presented. A series of dielectric recovery measurements suggests that the dielectric recovery rate is proportional to the mass flux of the blowing gas, and the dielectric strength recovers faster in the case of lower short circuit currents.

Keywords: CO₂ mixture, high voltage circuit breakers, dielectric recovery rate, short-circuit current, mass flux

Procedia PDF Downloads 88
7874 Dielectric Properties of Ni-Al Nano Ferrites Synthesized by Citrate Gel Method

Authors: D. Ravinder, K. S. Nagaraju

Abstract:

Ni–Al ferrite with composition of NiAlxFe2-xO4 (x=0.2, 0.4 0.6, and 0.8, ) were prepared by citrate gel method. The dielectric properties for all the samples were investigated at room temperature as a function of frequency. The dielectric constant shows dispersion in the lower frequency region and remains almost constant at higher frequencies. The frequency dependence of dielectric loss tangent (tanδ) is found to be abnormal, giving a peak at certain frequency for mixed Ni-Al ferrites. A qualitative explanation is given for the composition and frequency dependence of the dielectric loss tangent.

Keywords: ferrites, citrate method, lattice parameter, dielectric constant

Procedia PDF Downloads 201
7873 Dielectric and Impedance Spectroscopy of Samarium and Lanthanum Doped Barium Titanate at Room Temperature

Authors: Sukhleen Bindra Narang, Dalveer Kaur, Kunal Pubby

Abstract:

Dielectric ceramic samples in the BaO-Re2O3-TiO2 ternary system were synthesized with structural formula Ba2-xRe4+2x/3Ti8O24 where Re= rare earth metal and Re= Sm and La where x varies from 0.0 to 0.6 with step size 0.1. Polycrystalline samples were prepared by the conventional solid state reaction technique. The dielectric, electrical and impedance analysis of all the samples in the frequency range 1KHz- 1MHz at room temperature (25°C) have been done to get the understanding of electrical conduction and dielectric relaxation and their correlation. Dielectric response of the samples at lower frequencies shows dielectric dispersion while at higher frequencies it shows dielectric relaxation. The ac conductivity is well fitted by the Jonscher law (σac = σdc+Aωn). The spectroscopic data in the impedance plane confirms the existence of grain contribution to the relaxation. All the properties are found out to be function of frequency as well as the amount of substitution.

Keywords: dielectric ceramics, dielectric constant, loss tangent, AC conductivity, impedance spectroscopy

Procedia PDF Downloads 296
7872 Optimization of Gold Mining Parameters by Cyanidation

Authors: Della Saddam Housseyn

Abstract:

Gold, the quintessential noble metal, is one of the most popular metals today, given its ever-increasing cost in the international market. The Amesmessa gold deposit is one of the gold-producing deposits. The first step in our job is to analyze the ore (considered rich ore). Mineralogical and chemical analysis has shown that the general constitution of the ore is quartz in addition to other phases such as Al2O3, Fe2O3, CaO, dolomite. The second step consists of all the leaching tests carried out in rolling bottles. These tests were carried out on 14 samples to determine the maximum recovery rate and the optimum consumption of reagent (NaCN and CaO). Tests carried out on a pulp density at 50% solid, 500 ppm cyanide concentration and particle size less than 0.6 mm at alkaline pH gave a recovery rate of 94.37%.

Keywords: cyanide, DRX, FX, gold, leaching, rate of recovery, SAA

Procedia PDF Downloads 89
7871 Electrostatic and Dielectric Measurements for Hair Building Fibers from DC to Microwave Frequencies

Authors: K. Y. You, Y. L. Then

Abstract:

In the recent years, the hair building fiber has become popular, in other words, it is an effective method which helps people who suffer hair loss or sparse hair since the hair building fiber is capable to create a natural look of simulated hair rapidly. In the markets, there are a lot of hair fiber brands that have been designed to formulate an intense bond with hair strands and make the hair appear more voluminous instantly. However, those products have their own set of properties. Thus, in this report, some measurement techniques are proposed to identify those products. Up to five different brands of hair fiber are tested. The electrostatic and dielectric properties of the hair fibers are macroscopically tested using design DC and high-frequency microwave techniques. Besides, the hair fibers are microscopically analysis by magnifying the structures of the fiber using scanning electron microscope (SEM). From the SEM photos, the comparison of the uniformly shaped and broken rate of the hair fibers in the different bulk samples can be observed respectively.

