Search results for: carbon encapsulated iron
3323 Effect of Carbon Nanotubes on Ultraviolet and Immersion Stability of Diglycidyl Ether of Bisphenol A Epoxy Coating
Authors: Artemova Anastasiia, Shen Zexiang, Savilov Serguei
Abstract:
The marine environment is very aggressive for a number of factors, such as moisture, temperature, winds, ultraviolet radiation, chloride ion concentration, oxygen concentration, pollution, and biofouling, all contributing to marine corrosion. Protective organic coatings provide protection either by a barrier action from the layer, which is limited due to permeability to water and oxygen or from active corrosion inhibition and cathodic protection due to the pigments in the coating. Carbon nanotubes can play not only barrier effect but also passivation effect via adsorbing molecular species of oxygen, hydroxyl, chloride and sulphate anions. Multiwall carbon nanotubes composite provide very important properties such as mechanical strength, non-cytotoxicity, outstanding thermal and electrical conductivity, and very strong absorption of ultraviolet radiation. The samples of stainless steel (316L) coated by epoxy resin with carbon nanotubes-based pigments were exposed to UV irradiation (340nm), and immersion to the sodium chloride solution for 1000h and corrosion behavior in 3.5 wt% sodium chloride (NaCl) solution was investigated. Experimental results showed that corrosion current significantly decreased in the presence of carbon nanotube-based materials, especially nitrogen-doped ones, in the composite coating. Importance of the structure and composition of the pigment materials and its composition was established, and the mechanism of the protection was described. Finally, the effect of nitrogen doping on the corrosion behavior was investigated. The pigment-polymer crosslinking improves the coating performance and the corrosion rate decreases in comparison with pure epoxy coating from 5.7E-05 to 1.4E-05mm/yr for the coating without any degradation; in more than 6 times for the coating after ultraviolet degradation; and more than 16% for the coatings after immersion degradation.Keywords: corrosion, coating, carbon nanotubes, degradation
Procedia PDF Downloads 1623322 Experimental Research of Canine Mandibular Defect Construction with the Controlled Meshy Titanium Alloy Scaffold Fabricated by Electron Beam Melting Combined with BMSCs-Encapsulating Chitosan Hydrogel
Authors: Wang Hong, Liu Chang Kui, Zhao Bing Jing, Hu Min
Abstract:
Objection We observed the repairment effection of canine mandibular defect with meshy Ti6Al4V scaffold fabricated by electron beam melting (EBM) combined with bone marrow mesenchymal stem cells (BMMSCs) encapsulated in chitosan hydrogel. Method Meshy titanium scaffolds were prepared by EBM of commercial Ti6Al4V power. The length of scaffolds was 24 mm, the width was 5 mm and height was 8mm. The pore size and porosity were evaluated by scanning electron microscopy (SEM). Chitosan /Bio-Oss hydrogel was prepared by chitosan, β- sodium glycerophosphate and Bio-Oss power. BMMSCs were harvested from canine iliac crests. BMMSCs were seeded in titanium scaffolds and encapsulated in Chitosan /Bio-Oss hydrogel. The validity of BMMSCs was evaluated by cell count kit-8 (CCK-8). The osteogenic differentiation ability was evaluated by alkaline phosphatase (ALP) activity and gene expression of OC, OPN and CoⅠ. Combination were performed by injecting BMMSCs/ Chitosan /Bio-Oss hydrogel into the meshy Ti6Al4V scaffolds and solidified. 24 mm long box-shaped bone defects were made at the mid-portion of mandible of adult beagles. The defects were randomly filled with BMMSCs/ Chitosan/Bio-Oss + titanium, Chitosan /Bio-Oss+titanium, titanium alone. Autogenous iliac crests graft as control group in 3 beagles. Radionuclide bone imaging was used to monitor the new bone tissue at 2, 4, 8 and 12 weeks after surgery. CT examination was made on the surgery day and 4 weeks, 12 weeks and 24 weeks after surgery. The animals were sacrificed in 4, 12 and 24 weeks after surgery. The bone formation were evaluated by histology and micro-CT. Results: The pores of the scaffolds was interconnected, the pore size was about 1 mm, the average porosity was about 76%. The pore size of the hydrogel was 50-200μm and the average porosity was approximately 90%. The hydrogel were solidified under the condition of 37℃in 10 minutes. The validity and the osteogenic differentiation ability of BMSCs were not affected by titanium scaffolds and hydrogel. Radionuclide bone imaging shown an increasing tendency of the revascularization and bone regeneration was observed in all the groups at 2, 4, 8 weeks after operation, and there were no changes at 12weeks.The tendency was more obvious in the BMMSCs/ Chitosan/Bio-Oss +titanium group and autogenous group. CT, Micro-CT and histology shown that new bone formed increasingly with the time extend. There were more new bone regenerated in BMMSCs/ Chitosan /Bio-Oss + titanium group and autogenous group than the other two groups. At 24 weeks, the autogenous group was achieved bone union. The BMSCs/ Chitosan /Bio-Oss group was seen extensive new bone formed around the scaffolds and more new bone inside of the central pores of scaffolds than Chitosan /Bio-Oss + titanium group and titanium group. The difference was significantly. Conclusion: The titanium scaffolds fabricated by EBM had controlled porous structure, good bone conduction and biocompatibility. Chitosan /Bio-Oss hydrogel had injectable plasticity, thermosensitive property and good biocompatibility. The meshy Ti6Al4V scaffold produced by EBM combined BMSCs encapsulated in chitosan hydrogel had good capacity on mandibular bone defect repair.Keywords: mandibular reconstruction, tissue engineering, electron beam melting, titanium alloy
Procedia PDF Downloads 4453321 Solventless C−C Coupling of Low Carbon Furanics to High Carbon Fuel Precursors Using an Improved Graphene Oxide Carbocatalyst
Authors: Ashish Bohre, Blaž Likozar, Saikat Dutta, Dionisios G. Vlachos, Basudeb Saha
Abstract:
Graphene oxide, decorated with surface oxygen functionalities, has emerged as a sustainable alternative to precious metal catalysts for many reactions. Herein, we report for the first time that graphene oxide becomes super active for C-C coupling upon incorporation of multilayer crystalline features, highly oxidized surface, Brønsted acidic functionalities and defect sites on the surface and edges via modified oxidation. The resulting improved graphene oxide (IGO) demonstrates superior activity to commonly used framework zeolites for upgrading of low carbon biomass furanics to long carbon chain aviation fuel precursors. A maximum 95% yield of C15 fuel precursor with high selectivity is obtained at low temperature (60 C) and neat conditions via hydroxyalkylation/alkylation (HAA) of 2-methylfuran (2-MF) and furfural. The coupling of 2-MF with carbonyl molecules ranging from C3 to C6 produced the precursors of carbon numbers 12 to 21. The catalyst becomes inactive in the 4th cycle due to the loss of oxygen functionalities, defect sites and multilayer features; however, regains comparable activity upon regeneration. Extensive microscopic and spectroscopic characterization of the fresh and reused IGO is presented to elucidate high activity of IGO and to establish a correlation between activity and surface and structural properties. Kinetic Monte Carlo (KMC) and density functional theory (DFT) calculations are presented to further illustrate the surface features and the reaction mechanism.Keywords: methacrylic acid, itaconic acid, biomass, monomer, solid base catalyst
Procedia PDF Downloads 1753320 Determination of Bisphenol A and Uric Acid by Modified Single-Walled Carbon Nanotube with Magnesium Layered Hydroxide 3-(4-Methoxyphenyl)Propionic Acid Nanocomposite
Authors: Illyas Md Isa, Maryam Musfirah Che Sobry, Mohamad Syahrizal Ahmad, Nurashikin Abd Azis
Abstract:
A single-walled carbon nanotube (SWCNT) that has been modified with magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite was proposed for the determination of uric acid and bisphenol A by square wave voltammetry. The results obtained denote that MLH-MPP nanocomposites enhance the sensitivity of the voltammetry detection responses. The best performance is shown by the modified carbon nanotube paste electrode (CNTPE) with the composition of single-walled carbon nanotube: magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite at 100:15 (% w/w). The linear range where the sensor works well is within the concentration 1.0 10-7 – 1.0 10-4 and 3.0 10-7 – 1.0 10-4 for uric acid and bisphenol A respectively with the limit of detection of 1.0 10-7 M for both organics. The interferences of uric acid and bisphenol A with other organic were studied and most of them did not interfere. The results shown for each experimental parameter on the proposed CNTPE showed that it has high sensitivity, good selectivity, repeatability and reproducibility. Therefore, the modified CNTPE can be used for the determination of uric acid and bisphenol A in real samples such as blood, plastic bottles and foods.Keywords: bisphenol A, magnesium layered hydroxide 3-(4-methoxyphenyl)propionic acid nanocomposite, Nanocomposite, uric acid
Procedia PDF Downloads 2123319 Environmental Analysis of Urban Communities: A Case Study of Air Pollutant Distribution in Smouha Arteries, Alexandria Egypt
Authors: Sammar Zain Allam
Abstract:
Smart Growth, intelligent cities, and healthy cities cited by WHO world health organization; they all call for clean air and minimizing air pollutants considering human health. Air quality is a thriving matter to achieve ecological cities; towards sustainable environmental development of urban fabric design. Selection criteria depends on the strategic location of our area as it is located at the entry of the city of Alexandria from its agricultural road. Besides, it represents the city center for retail, business, and educational amenities. Our study is analyzing readings of definite factors affecting air quality in a centric area in Alexandria. Our readings will be compared to standard measures of carbon dioxide, carbon monoxide, suspended particles, and air velocity or air flow. Carbon emissions are pondered in our study, in addition to suspended particles and the air velocity or air flow. Carbon dioxide and carbon monoxide crystalize the main elements to necessitate environmental and sustainable studies with the appearance of global warming and the glass house effect. Nevertheless, particulate matters are increasing causing breath issues especially to children and elder people; still threatening future generations to meet their own needs; sustainable development definition. Analysis of carbon dioxide, carbon monoxide, suspended particles together with air velocity or air flow has taken place in our area of study to manifest the relationship between these elements and the urban fabric design and land use distribution. For conclusion, dense urban fabric affecting air flow, and thus result in the concentration of air pollutants in certain zones. The appearance of open space with green areas allow the fading of air pollutants and help in their absorption. Along with dense urban fabric, high rise buildings trap air carriers which contribute to high readings of our elements. Also, street design may facilitate the circulation of air which helps carrying these pollutant away and distribute it to a wider space which decreases its harms and effects.Keywords: carbon emissions, air quality measurements, arteries air quality, airflow or air velocity, particulate matter, clean air, urban density
Procedia PDF Downloads 4273318 Advanced Catechol-Modified Chitosan Hydrogels with the Inducement of Iron (III) Ion at Acidic Condition
Authors: Ngoc Quang Nguyen, Daewon Sohn
Abstract:
Chitosan (CS) is a natural polycationic polysaccharide and pH-sensitive polymer with incomplete deacetylation from claiming chitin. It is also a guaranteeing material in terms of pharmaceutical, chemical, and sustenance industry due to its exceptional structure (reactive –OH and –NH2 groups). In this study, a catechol-functionalized chitosan (CCS, for an eminent level for substitution) was synthesized and propelled by marine mussel cuticles in place on research those intricate connections between Fe³⁺ and catechol under acidic conditions. The ratios of catechol, chitosan and other reagents decide the structure of the hydrogel. The gel formation is then well-maintained by dual cross-linking through electrostatic interactions between Fe³⁺ and CCS and covalent catechol-coupling-based coordinate bonds. The hydrogels showed enhanced cohesiveness and shock-absorbing properties with increasing pH due to coordinate bonds inspired by mussel byssal threads. Thus, the gelation time, rheological properties, UV-vis and ¹H-Nuclear Magnetic Resonance spectroscopy, and the morphologic aspects were elucidated to describe those crosslinking components and the physical properties of the chitosan backbones and hydrogel frameworks.Keywords: catechol, chitosan, iron ion, gelation, hydrogel