Keywords: hair fiber, electrostatic, dielectric properties, broken rate, microwave techniques

Procedia PDF Downloads 243
7870 Simulation Study on Effects of Surfactant Properties on Surfactant Enhanced Oil Recovery from Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsaeter

Abstract:

One objective of this work is to analyze the effects of surfactant properties (viscosity, concentration, and adsorption) on surfactant enhanced oil recovery at laboratory scale. The other objective is to obtain the functional relationships between surfactant properties and the ultimate oil recovery and oil recovery rate. A core is cut into two parts from the middle to imitate the matrix with a horizontal fracture. An injector and a producer are at the left and right sides of the fracture separately. The middle slice of the core is used as the model in this paper, whose size is 4cm x 0.1cm x 4.1cm, and the space of the fracture in the middle is 0.1 cm. The original properties of matrix, brine, oil in the base case are from Ekofisk Field. The properties of surfactant are from literature. Eclipse is used as the simulator. The results are followings: 1) The viscosity of surfactant solution has a positive linear relationship with surfactant oil recovery time. And the relationship between viscosity and oil production rate is an inverse function. The viscosity of surfactant solution has no obvious effect on ultimate oil recovery. Since most of the surfactant has no big effect on viscosity of brine, the viscosity of surfactant solution is not a key parameter of surfactant screening for surfactant flooding in fractured reservoirs. 2) The increase of surfactant concentration results a decrease of oil recovery rate and an increase of ultimate oil recovery. However, there are no functions could describe the relationships. Study on economy should be conducted because of the price of surfactant and oil. 3) In the study of surfactant adsorption, assume that the matrix wettability is changed to water-wet when the surfactant adsorption is to the maximum at all cases. And the ratio of surfactant adsorption and surfactant concentration (Cads/Csurf) is used to estimate the functional relationship. The results show that the relationship between ultimate oil recovery and Cads/Csurf is a logarithmic function. The oil production rate has a positive linear relationship with exp(Cads/Csurf). The work here could be used as a reference for the surfactant screening of surfactant enhanced oil recovery from fractured reservoirs. And the functional relationships between surfactant properties and the oil recovery rate and ultimate oil recovery help to improve upscaling methods.

Keywords: fractured reservoirs, surfactant adsorption, surfactant concentration, surfactant EOR, surfactant viscosity

Procedia PDF Downloads 89
7869 The Initiator Matters in Service Co-Recovery: Investigation on Attribution and Satisfaction

Authors: Chia-Ching Tsai

Abstract:

In the literature, the positive effect of service co-recovery has been evidenced, and which customers’ attribution is the key successful factor has also been indicated. There is also literature investigating on initiation of co-recovery for finding out the superior way to co-recovery, and indicating co-recovery initiated by employees causes better effect of co-recovery. This research postulates the consequences of co-recovery by different initiators affect customers’ attribution and the resultant results. Thus, this research uses a 3x2 factorial design to investigate the impact of initiator of co-recovery and consequence of co-recovery on customers’ attribution and post-recovery satisfaction. The results show initiation of co-recovery has a significant influence on internal attribution, and the employee initiator causes the highest internal attribution. The consequences of co-recovery interact with initiators of co-recovery on internal attribution significantly. Moreover, internal attribution significantly affects post-recovery satisfaction.

Keywords: service co-recovery, initiation of co-recovery, attribution, post-recovery satisfaction

Procedia PDF Downloads 161
7868 Methanol Steam Reforming with Heat Recovery for Hydrogen-Rich Gas Production

Authors: Horng-Wen Wu, Yi Chao, Rong-Fang Horng

Abstract:

This study is to develop a methanol steam reformer with a heat recovery zone, which recovers heat from exhaust gas of a diesel engine, and to investigate waste heat recovery ratio at the required reaction temperature. The operation conditions of the reformer are reaction temperature (200 °C, 250 °C, and 300 °C), steam to carbonate (S/C) ratio (0.9, 1.1, and 1.3), and N2 volume flow rate (40 cm3/min, 70 cm3/min, and 100 cm3/min). Finally, the hydrogen concentration, the CO, CO2, and N2 concentrations are measured and recorded to calculate methanol conversion efficiency, hydrogen flow rate, and assisting combustion gas and impeding combustion gas ratio. The heat source of this reformer comes from electric heater and waste heat of exhaust gas from diesel engines. The objective is to recover waste heat from the engine and to make more uniform temperature distribution within the reformer. It is beneficial for the reformer to enhance the methanol conversion efficiency and hydrogen-rich gas production. Experimental results show that the highest hydrogen flow rate exists at N2 of the volume rate 40 cm3/min and reforming reaction temperature of 300 °C and the value is 19.6 l/min. With the electric heater and heat recovery from exhaust gas, the maximum heat recovery ratio is 13.18 % occurring at water-methanol (S/C) ratio of 1.3 and the reforming reaction temperature of 300 °C.

Keywords: heat recovery, hydrogen-rich production, methanol steam reformer, methanol conversion efficiency

Procedia PDF Downloads 389
7867 Effects of the Different Recovery Durations on Some Physiological Parameters during 3 X 3 Small-Sided Games in Soccer

Authors: Samet Aktaş, Nurtekin Erkmen, Faruk Guven, Halil Taskin

Abstract:

This study aimed to determine the effects of 3 versus 3 small-sided games (SSG) with different recovery times on soma physiological parameters in soccer players. Twelve soccer players from Regional Amateur League volunteered for this study (mean±SD age, 20.50±2.43 years; height, 177.73±4.13 cm; weight, 70.83±8.38 kg). Subjects were performing soccer training for five days per week. The protocol of the study was approved by the local ethic committee in School of Physical Education and Sport, Selcuk University. The subjects were divided into teams with 3 players according to Yo-Yo Intermittent Recovery Test. The field dimension was 26 m wide and 34 m in length. Subjects performed two times in a random order a series of 3 bouts of 3-a-side SSGs with 3 min and 5 min recovery durations. In SSGs, each set were performed with 6 min duration. The percent of maximal heart rate (% HRmax), blood lactate concentration (LA) and Rated Perceived Exertion (RPE) scale points were collected before the SSGs and at the end of each set. Data were analyzed by analysis of variance (ANOVA) with repeated measures. Significant differences were found between %HRmax in before SSG and 1st set, 2nd set, and 3rd set in both SSG with 3 min recovery duration and SSG with 5 min recovery duration (p<0.05). Means of %HRmax in SSG with 3 min recovery duration at both 1st and 2nd sets were significantly higher than SSG with 5 min recovery duration (p<0.05). No significant difference was found between sets of either SSGs in terms of LA (p>0.05). LA in SSG with 3 min recovery duration was higher than SSG with 5 min recovery duration at 2nd sets (p<0.05). RPE in soccer players was not different between SSGs (p>0.05).In conclusion, this study demonstrates that exercise intensity in SSG with 3 min recovery durations is higher than SSG with 5 min recovery durations.

Keywords: small-sided games, soccer, heart rate, lactate

Procedia PDF Downloads 374
7866 Phosphorus Recovery Optimization in Microbial Fuel Cell

Authors: Abdullah Almatouq

Abstract:

Understanding the impact of key operational variables on concurrent energy generation and phosphorus recovery in microbial fuel cell is required to improve the process and reduce the operational cost. In this study, full factorial design (FFD) and central composite designs (CCD) were employed to identify the effect of influent COD concentration and cathode aeration flow rate on energy generation and phosphorus (P) recovery and to optimise MFC power density and P recovery. Results showed that influent chemical oxygen demand (COD) concentration and cathode aeration flow rate had a significant effect on power density, coulombic efficiency, phosphorus precipitation efficiency and phosphorus precipitation rate at the cathode. P precipitation was negatively affected by the generated current during the batch duration. The generated energy was reduced due to struvite being precipitated on the cathode surface, which might obstruct the mass transfer of ions and oxygen. Response surface mathematical model was used to predict the optimum operating conditions that resulted in a maximum power density and phosphorus precipitation efficiency of 184 mW/m² and 84%, and this corresponds to COD= 1700 mg/L and aeration flow rate=210 mL/min. The findings highlight the importance of the operational conditions of energy generation and phosphorus recovery.

Keywords: energy, microbial fuel cell, phosphorus, struvite

Procedia PDF Downloads 85
7865 Chaotic Response of Electrical Insulation System with Gaseous Dielectric under High AC and DC Voltages

Authors: Arijit Basuray

Abstract:

It is well known that if an electrical insulation system is stressed under high voltage then discharge may occur in various form and if the system is made of composite dielectric having interfaces of materials having different dielectric constant discharge may occur due to gross mismatch of dielectric constant causing intense local field in the interfaces. Here author has studied, firstly, behavior of discharges in gaseous dielectric circuit under AC and DC voltages. A gaseous dielectric circuit is made such that a pair of electrode of typical geometry is used to make the discharges occur under application of AC and DC voltages. Later on, composite insulation system with air gap is also studied. Discharge response of the dielectric circuit is measured across a typically designed impedance. The time evolution of the discharge characteristics showed some interesting chaotic behavior. Author here proposed some analysis of such behavior of the discharge pattern and discussed about the possibility of presence of such discharge circuit in lumped electric circuit.

Keywords: electrical insulation system, EIS, composite dielectric, discharge, chaos

Procedia PDF Downloads 74
7864 Effects of Matrix Properties on Surfactant Enhanced Oil Recovery in Fractured Reservoirs

Authors: Xiaoqian Cheng, Jon Kleppe, Ole Torsæter

Abstract:

The properties of rocks have effects on efficiency of surfactant. One objective of this study is to analyze the effects of rock properties (permeability, porosity, initial water saturation) on surfactant spontaneous imbibition at laboratory scale. The other objective is to evaluate existing upscaling methods and establish a modified upscaling method. A core is put in a container that is full of surfactant solution. Assume there is no space between the bottom of the core and the container. The core is modelled as a cuboid matrix with a length of 3.5 cm, a width of 3.5 cm, and a height of 5 cm. The initial matrix, brine and oil properties are set as the properties of Ekofisk Field. The simulation results of matrix permeability show that the oil recovery rate has a strong positive linear relationship with matrix permeability. Higher oil recovery is obtained from the matrix with higher permeability. One existing upscaling method is verified by this model. The study on matrix porosity shows that the relationship between oil recovery rate and matrix porosity is a negative power function. However, the relationship between ultimate oil recovery and matrix porosity is a positive power function. The initial water saturation of matrix has negative linear relationships with ultimate oil recovery and enhanced oil recovery. However, the relationship between oil recovery and initial water saturation is more complicated with the imbibition time because of the transition of dominating force from capillary force to gravity force. Modified upscaling methods are established. The work here could be used as a reference for the surfactant application in fractured reservoirs. And the description of the relationships between properties of matrix and the oil recovery rate and ultimate oil recovery helps to improve upscaling methods.