Procedia PDF Downloads 1423317 Carbon Nanotubes Based Porous Framework for Filtration Applications Using Industrial Grinding Waste
Authors: V. J. Pillewan, D. N. Raut, K. N. Patil, D. K. Shinde
Abstract:
Forging, milling, turning, grinding and shaping etc. are the various industrial manufacturing processes which generate the metal waste. Grinding is extensively used in the finishing operation. The waste generated contains significant impurities apart from the metal particles. Due to these significant impurities, it becomes difficult to process and gets usually dumped in the landfills which create environmental problems. Therefore, it becomes essential to reuse metal waste to create value added products. Powder injection molding process is used for producing the porous metal matrix framework. This paper discusses the presented design of the porous framework to be used for the liquid filter application. Different parameters are optimized to obtain the better strength framework with variable porosity. Carbon nanotubes are used as reinforcing materials to enhance the strength of the metal matrix framework.Keywords: grinding waste, powder injection molding (PIM), carbon nanotubes (CNTs), matrix composites (MMCs)
Procedia PDF Downloads 3073316 Mechanical Properties of Carbon Nanofiber Reinforced Polymer Composites-Molecular Dynamics Approach
Authors: Sumit Sharma, Rakesh Chandra, Pramod Kumar, Navin Kumar
Abstract:
Molecular dynamics (MD) simulation has been used to study the effect of carbon nanofiber (CNF) volume fraction (Vf) and aspect ratio (l/d) on mechanical properties of CNF reinforced polypropylene (PP) composites. Materials Studio 5.5 has been used as a tool for finding the modulus and damping in composites. CNF composition in PP was varied by volume from 0 to 16%. Aspect ratio of CNF was varied from l/d=5 to l/d=100. To the best of the knowledge of the authors, till date there is no study, either experimental or analytical, which predict damping for CNF-PP composites at the nanoscale. Hence, this will be a valuable addition in the area of nanocomposites. Results show that with only 2% addition by volume of CNF in PP, E11 increases 748%. Increase in E22 is very less in comparison to the increase in E11. With increase in CNF aspect ratio (l/d) till l/d=60, the longitudinal loss factor (η11) decreases rapidly. Results of this study have been compared with those available in literature.Keywords: carbon nanofiber, elasticity, mechanical properties, molecular dynamics
Procedia PDF Downloads 4863315 Experimental Investigation on the Effect of Ultrasonication on Dispersion and Mechanical Performance of Multi-Wall Carbon Nanotube-Cement Mortar Composites
Authors: S. Alrekabi, A. Cundy, A. Lampropoulos, I. Savina
Abstract:
Due to their remarkable mechanical properties, multi-wall carbon nanotubes (MWCNTs) are considered by many researchers to be a highly promising filler and reinforcement agent for enhanced performance cementitious materials. Currently, however, achieving an effective dispersion of MWCNTs remains a major challenge in developing high performance nano-cementitious composites, since carbon nanotubes tend to form large agglomerates and bundles as a consequence of Van der Waals forces. In this study, effective dispersion of low concentrations of MWCNTs at 0.01%, 0.025%, and 0.05% by weight of cement in the composite was achieved by applying different sonication conditions in combination with the use of polycarboxylate ether as a surfactant. UV-Visible spectroscopy and Transmission electron microscopy (TEM) were used to assess the dispersion of MWCNTs in water, while the dispersion states of MWCNTs within the cement composites and their surface interactions were examined by scanning electron microscopy (SEM). A high sonication intensity applied over a short time period significantly enhanced the dispersion of MWCNTs at initial mixing stages, and 0.025% of MWCNTs wt. of cement, caused 86% and 27% improvement in tensile strength and compressive strength respectively, compared with a plain cement mortar.Keywords: dispersion, mechanical performance, multi wall carbon nanotubes, sonication conditions
Procedia PDF Downloads 3213314 Investigation on Properties and Applications of Graphene as Single Layer of Carbon Atoms
Authors: Ali Ashjaran
Abstract:
Graphene is undoubtedly emerging as one of the most promising materials because of its unique combination of superb properties, which opens a way for its exploitation in a wide spectrum of applications ranging from electronics to optics, sensors, and biodevices. In addition, Graphene-based nanomaterials have many promising applications in energy-related areas. Graphene a single layer of carbon atoms, combines several exceptional properties, which makes it uniquely suited as a coating material: transparency, excellent mechanical stability, low chemical reactivity, Optical, impermeability to most gases, flexibility, and very high thermal and electrical conductivity. Graphene is a material that can be utilized in numerous disciplines including, but not limited to: bioengineering, composite materials, energy technology and nanotechnology, biological engineering, optical electronics, ultrafiltration, photovoltaic cells. This review aims to provide an overiew of graphene structure, properties and some applications.Keywords: graphene, carbon, anti corrosion, optical and electrical properties, sensors
Procedia PDF Downloads 2743313 Determination of Mineral Elements in Some Coarse Grains Used as Staple Food in Kano, Nigeria
Authors: M. I. Mohammed, U. M. Ahmad
Abstract:
Analyses of mineral elements were carried out on some coarse grains used as staple food in Kano. The levels of Magnesium, Calcium, Manganese, Iron, Copper and Zinc were determined using atomic absorption spectrophotometer (AAS), and that of Sodium and Potassium were obtained using flame photometer (FES). The result of the study shows that the mean results of the mineral elements ranged from 62.50±0.55 - 84.82±0.74mg/kg sodium, 73.33±0.35 - 317±0.10mg/kg magnesium, 89.22±0.26 - 193.33±0.19mg/kg potassium, 70.00±0.52 - 186.67±0.29mg/kg calcium, 1.00±0.11 - 20.50±1.30mg/kg manganese, 25.00±0.11 - 80.50±0.36mg/kg iron. 4.00±0.08 - 13.00±0.24mg/kg copper and 15.00±0.34 - 50.50±0.24 zinc. There was significant difference (p < 0.05) in levels of sodium, potassium and calcium whereas no significant difference (p > 0.05) occurs in levels of magnesium, manganese, copper and zinc. In comparison with Recommended Daily Allowances of essential and trace metals set by international standard organizations, the coarse grains analysed in this work contribute little to the provision of essential and trace elements requirements.Keywords: mineral elements, coarse grains, staple food, Kano, Nigeria