Keywords: initial water saturation, permeability, porosity, surfactant EOR

Procedia PDF Downloads 79
7863 Dielectric Properties of MWCNT-Muscovite/Epoxy Hybrid Composites

Authors: Nur Suraya Anis Ahmad Bakhtiar, Hazizan Md Akil

Abstract:

In the present work, the dielectric properties of Epoxy/MWCNTs-muscovite HYBRID and MIXED composites based on ratio 30:70 were studies. The multi-wall carbon nanotubes (MWCNTs) were prepared by two method; (a) muscovite-MWCNTs hybrids were synthesized by chemical vapor deposition (CVD) and (b) physically mixing of muscovite with MWCNTs. The effect of different preparations of the composites and filler loading was evaluated. It is revealed that the dielectric constants of HYBRID epoxy composites are slightly higher compared to MIXED epoxy composites. It is also indicated that the dielectric constant increased by increases the MWCNTs filler loading.

Keywords: muscovite, epoxy, dielectric properties, hybrid composite

Procedia PDF Downloads 540
7862 Structural Properties of Polar Liquids in Binary Mixture Using Microwave Technique

Authors: Shagufta Tabassum, V. P. Pawar

Abstract:

The study of static dielectric properties in a binary mixture of 1,2 dichloroethane (DE) and n,n dimethylformamide (DMF) polar liquids has been carried out in the frequency range of 10 MHz to 30 GHz for 11 different concentration using time domain reflectometry technique at 10ºC temperature. The dielectric relaxation study of solute-solvent mixture at microwave frequencies gives information regarding the creation of monomers and multimers as well as interaction between the molecules of the binary mixture. The least squares fit method is used to determine the values of dielectric parameters such as static dielectric constant (ε0), dielectric constant at high frequency (ε) and relaxation time (τ).

Keywords: shagufta shaikhexcess parameters, relaxation time, static dielectric constant, time domain reflectometry

Procedia PDF Downloads 165
7861 Studies on Lucrative Design of a Waste Heat Recovery System for Air Conditioners

Authors: Ashwin Bala, K. Panthalaraja Kumaran, S. Prithviraj, R. Pradeep, J. Udhayakumar, S. Ajith

Abstract:

In this paper, studies have been carried out for an in-house design of a waste heat recovery system for effectively utilizing the domestic air conditioner heat energy for producing hot water. Theoretical studies have been carried to optimizing the flow rate for getting maximum output with a minimum size of the heater. Critical diameter, wall thickness, and total length of the water pipeline have been estimated from the conventional heat transfer model. Several combinations of pipeline shapes viz., spiral, coil, zigzag wound through the radiator has been attempted and accordingly shape has been optimized using heat transfer analyses. The initial condition is declared based on the water flow rate and temperature. Through the parametric analytical studies we have conjectured that water flow rate, temperature difference between incoming water and radiator skin temperature, pipe material, radiator material, geometry of the water pipe viz., length, diameter, and wall thickness are having bearing on the lucrative design of a waste heat recovery system for air conditioners. Results generated through the numerical studies have been validated using an in-house waste heat recovery system for air conditioners.

Keywords: air conditioner design, energy conversion system, radiator design for energy recovery systems, waste heat recovery system

Procedia PDF Downloads 273
7860 Comparative Dielectric Properties of 1,2-Dichloroethane with n-Methylformamide and n,n-Dimethylformamide Using Time Domain Reflectometry Technique in Microwave Frequency

Authors: Shagufta Tabassum, V. P. Pawar, jr., G. N. Shinde

Abstract:

The study of dielectric relaxation properties of polar liquids in the binary mixture has been carried out at 10, 15, 20 and 25 ºC temperatures for 11 different concentrations using time domain reflectometry technique. The dielectric properties of a solute-solvent mixture of polar liquids in the frequency range of 10 MHz to 30 GHz gives the information regarding formation of monomers and multimers and also an interaction between the molecules of the liquid mixture under study. The dielectric parameters have been obtained by the least squares fit method using the Debye equation characterized by a single relaxation time without relaxation time distribution.

Keywords: excess properties, relaxation time, static dielectric constant, and time domain reflectometry technique

Procedia PDF Downloads 56
7859 An Experimental Investigation of Microscopic and Macroscopic Displacement Behaviors of Branched-Preformed Particle Gel in High Temperature Reservoirs

Authors: Weiyao Zhu, Bingbing Li, Yajing Liu, Zhiyong Song

Abstract:

Branched-preformed particle gel (B-PPG) is a newly developed profile control and oil displacement agent for enhanced oil recovery in major oilfields. To provide a better understanding of the performance of B-PPG in high temperature reservoirs, a comprehensive experimental investigation was conducted by utilizing glass micromodel and synthetic core. The microscopic experimental results show that the B-PPG can selectively flow and plug in large pores. In terms of enhanced oil recovery, the decrease of residual oil in the margin regions (24.6%) was higher than that in the main stream (13.7%), which indicates it enlarged the sweep area. In addition, the effects of B-PPG injection concentration and injection rate on enhanced oil recovery were implemented by core flooding. The macroscopic experimental results indicate that the enhanced oil recovery increased with the increasing of injection concentration. However, the injection rate had a peak value. It is significant to get insight into the behaviors of B-PPG in reservoirs.