Procedia PDF Downloads 2773312 Electro-Oxidation of Glycerol Using Nickel Deposited Carbon Ceramic Electrode and Product Analysis Using High Performance Liquid Chromatography
Authors: Mulatu Kassie Birhanu
Abstract:
Electro-oxidation of glycerol is an important process to convert the less price glycerol into other expensive (essential) and energy-rich chemicals. In this study, nickel was electro-deposited on laboratory-made carbon ceramic electrode (CCE) substrate using electrochemical techniques that is cyclic voltammetry (CV) to prepare an electro-catalyst (Ni/CCE) for electro-oxidation of glycerol. Carbon ceramic electrode was prepared from graphite and methyl tri-methoxy silane (MTMOS) through the processes called hydrolysis and condensation with methanol in acidic media (HCl) by a sol-gel technique. Physico-chemical characterization of bare CCE and modified (deposited) CCE (Ni/CCE) was measured and evaluated by Fourier Transform Infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM) and X-ray diffraction (XRD). Electro-oxidation of glycerol was performed in 0.1 M glycerol in alkaline media (0.5 M NaOH). High-Performance Liquid Chromatography (HPLC) technique was used to identify and determine the concentration of glycerol, reaction intermediates and oxidized products of glycerol after its electro-oxidation is performed. The conversion (%) of electro-oxidation of glycerol during 9-hour oxidation was 73% and 36% at 1.8V and 1.6V vs. RHE, respectively. Formate, oxalate, glycolate and glycerate are the main oxidation products of glycerol with selectivity (%) of 75%, 8.6%, 1.1% and 0.95 % at 1.8 V vs. RHE and 55.4%, 2.2%, 1.0% and 0.6% at 1.6 V vs. RHE respectively. The result indicates that formate is the main product in the electro-oxidation of glycerol on Ni/CCE using the indicated applied potentials.Keywords: carbon-ceramic electrode, electrodeposition, electro-oxidation, Methyltrimethoxysilane
Procedia PDF Downloads 2383311 A Comparative Study on Biochar from Slow Pyrolysis of Corn Cob and Cassava Wastes
Authors: Adilah Shariff, Nurhidayah Mohamed Noor, Alexander Lau, Muhammad Azwan Mohd Ali
Abstract:
Biomass such as corn and cassava wastes if left to decay will release significant quantities of greenhouse gases (GHG) including carbon dioxide and methane. The biomass wastes can be converted into biochar via thermochemical process such as slow pyrolysis. This approach can reduce the biomass wastes as well as preserve its carbon content. Biochar has the potential to be used as a carbon sequester and soil amendment. The aim of this study is to investigate the characteristics of the corn cob, cassava stem, and cassava rhizome in order to identify their potential as pyrolysis feedstocks for biochar production. This was achieved by using the proximate and elemental analyses as well as calorific value and lignocellulosic determination. The second objective is to investigate the effect of pyrolysis temperature on the biochar produced. A fixed bed slow pyrolysis reactor was used to pyrolyze the corn cob, cassava stem, and cassava rhizome. The pyrolysis temperatures were varied between 400 °C and 600 °C, while the heating rate and the holding time were fixed at 5 °C/min and 1 hour, respectively. Corn cob, cassava stem, and cassava rhizome were found to be suitable feedstocks for pyrolysis process because they contained a high percentage of volatile matter more than 80 mf wt.%. All the three feedstocks contained low nitrogen and sulphur content less than 1 mf wt.%. Therefore, during the pyrolysis process, the feedstocks give off very low rate of GHG such as nitrogen oxides and sulphur oxides. Independent of the types of biomass, the percentage of biochar yield is inversely proportional to the pyrolysis temperature. The highest biochar yield for each studied temperature is from slow pyrolysis of cassava rhizome as the feedstock contained the highest percentage of ash compared to the other two feedstocks. The percentage of fixed carbon in all the biochars increased as the pyrolysis temperature increased. The increment of pyrolysis temperature from 400 °C to 600 °C increased the fixed carbon of corn cob biochar, cassava stem biochar and cassava rhizome biochar by 26.35%, 10.98%, and 6.20% respectively. Irrespective of the pyrolysis temperature, all the biochars produced were found to contain more than 60 mf wt.% fixed carbon content, much higher than its feedstocks.Keywords: biochar, biomass, cassava wastes, corn cob, pyrolysis
Procedia PDF Downloads 2993310 Neuroprotective Effects of Rosmarinic Acid in the MPTP Mouse Model of Parkinson's Disease
Authors: Huamin Xu, Wenting Jia, Hong Jiang, Junxia Xie
Abstract:
Rosmarinic acid (RA) is a natural acid that is found in a variety of herbs, such as rosemary and has multiple biological activities such as antioxidative, anti-inflammatory and antiviral activities. In this study, we investigated the neuroprotective effects of RA on dopaminergic system in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced mouse model of Parkinson’s disease (PD). The mice received oral administration of RA before MPTP injection. Results showed that the tyrosine hydroxylase expression in SN reduced and the levels of dopamine and its metabolites in the striatum decreased in MPTP intoxicated PD mice. Pretreatment with RA significantly inhibited these changes. Further studies demonstrated that MPTP treatment increased the iron content, which was counteracted by pre-treatment with RA. In addition, RA could restore the decrease of superoxide dismutase (SOD) induced by MPTP. This study provides evidence that RA could suppress MPTP-induced degeneration of the nigrostriatal dopaminergic system by regulating iron content and the expression of SOD. Thus, RA might be clinically evaluated for the prevention of neurodegenerative diseases.Keywords: rosmarinic acid, Parkinson's disease, MPTP, dopaminergic system