Keywords: branched-preformed particle gel, enhanced oil recovery, micromodel, core flooding

Procedia PDF Downloads 115
7858 The Effects of Passive and Active Recoveries on Responses of Platelet Indices and Hemodynamic Variables to Resistance Exercise

Authors: Mohammad Soltani, Sajad Ahmadizad, Fatemeh Hoseinzadeh, Atefe Sarvestan

Abstract:

The exercise recovery is an important variable in designing resistance exercise training. This study determined the effects of passive and active recoveries on responses of platelet indices and hemodynamic variables to resistance exercise. Twelve healthy subjects (six men and six women, age, 25.4 ±2.5 yrs) performed two types of resistance exercise protocols (six exercises including upper- and lower-body parts) at two separate sessions with one-week intervening. First resistance protocol included three sets of six repetitions at 80% of 1RM with 2 min passive rest between sets and exercises; while, the second protocol included three sets of six repetitions at 60% of 1RM followed by active recovery included six repetitions of the same exercise at 20% of 1RM. The exercise volume was equalized. Three blood samples were taken before exercise, immediately after exercise and after 1-hour recovery, and analyzed for fibrinogen and platelet indices. Blood pressure (BP), heart rate (HR) and rate pressure product (RPP), were measured before, immediately after exercise and every 5 minutes during recovery. Data analyzes showed a significant increase in SBP (systolic blood pressure), HR, rate of pressure product (RPP) and PLT in response to resistance exercise (P<0.05) and that changes for HR and RPP were significantly different between two protocols (P<0.05). Furthermore, MPV and P_LCR did not change in response to resistance exercise, though significant reductions were observed after 1h recovery compared to before and after exercise (P<0.05). No significant changes in fibrinogen and PDW following two types of resistance exercise protocols were observed (P>0.05). On the other hand, no significant differences in platelet indices were found between the two protocols (P>0.05). Resistance exercise induces changes in platelet indices and hemodynamic variables, and that these changes are not related to the type of recovery and returned to normal levels after 1h recovery.

Keywords: hemodynamic variables, platelet indices, resistance exercise, recovery intensity

Procedia PDF Downloads 61
7857 Greatly Improved Dielectric Properties of Poly'vinylidene fluoride' Nanocomposites Using Ag-BaTiO₃ Hybrid Nanoparticles as Filler

Authors: K. Silakaew, P. Thongbai

Abstract:

There is an increasing need for high–permittivity polymer–matrix composites (PMC) owing to the rapid development of the electronics industry. Unfortunately, the dielectric permittivity of PMC is still too low ( < 80). Moreover, the dielectric loss tangent is usually high (tan > 0.1) when the dielectric permittivity of PMC increased. In this research work, the dielectric properties of poly(vinylidene fluoride) (PVDF)–based nanocomposites can be significantly improved by incorporating by silver–BaTiO3 (Ag–BT) ceramic hybrid nanoparticles. The Ag–BT/PVDF nanocomposites were fabricated using various volume fractions of Ag–BT hybrid nanoparticles (fAg–BT = 0–0.5). The Ag–BT/PVDF nanocomposites were characterized using several techniques. The main phase of Ag and BT can be detected by the XRD technique. The microstructure of the Ag–BT/PVDF nanocomposites was investigated to reveal the dispersion of Ag–BT hybrid nanoparticles because the dispersion state of a filler can have an effect on the dielectric properties of the nanocomposites. It was found that the filler hybrid nanoparticles were well dispersed in the PVDF matrix. The phase formation of PVDF phases was identified using the XRD and FTIR techniques. We found that the fillers can increase the polar phase of a PVDF polymer. The fabricated Ag–BT/PVDF nanocomposites are systematically characterized to explain the dielectric behavior in Ag–BT/PVDF nanocomposites. Interestingly, largely enhanced dielectric permittivity (>240) and suppressed loss tangent (tan<0.08) over a wide frequency range (102 – 105 Hz) are obtained. Notably, the dielectric permittivity is slightly dependent on temperature. The greatly enhanced dielectric permittivity was explained by the interfacial polarization between the Ag and PVDF interface, and due to a high permittivity of BT particles.