Procedia PDF Downloads 2063309 Fundamental Research Dissension between Hot and Cold Chamber High Pressure Die Casting
Authors: Sahil Kumar, Surinder Pal, Rahul Kapoor
Abstract:
This paper is focused on to define the basic difference between hot and cold chamber high pressure die casting process which is not fully defined in a research before paper which we have studied. The pressure die casting is basically defined into two types (1) Hot chamber Die Casting (2) Cold chamber Die Casting. Cold chamber die casting is used for casting alloys that require high pressure and have a high melting temperature, such as brass, aluminum, magnesium, copper based alloys and other high melting point nonferrous alloys. Hot chamber die casting is suitable for casting zinc, tin, lead, and low melting point alloys. In hot chamber die casting machine, the molten metal is an integral pan of the machine. It mainly consists of hot chamber and gooseneck type metal container made of cast iron. This machine is mainly used for low melting alloys and alloys of metals like zinc, lead etc. Metals and alloys having a high melting point and those which are having an affinity for iron cannot be cast by this machine, which could otherwise attack the shot sleeve and damage the machine.Keywords: hot chamber die casting, cold chamber die casting, metals and alloys, casting technology
Procedia PDF Downloads 6193308 Potential of Hyperion (EO-1) Hyperspectral Remote Sensing for Detection and Mapping Mine-Iron Oxide Pollution
Authors: Abderrazak Bannari
Abstract:
Acid Mine Drainage (AMD) from mine wastes and contaminations of soils and water with metals are considered as a major environmental problem in mining areas. It is produced by interactions of water, air, and sulphidic mine wastes. This environment problem results from a series of chemical and biochemical oxidation reactions of sulfide minerals e.g. pyrite and pyrrhotite. These reactions lead to acidity as well as the dissolution of toxic and heavy metals (Fe, Mn, Cu, etc.) from tailings waste rock piles, and open pits. Soil and aquatic ecosystems could be contaminated and, consequently, human health and wildlife will be affected. Furthermore, secondary minerals, typically formed during weathering of mine waste storage areas when the concentration of soluble constituents exceeds the corresponding solubility product, are also important. The most common secondary mineral compositions are hydrous iron oxide (goethite, etc.) and hydrated iron sulfate (jarosite, etc.). The objectives of this study focus on the detection and mapping of MIOP in the soil using Hyperion EO-1 (Earth Observing - 1) hyperspectral data and constrained linear spectral mixture analysis (CLSMA) algorithm. The abandoned Kettara mine, located approximately 35 km northwest of Marrakech city (Morocco) was chosen as study area. During 44 years (from 1938 to 1981) this mine was exploited for iron oxide and iron sulphide minerals. Previous studies have shown that Kettara surrounding soils are contaminated by heavy metals (Fe, Cu, etc.) as well as by secondary minerals. To achieve our objectives, several soil samples representing different MIOP classes have been resampled and located using accurate GPS ( ≤ ± 30 cm). Then, endmembers spectra were acquired over each sample using an Analytical Spectral Device (ASD) covering the spectral domain from 350 to 2500 nm. Considering each soil sample separately, the average of forty spectra was resampled and convolved using Gaussian response profiles to match the bandwidths and the band centers of the Hyperion sensor. Moreover, the MIOP content in each sample was estimated by geochemical analyses in the laboratory, and a ground truth map was generated using simple Kriging in GIS environment for validation purposes. The acquired and used Hyperion data were corrected for a spatial shift between the VNIR and SWIR detectors, striping, dead column, noise, and gain and offset errors. Then, atmospherically corrected using the MODTRAN 4.2 radiative transfer code, and transformed to surface reflectance, corrected for sensor smile (1-3 nm shift in VNIR and SWIR), and post-processed to remove residual errors. Finally, geometric distortions and relief displacement effects were corrected using a digital elevation model. The MIOP fraction map was extracted using CLSMA considering the entire spectral range (427-2355 nm), and validated by reference to the ground truth map generated by Kriging. The obtained results show the promising potential of the proposed methodology for the detection and mapping of mine iron oxide pollution in the soil.Keywords: hyperion eo-1, hyperspectral, mine iron oxide pollution, environmental impact, unmixing
Procedia PDF Downloads 2293307 Banana Peels as an Eco-Sorbent for Manganese Ions
Authors: M. S. Mahmoud
Abstract:
This study was conducted to evaluate the manganese removal from aqueous solution using Banana peels activated carbon (BPAC). Batch experiments have been carried out to determine the influence of parameters such as pH, biosorbent dose, initial metal ion concentrations and contact times on the biosorption process. From these investigations, a significant increase in percentage removal of manganese 97.4 % is observed at pH value 5.0, biosorbent dose 0.8 g, initial concentration 20 ppm, temperature 25 ± 2 °C, stirring rate 200 rpm and contact time 2 h. The equilibrium concentration and the adsorption capacity at equilibrium of the experimental results were fitted to the Langmuir and Freundlich isotherm models; the Langmuir isotherm was found to well represent the measured adsorption data implying BPAC had heterogeneous surface. A raw groundwater samples were collected from Baharmos groundwater treatment plant network at Embaba and Manshiet Elkanater City/District-Giza, Egypt, for treatment at the best conditions that reached at first phase by BPAC. The treatment with BPAC could reduce iron and manganese value of raw groundwater by 91.4 % and 97.1 %, respectively and the effect of the treatment process on the microbiological properties of groundwater sample showed decrease of total bacterial count either at 22°C or at 37°C to 85.7 % and 82.4 %, respectively. Also, BPAC was characterized using SEM and FTIR spectroscopy.Keywords: biosorption, banana peels, isothermal models, manganese
Procedia PDF Downloads 3693306 Study of Biological Denitrification using Heterotrophic Bacteria and Natural Source of Carbon