Keywords: BaTiO3, PVDF, polymer composite, dielectric properties

Procedia PDF Downloads 61
7856 Ultra-Low Loss Dielectric Properties of (Mg1-xNix)2(Ti0.95Sn0.05)O4 Microwave Ceramics

Authors: Bing-Jing Li, Sih-Yin Wang, Tse-Chun Yeh, Yuan-Bin Chen

Abstract:

Microwave dielectric ceramic materials of (Mg1-xNix)2(Ti0.95Sn0.05)O4 for x = 0.01, 0.03, 0.05, 0.07 and 0.09 were prepared and sintered at 1250–1400ºC. The microstructure and microwave dielectric properties of the ceramic materials were examined and measured. The observations shows that the content of Ni2+ ions has little effect on the crystal structure, dielectric constant, temperature coefficient of resonant frequency (τf) and sintering temperatures of the ceramics. However, the quality values (Q×f) are greatly improved due to the addition of Ni2+ ions. The present study showed that the ceramic material prepared for x = 0.05 and sintered at 1325ºC had the best Q×f value of 392,000 GHz, about 23% improvement compared with that of Mg2(Ti0.95Sn0.05)O4.

Keywords: (Mg1-xNix)2(Ti0.95Sn0.05)O4, microwave dielectric ceramics, high quality factor, high frequency wireless communication

Procedia PDF Downloads 387
7855 Dielectric Study of Lead-Free Double Perovskite Structured Polycrystalline BaFe0.5Nb0.5O3 Material

Authors: Vijay Khopkar, Balaram Sahoo

Abstract:

Material with high value of dielectric constant has application in the electronics devices. Existing lead based materials have issues such as toxicity and problem with synthesis procedure. Double perovskite structured barium iron niobate (BaFe0.5Nb0.5O3, BFN) is the lead-free material, showing a high value of dielectric constant. Origin of high value of the dielectric constant in BFN is not clear. We studied the dielectric behavior of polycrystalline BFN sample over wide temperature and frequency range. A BFN sample synthesis by conventional solid states reaction method and phase pure dens pellet was used for dielectric study. The SEM and TEM study shows the presence of grain and grain boundary region. The dielectric measurement was done between frequency range of 40 Hz to 5 MHz and temperature between 20 K to 500 K. At 500 K temperature and lower frequency, there observed high value of dielectric constant which decreases with increase in frequency. The dipolar relaxation follows non-Debye type polarization with relaxation straight of 3560 at room temperature (300 K). Activation energy calculated from the dielectric and modulus formalism found to be 17.26 meV and 2.74 meV corresponds to the energy required for the motion of Fe3+ and Nb5+ ions within the oxygen octahedra. Our study shows that BFN is the order disorder type ferroelectric material.

Keywords: barium iron niobate, dielectric, ferroelectric, non-Debye

Procedia PDF Downloads 66
7854 A Computational Diagnostics for Dielectric Barrier Discharge Plasma

Authors: Zainab D. Abd Ali, Thamir H. Khalaf

Abstract:

In this paper, the characteristics of electric discharge in gap between two (parallel-plate) dielectric plates are studies, the gap filled with Argon gas in atm pressure at ambient temperature, the thickness of gap typically less than 1 mm and dielectric may be up 10 cm in diameter. One of dielectric plates a sinusoidal voltage is applied with Rf frequency, the other plates is electrically grounded. The simulation in this work depending on Boltzmann equation solver in first few moments, fluid model and plasma chemistry, in one dimensional modeling. This modeling have insight into characteristics of Dielectric Barrier Discharge through studying properties of breakdown of gas, electric field, electric potential, and calculating electron density, mean electron energy, electron current density ,ion current density, total plasma current density. The investigation also include: 1. The influence of change in thickness of gap between two plates if we doubled or reduced gap to half. 2. The effect of thickness of dielectric plates. 3. The influence of change in type and properties of dielectric material (gass, silicon, Teflon).

Keywords: computational diagnostics, Boltzmann equation, electric discharge, electron density

Procedia PDF Downloads 672
7853 The Impact of Level and Consequence of Service Co-Recovery on Post-Recovery Satisfaction and Repurchase Intent

Authors: Chia-Ching Tsai

Abstract:

In service delivery, interpersonal interaction is the key to customer satisfaction, and apparently, the factor of human is critical in service delivery. Besides, customers quite care about the consequences of co-recovery. Thus, this research focuses on service failure caused by other customers and uses a 2x2 factorial design to investigate the impact of consequence and level of service co-recovery on post-recovery satisfaction and repurchase intent. 150 undergraduates were recruited as participants, and assigned to one of the four cells randomly. Every participant was requested to read the scenario and then rated the post-recovery satisfaction and repurchase intent. The results show that under the condition of failed co-recovery, level of co-recovery has no effect on post-recovery satisfaction, while under the condition of successful co-recovery, high-level co-recovery causes significantly higher post-recovery satisfaction than low-level co-recovery. Moreover, post-recovery satisfaction has significantly positive impact on repurchase intent. In the system of service delivery, customers interact with other customers frequently. Therefore, comparing with the literature, this research focuses on the service failure caused by other customers. This research also supplies a better understanding of customers’ view on consequences of different levels of co-recovery, which is helpful for the practitioners to make use of co-recovery.