Authors: Benbelkacem Ouerdia
Abstract:
Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from wastewater and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables the transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on the initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite
Procedia PDF Downloads 4853305 Micro-Texture Effect on Fracture Location in Carbon Steel during Forming
Authors: Sarra Khelifi, Youcef Guerabli, Ahcene Boumaiza
Abstract:
Advances in techniques for measuring individual crystallographic orientations have made it possible to investigate the role of local crystallography during the plastic deformation of materials. In this study, the change in crystallographic orientation distribution during deformation by deep drawing in carbon steel has been investigated in order to understand their role in propagation and arrest of crack. The results show that the change of grain orientation from initial recrystallization texture components of {111}<112> to deformation orientation {111}<110> incites the initiation and propagation of cracks in the region of {111}<112> small grains. Moreover, the misorientation profile and local orientation are analyzed in detail to discuss the change from {111}<112> to {111}<110>. The deformation of the grain with {111}<110> orientation is discussed in terms of stops of the crack in carbon steel during drawing. The SEM-EBSD technique was used to reveal the change of orientation; XRD was performed for the characterization of the global evolution of texture for deformed samples.Keywords: fracture, heterogeneity, misorientation profile, stored energy
Procedia PDF Downloads 1993304 Carbon Fibre Reinforced Polymers Modified with PET-G/MWCNTs Nonwovens
Authors: Kamil Dydek, Szymon Demski, Kamil Majchrowicz, Paulina Kozera, Bogna Sztorch, Dariusz Brząkalski, Zuzanna Krawczyk, Robert Przekop, Anna Boczkowska
Abstract:
Carbon fibre reinforced polymers (CFRPs) are characterized by very high strength and stiffness in relation to their weight. In addition, properties such as corrosion resistance and low thermal expansion allow them to replace traditional materials, i.e., wood or metals, in many industries such as aerospace, automotive, marine, and sports goods. However, CFRPs, have some disadvantages -they have relatively low electrical conductivity and break brittle, which significantly limits their application possibilities. Moreover, conventional CFRPs are usually manufactured based on thermosets, which makes them difficult to recycle. The solution to these drawbacks is the use of the innovative thermoplastic resin (ELIUM from ARKEMA) as a matrix of composites and the modification by introducing into their structure thermoplastic nonwovens based on PET-G with the addition of multi-wall carbon nanotubes (MWCNTs). The acrylic-carbon composites, which were produced by the infusion technique, were tested for mechanical, thermo-mechanical, and electrical properties, and the effect of modifications on their microstructure was studied. Acknowledgment: This study was carried out with funding from grant no. LIDER/46/0185/L-11/19/NCBR/2020, financed by The National Centre for Research and Development.Keywords: CFRP, MWCNT, ELIUM, electrical properties, infusion
Procedia PDF Downloads 1363303 New Heterogenous α-Diimine Nickel (II)/ MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pormahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl, and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α-diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 4073302 New Heterogenous α-Diimine Nickel (II)/MWCNT Catalysts for Ethylene Polymerization
Authors: Sasan Talebnezhad, Saeed Pourmahdian, Naghi Assali
Abstract:
Homogeneous α-diimine nickel (II) catalyst complexes, with and without amino para-aryl position functionality, were synthesized. These complexes were immobilized on carboxyl, hydroxyl and acyl chloride functionalized multi-walled carbon nanotubes to form five novel heterogeneous α diiminonickel catalysts. Immobilization was performed by covalent or electrostatic bonding via methylaluminoxane (MAO) linker or amide linkage. Both the nature of α-diimine ligands and the kind of interaction between anchored catalyst complexes and multi-walled carbon nanotube surface influenced the catalytic performance, microstructure, and morphology of obtained polyethylenes. The catalyst prepared by amide bonding showed lowest relative weight loss in thermogravimetry analysis and highest activities up to 5863 gr PE mmol-1Ni.hr-1. This catalyst produced polyethylene with dense botryoidal morphology.Keywords: α-diimine nickel (II) complexes, immobilization, multi-walled carbon nanotubes, ethylene polymerization
Procedia PDF Downloads 4993301 Valorization of Dates Nodes as a Carbon Source Using Biological Denitrification
Authors: Ouerdia Benbelkacem Belouanas
Abstract:
Heterotrophic denitrification has been proven to be one of the most feasible processes for removing nitrate from waste water and drinking water. In this process, heterotrophic bacteria use organic carbon for both growth and as an electron source. Underground water pollution by nitrates become alarming in Algeria. A survey carried out revealed that the nitrate concentration is in continual increase. Studies in some region revealed contamination exceeding the recommended permissible dose which is 50 mg/L. Worrying values in the regions of Mascara, Ouled saber, El Eulma, Bouira and Algiers are respectively 72 mg/L, 75 mg/L, 97 mg/L, 102 mg/L, and 158 mg/L. High concentration of nitrate in drinking water is associated with serious health risks. Research on nitrate removal technologies from municipal water supplies is increasing because of nitrate contamination. Biological denitrification enables transformation of oxidized nitrogen compounds by a wide spectrum of heterotrophic bacteria into harmless nitrogen gas with accompanying carbon removal. Globally, denitrification is commonly employed in biological nitrogen removal processes to enhance water quality. The study investigated the valorization of a vegetable residue as a carbon source (dates nodes) in water treatment using the denitrification process. Throughout the study, the effect of inoculums addition, pH, and initial concentration of nitrates was also investigated. In this research, a natural organic substance: dates nodes were investigated as a carbon source in the biological denitrification of drinking water. This material acts as a solid substrate and bio-film carrier. The experiments were carried out in batch processes. Complete denitrification was achieved varied between 80 and 100% according to the type of process used. It was found that the nitrate removal rate based on our results, we concluded that the removal of organic matter and nitrogen compounds depended mainly on initial concentration of nitrate. The effluent pH was mainly affected by the C/N ratio, where a decrease increases pH.Keywords: biofilm, carbon source, dates nodes, heterotrophic denitrification, nitrate, nitrite
Procedia PDF Downloads 4203300 An Evolutionary Perspective on the Role of Extrinsic Noise in Filtering Transcript Variability in Small RNA Regulation in Bacteria
Authors: Rinat Arbel-Goren, Joel Stavans
Abstract:
Cell-to-cell variations in transcript or protein abundance, called noise, may give rise to phenotypic variability between isogenic cells, enhancing the probability of survival under stress conditions. These variations may be introduced by post-transcriptional regulatory processes such as non-coding, small RNAs stoichiometric degradation of target transcripts in bacteria. We study the iron homeostasis network in Escherichia coli, in which the RyhB small RNA regulates the expression of various targets as a model system. Using fluorescence reporter genes to detect protein levels and single-molecule fluorescence in situ hybridization to monitor transcripts levels in individual cells, allows us to compare noise at both transcript and protein levels. The experimental results and computer simulations show that extrinsic noise buffers through a feed-forward loop configuration the increase in variability introduced at the transcript level by iron deprivation, illuminating the important role that extrinsic noise plays during stress. Surprisingly, extrinsic noise also decouples of fluctuations of two different targets, in spite of RyhB being a common upstream factor degrading both. Thus, phenotypic variability increases under stress conditions by the decoupling of target fluctuations in the same cell rather than by increasing the noise of each. We also present preliminary results on the adaptation of cells to prolonged iron deprivation in order to shed light on the evolutionary role of post-transcriptional downregulation by small RNAs.Keywords: cell-to-cell variability, Escherichia coli, noise, single-molecule fluorescence in situ hybridization (smFISH), transcript
Procedia PDF Downloads 1643299 The Prototype of the Solar Energy Utilization for the Finding Sustainable Conditions in the Future: The Solar Community with 4000 Dwellers 960 Families, equal to 480 Solar Dwelling Houses and 32 Mansion Buildings (480 Dwellers)
Authors: Kunihisa Kakumoto
Abstract:
This technical paper is for the prototype of solar energy utilization for finding sustainable conditions. This model has been simulated under the climate conditions in Japan. At the beginning of the study, the solar model house was built up on site. And the concerned data was collected in this model house for several years. On the basis of these collected data, the concept on the solar community was built up. For the finding sustainable conditions, the amount of the solar energy generation and its reduction of carbon dioxide and the reduction of carbon dioxide by the green planting and the amount of carbon dioxide according to the normal daily life in the solar community and the amount of the necessary water for the daily life in the solar community and the amount of the water supply by the rainfall on-site were calculated. These all values were taken into consideration. The relations between each calculated result are shown in the expression of inequality. This solar community and its consideration for finding sustainable conditions can be one prototype to do the feasibility study for our life in the futureKeywords: carbon dioxide, green planting, smart city, solar community, sustainable condition, water activity
Procedia PDF Downloads 2883298 Improved Visible Light Activities for Degrading Pollutants on ZnO-TiO2 Nanocomposites Decorated with C and Fe Nanoparticles
Authors: Yuvraj S. Malghe, Atul B. Lavand
Abstract:
In recent years, semiconductor photocatalytic degradation processes have attracted a lot of attention and are used widely for the destruction of organic pollutants present in waste water. Among various semiconductors, titanium dioxide (TiO2) is the most popular photocatalyst due to its excellent chemical stability, non-toxicity, relatively low cost and high photo-oxidation power. It has been known that zinc oxide (ZnO) with band gap energy 3.2 eV is a suitable alternative to TiO2 due to its high quantum efficiency, however it corrodes in acidic medium. Unfortunately TiO2 and ZnO both are active only in UV light due to their wide band gaps. Sunlight consist about 5-7% UV light, 46% visible light and 47% infrared radiation. In order to utilize major portion of sunlight (visible spectrum), it is necessary to modify the band gap of TiO2 as well as ZnO. This can be done by several ways such as semiconductor coupling, doping the material with metals/non metals. Doping of TiO2 using transition metals like Fe, Co and non-metals such as N, C or S extends its absorption wavelengths from UV to visible region. In the present work, we have synthesized ZnO-TiO2 nanocomposite using reverse microemulsion method. Visible light photocatalytic activity of synthesized nanocomposite was investigated for degradation of aqueous solution of malachite green (MG). To increase the photocatalytic activity of ZnO-TiO2 nanocomposite, it is decorated with C and Fe. Pure, carbon (C) doped and carbon, iron(C, Fe) co-doped nanosized ZnO-TiO2 nanocomposites were synthesized using reverse microemulsion method. These composites were characterized using, X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), Scanning electron microscopy (SEM), UV visible spectrophotometery and X-ray photoelectron spectroscopy (XPS). Visible light photocatalytic activities of synthesized nanocomposites were investigated for degradation of aqueous malachite green (MG) solution. C, Fe co-doped ZnO-TiO2 nanocomposite exhibit better photocatalytic activity and showed threefold increase in photocatalytic activity. Effect of amount of catalyst, pH and concentration of MG solution on the photodegradation rate is studied. Stability and reusability of photocatalyst is also studied. C, Fe decorated ZnO-TiO2 nanocomposite shows threefold increase in photocatalytic activity.Keywords: malachite green, nanocomposite, photocatalysis, titanium dioxide, zinc oxide