Keywords: service failure, service co-recovery, consequence of co-recovery, level of co-recovery, post-recovery satisfaction, repurchase intent

Procedia PDF Downloads 340
7852 Correlation Analysis between Physical Fitness Norm and Cardio-Pulmonary Signals under Graded Exercise and Recovery

Authors: Shyan-Lung Lin, Cheng-Yi Huang, Tung-Yi Lin

Abstract:

Physical fitness is the adaptability of the body to physical work and the environment, and is generally known to include cardiopulmonary-fitness, muscular-fitness, body flexibility, and body composition. This paper is aimed to study the ventilatory and cardiovascular activity under various exercise intensities for subjects at distinct ends of cardiopulmonary fitness norm. Three graded upright biking exercises, light, moderate, and vigorous exercise, were designed for subjects at distinct ends of cardiopulmonary fitness norm from their physical education classes. The participants in the experiments were 9, 9, and 11 subjects in the top 20%, middle 20%, and bottom 20%, respectively, among all freshmen of the Feng Chia University in the academic year of 2015. All participants were requested to perform 5 minutes of upright biking exercise to attain 50%, 65%, and 85% of their maximum heart rate (HRmax) during the light, moderate, and vigorous exercise experiment, respectively, and 5 minutes of recovery following each graded exercise. The cardiovascular and ventilatory signals, including breathing frequency (f), tidal volume (VT), heart rate (HR), mean arterial pressure (MAP), and ECG signals were recorded during rest, exercise, and recovery periods. The physiological signals of three groups were analyzed based on their recovery, recovery rate, and percentage variation from rest. Selected time domain parameters, SDNN and RMSSD, were computed and spectral analysis was performed to study the hear rate variability from collected ECG signals. The comparison studies were performed to examine the correlations between physical fitness norm and cardio-pulmonary signals during graded exercises and exercise recovery. No significant difference was found among three groups with VT during all levels of exercise intensity and recovery. The top 20% group was found to have better performance in heart recovery (HRR), frequency recovery rate (fRR) and percentage variation from rest (Δf) during the recovery period of vigorous exercise. The top 20% group was also found to achieve lower mean arterial pressure MAP only at rest but showed no significant difference during graded exercises and recovery periods. In time-domain analysis of HRV, the top 20% group again seemed to have better recovery rate and less variation in terms of SDNN during recovery period of light and vigorous exercises. Most assessed frequency domain parameters changed significantly during the experiment (p<0.05, ANOVA). The analysis showed that the top 20% group, in comparison with middle and bottom 20% groups, appeared to have significantly higher TP, LF, HF, and nHF index, while the bottom 20% group showed higher nLF and LF/HF index during rest, three graded levels of exercises, and their recovery periods.

Keywords: physical fitness, cardio-pulmonary signals, graded exercise, exercise recovery

Procedia PDF Downloads 188
7851 Structural and Electrical Characterization of Polypyrrole and Cobalt Aluminum Oxide Nanocomposites

Authors: Sutar Rani Ananda, M. V. Murugendrappa

Abstract:

To investigate electrical properties of conducting polypyrrole (PPy) and cobalt aluminum oxide (CAO) nanocomposites, impedance analyzer in frequency range of 100 Hz to 5 MHz is used. In this work, PPy/CAO nanocomposites were synthesized by chemical oxidation polymerization method in different weight percent of CAO in PPy. The dielectric properties and AC conductivity studies were carried out for different nanocomposites in temperature range of room temperature to 180 °C. With the increase in frequency, the dielectric constant for all the nanocomposites was observed to decrease. AC conductivity of PPy was improved by addition of CAO nanopowder.

Keywords: polypyrrole, dielectric constant, dielectric loss, AC conductivity

Procedia PDF Downloads 192
7850 Dielectric Behavior of 2D Layered Insulator Hexagonal Boron Nitride

Authors: Nikhil Jain, Yang Xu, Bin Yu

Abstract:

Hexagonal boron nitride (h-BN) has been used as a substrate and gate dielectric for graphene field effect transistors (GFETs). Using a graphene/h-BN/TiN (channel/dielectric/gate) stack, key material properties of h-BN were investigated i.e. dielectric strength and tunneling behavior. Work function difference between graphene and TiN results in spontaneous p-doping of graphene through a multi-layer h-BN flake. However, at high levels of current stress, n-doping of graphene is observed, possibly due to the charge transfer across the thin h-BN multi layer. Neither Direct Tunneling (DT) nor Fowler-Nordheim Tunneling (FNT) was observed in TiN/h-BN/Au hetero structures with h-BN showing two distinct volatile conduction states before breakdown. Hexagonal boron nitride emerges as a material of choice for gate dielectrics in GFETs because of robust dielectric properties and high tunneling barrier.