Procedia PDF Downloads 2843297 The Effect of Nylon and Kevlar Stitching on the Mode I Fracture of Carbon/Epoxy Composites
Authors: Nisrin R. Abdelal, Steven L. Donaldson
Abstract:
Composite materials are widely used in aviation industry due to their superior properties; however, they are susceptible to delamination. Through-thickness stitching is one of the techniques to alleviate delamination. Kevlar is one of the most common stitching materials; in contrast, it is expensive and presents stitching fabrication challenges. Therefore, this study compares the performance of Kevlar with an inexpensive and easy-to-use nylon fiber in stitching to alleviate delamination. Three laminates of unidirectional carbon fiber-epoxy composites were manufactured using vacuum assisted resin transfer molding process. One panel was stitched with Kevlar, one with nylon, and one unstitched. Mode I interlaminar fracture tests were carried out on specimens from the three composite laminates, and the results were compared. Fractographic analysis using optical and scanning electron microscope were conducted to reveal the differences between stitching with Kevlar and nylon on the internal microstructure of the composite with respect to the interlaminar fracture toughness values.Keywords: carbon, delamination, Kevlar, mode I, nylon, stitching
Procedia PDF Downloads 2873296 Mesoporous Carbon Sphere/Nickel Cobalt Sulfide Core-Shell Microspheres for Supercapacitor Electrode Material
Authors: Charmaine Lamiel, Van Hoa Nguyen, Marjorie Baynosa, Jae-Jin Shim
Abstract:
The depletion of non-renewable sources had led to the continuous development of various energy storage systems in order to cope with the world’s demand in energy. Supercapacitors have attracted considerable attention because they can store more energy than conventional capacitors and have higher power density than batteries. The combination of carbon-based material and metal chalcogenides are now being considered in response to the search for active electrode materials exhibiting high electrochemical performance. In this study, a hierarchical mesoporous carbon sphere@nickel cobalt sulfide (CS@Ni-Co-S) core-shell was synthesized using a simple hydrothermal method. The CS@Ni-Co-S core-shell microstructures exhibited a high capacitance of 724.4 F g−1 at 2 A g−1 in a 6 M KOH electrolyte. Good specific retention of 86.1% and high Coulombic efficiency of 97.9% was obtained after 2000 charge-discharge cycles. The electrode exhibited a high energy density of 58.0 Wh kg−1 (1440 W kg−1) and high power density of 7200 W kg−1 (34.2 Wh kg−1). The reaction involved green synthesis without further sulfurization or post-heat treatment. Through this study, a cost-effective and facile synthesis of CS@Ni-Co-S as an active electrode showed favorable electrochemical performance.Keywords: carbon sphere, electrochemical, hydrothermal, nickel cobalt sulfide, supercapacitor
Procedia PDF Downloads 2363295 Phenotypic and Genotypic Expression of Hylomma Anatolicum Ticks Silenced for Ferritin Genes through RNA Interference Technology
Authors: Muhammad Sohail Sajid, Mahvish Maqbool, Hafiz Muhammad Rizwan, Muhammad Saqib, Haroon Ahmad
Abstract:
Ticks are blood-sucking ectoparasite that causes a decrease in production and economic losses and affects mammals, reptiles, and birds. Hyalomma anatolicum is the main vector for CCHF transmission and Pakistan has faced several outbreaks of CCHF in the recent past. Ferritin (fer)is a highly conserved molecule that is ubiquitous in most tick tissues and responsible for iron metabolism and storage. It was hypothesized that the development of acaricidal resistance and residual effects of commercially used acaricides could be controlled by using alternative control methods, including RNA interference. The current study aimed to evaluate the fer silencing effects on tick feeding, average body weight, egg mass index, and mortality. Ticks, collected through the standard collection protocols were further subjected to RNA isolation using the Trizol method. Commercially available kit procedures were followed for cDNA and dsRNA synthesis. The soaking/Immersion method was used for dsRNA delivery. Our findings have shown a 27% reduction in body weight of fer silenced group and showed a significant association of fer and body weight. Silencing of fer had a significant effect on the engorgement percentage (P= 0.0007), oviposition (P=0.008), egg mass (P= 0.004) and hatching (P= 0.001). The soaking method was used for dsRNA delivery and 15°C was found to be an optimum temperature for inducing gene silencing in ticks as at this temperature, maximum survivability after immersion was attained. This study along with previous studies, described that iron toxicity due to the silencing of fer could play an important role in the control of ticks and fer can be used as a potent candidate for vaccine development.Keywords: ticks, iron, ferritin, engorgement, oviposition, immersion, RNA interference
Procedia PDF Downloads 973294 Shielding Effectiveness of Rice Husk and CNT Composites in X-Band Frequency
Authors: Y. S. Lee, F. Malek, E. M. Cheng, W. W. Liu, F. H. Wee, M. N. Iqbal, Z. Liyana, B. S. Yew, F. S. Abdullah
Abstract:
This paper presents the electromagnetic interference (EMI) shielding effectiveness of rice husk and carbon nanotubes (RHCNTs) composites in the X-band region (8.2-12.4 GHz). The difference weight ratio of carbon nanotubes (CNTs) were mix with the rice husk. The rectangular wave guide technique was used to measure the complex permittivity of the RHCNTs composites materials. The complex permittivity is represented in terms of both the real and imaginary parts of permittivity in X-band frequency. The conductivity of RHCNTs shows increasing when the ratio of CNTs mixture increases. The composites materials were simulated using Computer Simulation Technology (CST) Microwave Studio simulation software. The shielding effectiveness of RHCNTs and pure rice husk was compared. The highest EMI SE of 30 dB is obtained for RHCNTs composites of 10 wt % CNTs with 10 mm thick.Keywords: EMI shielding effectiveness, carbon nanotube, composite materials wave guide, x-band
Procedia PDF Downloads 410