Keywords: graphene, transistors, conduction, hexagonal boron nitride, dielectric strength, tunneling

Procedia PDF Downloads 255
7849 Dielectric Properties of La2MoO6 Ceramics at Microwave Frequency

Authors: Yih-Chien Chen, Yu-Cheng You

Abstract:

The microwave dielectric properties of La2MoO6 ceramics were investigated with a view to their application in mobile communication. La2MoO6 ceramics were prepared by the conventional solid-state method with various sintering conditions. The X-ray diffraction peaks of La2MoO6 ceramic did not vary significantly with sintering conditions. The average grain size of La2MoO6 ceramics increased as the temperature and time of sintering increased. A maximum density of 5.67 g/cm3, a dielectric constants (εr) of 14.1, a quality factor (Q×f) of 68,000 GHz, and a temperature coefficient of resonant frequency (τf) of -56 ppm/℃ were obtained when La2MoO6 ceramics that were sintered at 1300 ℃ for 4h.

Keywords: ceramics, sintering, microwave dielectric properties, La2MoO6

Procedia PDF Downloads 202
7848 Autonomic Recovery Plan with Server Virtualization

Authors: S. Hameed, S. Anwer, M. Saad, M. Saady

Abstract:

For autonomic recovery with server virtualization, a cogent plan that includes recovery techniques and backups with virtualized servers can be developed instead of assigning an idle server to backup operations. In addition to hardware cost reduction and data center trail, the disaster recovery plan can ensure system uptime and to meet objectives of high availability, recovery time, recovery point, server provisioning, and quality of services. This autonomic solution would also support disaster management, testing, and development of the recovery site. In this research, a workflow plan is proposed for supporting disaster recovery with virtualization providing virtual monitoring, requirements engineering, solution decision making, quality testing, and disaster management. This recovery model would make disaster recovery a lot easier, faster, and less error prone.

Keywords: autonomous intelligence, disaster recovery, cloud computing, server virtualization

Procedia PDF Downloads 57
7847 A Comparative Study of Substituted Li Ferrites Sintered by the Conventional and Microwave Sintering Technique

Authors: Ibetombi Soibam

Abstract:

Li-Zn-Ni ferrite having the compositional formula Li0.4-0.5xZn0.2NixFe2.4-0.5xO4 where x = 0.02 ≤ x ≤0.1 in steps of 0.02 was fabricated by the citrate precursor method. In this method, metal nitrates and citric acid was used to prepare the gel which exhibit self-propagating combustion behavior giving the required ferrite sample. The ferrite sample was given a pre-firing at 650°C in a programmable conventional furnace for 3 hours with a heating rate of 5°C/min. A series of the sample was finally given conventional sintering (CS) at 1040°C after the pre-firing process. Another series was given microwave sintering (MS) at 1040°C in a programmable microwave furnace which uses a single magnetron operating at 2.45 GHz frequency. X- ray diffraction pattern confirmed the spinel phase structure for both the series. The theoretical and experimental density was calculated. It was observed that densification increases with the increase in Ni concentration in both the series. However, samples sintered by microwave technique was found to be denser. The microstructure of the two series of the sample was examined using scanning electron microscopy (SEM). Dielectric properties have been investigated as a function of frequency and composition for both series of samples sintered by CS and MS technique. The variation of dielectric constant with frequency show dispersion for both the series. It was explained in terms of Koop’s two layer model. From the analysis of dielectric measurement, it was observed that the value of room temperature dielectric constant decreases with the increase in Ni concentration for both the series. The microwave sintered samples show a lower dielectric constant making microwave sintering suitable for high-frequency applications. The possible mechanisms contributing to all the above behavior is being discussed.

Keywords: citrate precursor, dielectric constant, ferrites, microwave sintering

Procedia PDF Downloads 328
7846 Dielectric Properties of Thalium Selenide Thin Films at Radio Wave Frequencies

Authors: Onur Potok, Deniz Deger, Kemal Ulutas, Sahin Yakut, Deniz Bozoglu

Abstract:

Thalium Selenide (TlSe) is used for optoelectronic devices, pressure sensitive detectors, and gamma-ray detectors. The TlSe samples were grown as large single crystals using the Stockbarger-Bridgman method. The thin films, in the form of Al/TlSe/Al, were deposited on the microscope slide in different thicknesses (300-3000 Å) using thermal evaporation technique at 10-5 Torr. The dielectric properties of (TlSe) thin films, capacitance (C) and dielectric loss factor (tanδ), were measured in a frequency range of 10-105 Hz, and temperatures between 213K and 393K via Broadband Dielectric Spectroscopy analyzer. The dielectric constant (ε’) and the dielectric loss (ε’’) of the thin films were derived from measured parameters (C and tanδ). These results showed that the dielectric properties of TlSe thin films are frequency and temperature dependent. The capacitance and the dielectric constant decrease with increasing frequency and decreasing temperature. The dielectric loss of TlSe thin films decreases with increasing frequency, on the other hand, they increase with increasing temperature and increasing thicknesses. There is two relaxation region in the investigated frequency and temperature interval. These regions can be called as low and high-frequency dispersion regions. Low-frequency dispersion region can be attributed to the polarization of the main part of the chain structure of TlSe while high-frequency dispersion region can be attributed to the polarization of side parts of the structure.

Keywords: thin films, thallium selenide, dielectric spectroscopy, binary compounds

Procedia PDF Downloads 71